G2Cdb::Gene report

Gene id
G00001345
Gene symbol
GPHN (HGNC)
Species
Homo sapiens
Description
gephyrin
Orthologue
G00000096 (Mus musculus)

Databases (8)

Gene
ENSG00000171723 (Ensembl human gene)
10243 (Entrez Gene)
444 (G2Cdb plasticity & disease)
GPHN (GeneCards)
Literature
603930 (OMIM)
Marker Symbol
HGNC:15465 (HGNC)
Protein Expression
3116 (human protein atlas)
Protein Sequence
Q9NQX3 (UniProt)

Synonyms (1)

  • KIAA1385

Literature (32)

Pubmed - other

  • Genetical genomic determinants of alcohol consumption in rats and humans.

    Tabakoff B, Saba L, Printz M, Flodman P, Hodgkinson C, Goldman D, Koob G, Richardson HN, Kechris K, Bell RL, Hübner N, Heinig M, Pravenec M, Mangion J, Legault L, Dongier M, Conigrave KM, Whitfield JB, Saunders J, Grant B, Hoffman PL and WHO/ISBRA Study on State and Trait Markers of Alcoholism

    Department of Pharmacology, University of Colorado, Denver, Aurora, CO, USA. boris.tabakoff@ucdenver.edu

    Background: We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations.

    Results: In the HXB/BXH recombinant inbred (RI) rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL) analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption.

    Conclusion: Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume alcohol by rats and humans. The importance of a well-defined phenotype is also illustrated. Our results also suggest that different genetic factors predispose alcohol dependence versus the phenotype of alcohol consumption.

    Funded by: Howard Hughes Medical Institute; NHLBI NIH HHS: HL35018, P01 HL035018; NIAAA NIH HHS: AA006420, AA013162, AA013517-INIA, AA013522-INIA, AA016649-INIA, AA016663-INIA, AA16922, K01 AA016922, P50 AA006420, P60 AA006420, R01 AA013162, R24 AA013162, R24 AA015512, U01 AA013517, U01 AA013522, U01 AA016649, U01 AA016663, U24 AA013517, U24 AA013522; NIDDK NIH HHS: R01 DK100340; Wellcome Trust

    BMC biology 2009;7;70

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • Gephyrin: where do we stand, where do we go?

    Fritschy JM, Harvey RJ and Schwarz G

    Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. fritschy@pharma.uzh.ch

    Gephyrin is a multifunctional protein responsible for molybdenum cofactor synthesis and the clustering of glycine and GABA(A) receptors at inhibitory synapses. Based on the structure of its two conserved domains, G and E, gephyrin is thought to form a hexagonal lattice serving as a scaffold for accessory proteins at postsynaptic sites. However, important aspects of gephyrin gene expression, protein structure and regulation, as well as the role of gephyrin in synapse formation and plasticity, remain poorly understood. Here we review the current state of knowledge about gephyrin, highlighting new research avenues based on a different structural model and a revised nomenclature for gephyrin splice variants. Unraveling the biology of gephyrin will further our understanding of glycinergic and GABAergic synapses in health and disease.

    Funded by: Medical Research Council: G0500833, G0500833(74778), G0601585, G0601585(79887)

    Trends in neurosciences 2008;31;5;257-64

  • Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia.

    Inada T, Koga M, Ishiguro H, Horiuchi Y, Syu A, Yoshio T, Takahashi N, Ozaki N and Arinami T

    Seiwa Hospital, Institute of Neuropsychiatry, Benten-cho 91, Shinjuku-ku, Tokyo, Japan. han91010@rio.odn.ne.jp

    Objective: Neuroleptic-induced tardive dyskinesia (TD) is an involuntary movement disorder that develops in patients who have undergone long-term treatment with antipsychotic medications, and its etiology is unclear. In this study, a genome-wide association screening was done to identify the pathway(s) in which genetic variations influence susceptibility to neuroleptic-induced TD.

    Methods: Screening with Sentrix Human-1 Genotyping BeadChip (Illumina, San Diego, California, USA) was done for 50 Japanese schizophrenia patients with treatment-resistant TD and 50 Japanese schizophrenia patients without TD. A total of 40 573 single nucleotide polymorphisms that were not in linkage disequilibrium with each other and were located in the exonic and intronic regions of 13 307 genes were analyzed. After gene-based corrections, P values for allelic associations were subjected to canonical pathway-based analyses with Ingenuity Pathway Analysis software (Ingenuity Systems, Inc., Redwood City, California, USA).

    Results: Eight genes (ABAT, ALDH9A1, GABRA3, GABRA4, GABRB2, GABRAG3, GPHN, and SLC6A11) contained polymorphisms with gene-based corrected allelic P values of less than 0.05. They were aggregated significantly in 33 genes belonging to the gamma-aminobutyric acid (GABA) receptor signaling pathway (P=0.00007, corrected P=0.01). Associations were replicated in an independent sample of 36 patients with TD and 136 patients without TD for polymorphisms in SLC6A11 (GABA transporter 3) (P=0.0004 in the total sample), GABRB2 (beta-2 subunit of GABA-A receptor) (P=0.00007 in the total sample), and GABRG3 (gamma-3 subunit of GABA-A receptor) (P=0.0006 in the total sample).

    Conclusion: The results suggest that the GABA receptor signaling pathway may be involved in genetic susceptibility to treatment-resistant TD, at least in a subgroup of Japanese patients with schizophrenia. The present results suggest that benzodiazepines may be considered as possible treatment option for TD.

    Pharmacogenetics and genomics 2008;18;4;317-23

  • Multiple association states between glycine receptors and gephyrin identified by SPT analysis.

    Ehrensperger MV, Hanus C, Vannier C, Triller A and Dahan M

    Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique UMR8552, Ecole normale supérieure, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.

    The scaffolding protein gephyrin is known to anchor glycine receptors (GlyR) at synapses and to participate in the dynamic equilibrium between synaptic and extrasynaptic GlyR in the neuronal membrane. Here we investigated the properties of this interaction in cells cotransfected with YFP-tagged gephyrin and GlyR subunits possessing an extracellular myc-tag. In HeLa cells and young neurons, single particle tracking was used to follow in real time individual GlyR, labeled with quantum dots, traveling into and out of gephyrin clusters. Analysis of the diffusion properties of two GlyR subunit types--able or unable to bind gephyrin--gave access to the association states of GlyR with its scaffolding protein. Our results indicated that an important portion of GlyR could be linked to a few molecules of gephyrin outside gephyrin clusters. This emphasizes the role of scaffolding proteins in the extrasynaptic membrane and supports the implication of gephyrin-gephyrin interactions in the stabilization of GlyR at synapses. The kinetic parameters controlling the equilibrium between GlyR inside and outside clusters were also characterized. Within clusters, we identified two subpopulations of GlyR with distinct degrees of stabilization between receptors and scaffolding proteins.

    Biophysical journal 2007;92;10;3706-18

  • Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function.

    Zita MM, Marchionni I, Bottos E, Righi M, Del Sal G, Cherubini E and Zacchi P

    International School for Advanced Studies, Neuroscience Programme, Area Science Park, Basovissa SS14, 34012 Trieste, Italy.

    The microtubule binding protein gephyrin plays a prominent role in establishing and maintaining a high concentration of inhibitory glycine receptors juxtaposed to presynaptic releasing sites. Here, we show that endogenous gephyrin undergoes proline-directed phosphorylation, which is followed by the recruitment of the peptidyl-prolyl isomerase Pin1. The interaction between gephyrin and Pin1 is strictly dependent on gephyrin phosphorylation and requires serine-proline consensus sites encompassing the gephyrin proline-rich domain. Upon binding, Pin1 triggers conformational changes in the gephyrin molecule, thus enhancing its ability to bind the beta subunit of GlyRs. Consistently, a downregulation of GlyR clusters was detected in hippocampal neurons derived from Pin1 knockout mice, which was paralleled by a reduction in the amplitude of glycine-evoked currents. Our results suggest that phosphorylation-dependent prolyl isomerisation of gephyrin represents a mechanism for regulating GlyRs function.

    Funded by: NCI NIH HHS: CA 082845, R01 CA082845

    The EMBO journal 2007;26;7;1761-71

  • A probability-based approach for high-throughput protein phosphorylation analysis and site localization.

    Beausoleil SA, Villén J, Gerber SA, Rush J and Gygi SP

    Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, Massachusetts 02115, USA.

    Data analysis and interpretation remain major logistical challenges when attempting to identify large numbers of protein phosphorylation sites by nanoscale reverse-phase liquid chromatography/tandem mass spectrometry (LC-MS/MS) (Supplementary Figure 1 online). In this report we address challenges that are often only addressable by laborious manual validation, including data set error, data set sensitivity and phosphorylation site localization. We provide a large-scale phosphorylation data set with a measured error rate as determined by the target-decoy approach, we demonstrate an approach to maximize data set sensitivity by efficiently distracting incorrect peptide spectral matches (PSMs), and we present a probability-based score, the Ascore, that measures the probability of correct phosphorylation site localization based on the presence and intensity of site-determining ions in MS/MS spectra. We applied our methods in a fully automated fashion to nocodazole-arrested HeLa cell lysate where we identified 1,761 nonredundant phosphorylation sites from 491 proteins with a peptide false-positive rate of 1.3%.

    Funded by: NHGRI NIH HHS: HG03456; NIGMS NIH HHS: GM67945

    Nature biotechnology 2006;24;10;1285-92

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • The small oligomerization domain of gephyrin converts MLL to an oncogene.

    Eguchi M, Eguchi-Ishimae M and Greaves M

    Leukaemia Research Fund Centre, Institute of Cancer Research, Chester Beatty Laboratories, London, United Kingdom.

    The MLL (mixed lineage leukemia) gene forms chimeric fusions with a diverse set of partner genes as a consequence of chromosome translocations in leukemia. In several fusion partners, a transcriptional activation domain appears to be essential for conferring leukemogenic capacity on MLL protein. Other fusion partners, however, lack such domains. Here we show that gephyrin (GPHN), a neuronal receptor assembly protein and rare fusion partner of MLL in leukemia, has the capacity as an MLL-GPHN chimera to transform hematopoietic progenitors, despite lack of transcriptional activity. A small 15-amino acid tubulin-binding domain of GPHN is necessary and sufficient for this activity in vitro and in vivo. This domain also confers oligomerization capacity on MLL protein, suggesting that such activity may contribute critically to leukemogenesis. The transduction of MLL-GPHN into hematopoietic progenitor cells caused myeloid and lymphoid lineage leukemias in mice, suggesting that MLL-GPHN can target multipotent progenitor cells. Our results, and other recent data, provide a mechanism for oncogenic conversion of MLL by fusion partners encoding cytoplasmic proteins.

    Blood 2004;103;10;3876-82

  • Proteomic identification of brain proteins that interact with dynein light chain LC8.

    Navarro-Lérida I, Martínez Moreno M, Roncal F, Gavilanes F, Albar JP and Rodríguez-Crespo I

    Departamento de Bioquímicay Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain. nacho@bbml.ucm.es

    Cytoplasmic dynein is a large minus end-directed microtubule motor that translocates cargos towards the minus end of microtubules. Light chain 8 of the dynein machinery (LC8) has been reported to interact with a large variety of proteins that possess K/RSTQT or GIQVD motifs in their sequence, hence permitting their transport in a retrograde manner. Yeast two-hybrid analysis has revealed that in brain, LC8 associates directly with several proteins such as neuronal nitric oxide synthase, guanylate kinase domain-associated protein and gephyrin. In this work, we report the identification of over 40 polypeptides, by means of a proteomic approach, that interact with LC8 either directly or indirectly. Many of the neuronal proteins that we identified cluster at the post-synaptic terminal, and some of them such as phosphofructokinase, lactate dehydrogenase or aldolase are directly involved in glutamate metabolism. Other pool of proteins identified displayed the LC8 consensus binding motif. Finally, recombinant LC8 was produced and a library of overlapping dodecapeptides (pepscan) was employed to map the LC8 binding site of some of the proteins that were previously identified using the proteomic approach, hence confirming binding to the consensus binding sites.

    Proteomics 2004;4;2;339-46

  • Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: a possible link to the microfilament system.

    Giesemann T, Schwarz G, Nawrotzki R, Berhörster K, Rothkegel M, Schlüter K, Schrader N, Schindelin H, Mendel RR, Kirsch J and Jockusch BM

    Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany.

    Gephyrin is an essential component of the postsynaptic cortical protein network of inhibitory synapses. Gephyrin-based scaffolds participate in the assembly as well as the dynamics of receptor clusters by connecting the cytoplasmic domains of glycine and GABA(A) receptor polypeptides to two cytoskeletal systems, microtubules and microfilaments. Although there is evidence for a physical linkage between gephyrin and microtubules, the interaction between gephyrin and microfilaments is not well understood so far. Here, we show that neuronal gephyrin interacts directly with key regulators of microfilament dynamics, profilin I and neuronal profilin IIa, and with microfilament adaptors of the mammalian enabled (Mena)/vasodilator stimulated phosphoprotein (VASP) family, including neuronal Mena. Profilin and Mena/VASP coprecipitate with gephyrin from tissue and cells, and complex formation requires the E-domain of gephyrin, not the proline-rich central domain. Consequently, gephyrin is not a ligand for the proline-binding motif of profilins, as suspected previously. Instead, it competes with G-actin and phospholipids for the same binding site on profilin. Gephyrin, profilin, and Mena/VASP colocalize at synapses of rat spinal cord and cultivated neurons and in gephyrin clusters expressed in transfected cells. Thus, Mena/VASP and profilin can contribute to the postulated linkage between receptors, gephyrin scaffolds, and the microfilament system and may regulate the microfilament-dependent receptor packing density and dynamics at inhibitory synapses.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2003;23;23;8330-9

  • Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia.

    Rees MI, Harvey K, Ward H, White JH, Evans L, Duguid IC, Hsu CC, Coleman SL, Miller J, Baer K, Waldvogel HJ, Gibbon F, Smart TG, Owen MJ, Harvey RJ and Snell RG

    Department of Molecular Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, New Zealand. m.rees@auckland.ac.nz

    Gephyrin (GPHN) is an organizational protein that clusters and localizes the inhibitory glycine (GlyR) and GABAA receptors to the microtubular matrix of the neuronal postsynaptic membrane. Mice deficient in gephyrin develop a hereditary molybdenum cofactor deficiency and a neurological phenotype that mimics startle disease (hyperekplexia). This neuromotor disorder is associated with mutations in the GlyR alpha1 and beta subunit genes (GLRA1 and GLRB). Further genetic heterogeneity is suspected, and we hypothesized that patients lacking mutations in GLRA1 and GLRB might have mutations in the gephyrin gene (GPHN). In addition, we adopted a yeast two-hybrid screen, using the GlyR beta subunit intracellular loop as bait, in an attempt to identify further GlyR-interacting proteins implicated in hyperekplexia. Gephyrin cDNAs were isolated, and subsequent RT-PCR analysis from human tissues demonstrated the presence of five alternatively spliced GPHN exons concentrated in the central linker region of the gene. This region generated 11 distinct GPHN transcript isoforms, with 10 being specific to neuronal tissue. Mutation analysis of GPHN exons in hyperekplexia patients revealed a missense mutation (A28T) in one patient causing an amino acid substitution (N10Y). Functional testing demonstrated that GPHNN10Y does not disrupt GlyR-gephyrin interactions or collybistininduced cell-surface clustering. We provide evidence that GlyR-gephyrin binding is dependent on the presence of an intact C-terminal MoeA homology domain. Therefore, the N10Y mutation and alternative splicing of GPHN transcripts do not affect interactions with GlyRs but may affect other interactions with the cytoskeleton or gephyrin accessory proteins.

    The Journal of biological chemistry 2003;278;27;24688-96

  • Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH.

    Reiss J and Johnson JL

    Institut für Humangenetik der Universitätskliniken Göttingen, Göttingen, Germany. jreiss@gwdg.de

    Molybdenum cofactor deficiency in humans results in the loss of the activity of molybdoenzymes sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. The resultant severe phenotype, which includes progressive neurological damage leading in most cases to early childhood death, results primarily from the deficiency of sulfite oxidase. All forms of molybdenum cofactor deficiency are inherited as autosomal recessive traits. The cofactor is an unstable reduced pterin with a unique four-carbon side chain, synthesized by a complex pathway that requires the products of at least four different genes (MOCS1, MOCS2, MOCS3, and GEPH). Disease-causing mutations have been identified in three of these genes: MOCS1, MOCS2, and GEPH. MOCS1 and MOCS2 have a bicistronic architecture; i.e., each gene encodes two proteins in different open reading frames. The protein products, MOCS1A and B and MOCS2A and B, are expressed either from different mRNAs generated by alternative splicing or by independent translation of a bicistronic mRNA. The gephyrin protein, encoded by a third locus, is required during cofactor assembly for insertion of molybdenum. A total of 32 different disease-causing mutations, including several common to more than one family, have been identified in molybdenum cofactor-deficient patients and their relatives.

    Funded by: NIGMS NIH HHS: GM 44283

    Human mutation 2003;21;6;569-76

  • Association of gephyrin and glycine receptors in the human brainstem and spinal cord: an immunohistochemical analysis.

    Baer K, Waldvogel HJ, During MJ, Snell RG, Faull RL and Rees MI

    Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, Private Bag 92019, University of Auckland, Auckland, New Zealand.

    Gephyrin is a postsynaptic clustering molecule that forms a protein scaffold to anchor inhibitory neurotransmitter receptors at the postsynaptic membrane of neurons. Gephyrin was first identified as a protein component of the glycine receptor complex and is also colocalized with several GABAA receptor subunits in rodent brain. We have studied the distribution of gephyrin and glycine receptor subunits in the human brainstem and spinal cord using immunohistochemistry at light and confocal laser scanning microscopy levels. This study demonstrates the novel localization of gephyrin with glycine receptors in the human brainstem and spinal cord. Colocalization of immunoreactivities for gephyrin and glycine receptor subunits was detected in the dorsal and ventral horns of the spinal cord, the hypoglossal nucleus and the medial vestibular nucleus of the medulla. The results clearly establish that gephyrin is ubiquitously distributed and is colocalized, with a large proportion of glycine receptor subunits in the human brainstem and spinal cord. We therefore suggest that gephyrin functions as a clustering molecule for major subtypes of glycine receptors in the human CNS.

    Neuroscience 2003;122;3;773-84

  • Distribution of gephyrin in the human brain: an immunohistochemical analysis.

    Waldvogel HJ, Baer K, Snell RG, During MJ, Faull RL and Rees MI

    Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.

    Gephyrin is an ubiquitously expressed protein that, in the central nervous system, generates a protein scaffold to anchor inhibitory neurotransmitter receptors in the postsynaptic membrane. It was first identified as a protein component of the glycine receptor complex. Recent studies have demonstrated that gephyrin is colocalized with several subtypes of GABA(A) receptors and is part of postsynaptic GABA(A) receptor clusters. Here, we describe a study of the regional and cellular distribution of gephyrin in the human brain, determined by immunohistochemical localisation at the light and confocal laser scanning microscopic levels. At the regional level, gephyrin immunoreactivity was observed in most of the major brain regions examined. The most intense staining was in the cerebral cortex, hippocampus and caudate-putamen, in various brainstem nuclei with more moderate levels in the thalamus and cerebellum. At the cellular level gephyrin immunoreactivity was present on the plasma membranes of the soma and dendrites of pyramidal neurons throughout the various cortical regions examined. In the hippocampus, intense staining was observed on the granule cells of the dentate gyrus, and neurons of the CA1 and CA3 regions showed intense punctate gephyrin staining on their apical dendrites and cell bodies. Gephyrin immunoreactivity was also observed on neurons in the thalamus, globus pallidus and substantia nigra. In the putamen intense labelling of the striosomes was observed; most of the medium-sized neurons in the caudate-putamen were weakly labelled and many large neurons of the striatum were conspicuously stained. Many of the brainstem nuclei, notably the dorsal motor nucleus of the vagus, hypoglossal nucleus, trigeminal nucleus and inferior olive were all labelled with gephyrin. The spinal cord also showed high levels of gephyrin immunoreactivity. Our results demonstrate that the anchoring protein gephyrin is ubiquitously present in the human brain. We therefore suggest that gephyrin may have a central organizer role in assembling and stabilizing inhibitory postsynaptic membranes in human brain and is similar in function to those observed in the rodent brain. These findings contribute towards elucidating the role of gephyrin in the human brain.

    Neuroscience 2003;116;1;145-56

  • Gephyrin interacts with Dynein light chains 1 and 2, components of motor protein complexes.

    Fuhrmann JC, Kins S, Rostaing P, El Far O, Kirsch J, Sheng M, Triller A, Betz H and Kneussel M

    Max-Planck-Institute for Brain Research, Department of Neurochemistry, D-60528 Frankfurt/Main, Germany.

    The clustering of glycine receptors and major subtypes of GABA(A) receptors at inhibitory synapses is mediated by the tubulin-binding protein gephyrin. In an attempt to identify additional components of inhibitory postsynaptic specializations, we performed a yeast two-hybrid screen using gephyrin as bait. Multiple positive clones encoded either the dynein light chain-1 (Dlc-1), also known as dynein LC8 and protein inhibitor of neuronal nitric oxide synthase, or its homolog Dlc-2. Dlc-1 protein bound efficiently to gephyrin in in vitro binding assays and colocalized with gephyrin during coexpression in HEK293 cells. The binding site for Dlc was mapped to a fragment of 63 amino acids within the central linker domain of gephyrin. In hippocampal neurons, endogenous Dlc protein was enriched at synaptic sites identified by synaptophysin and gephyrin immunostaining. Immunoelectron microscopy in spinal cord sections revealed Dlc immunoreactivity at the edges of postsynaptic differentiations, in close contact with cytoskeletal structures and at the periphery of the Golgi apparatus. Because Dlc-1 and Dlc-2 have been described as stoichiometric components of cytoplasmic dynein and myosin-Va complexes, our results suggest that motor proteins are involved in the subcellular localization of gephyrin.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2002;22;13;5393-402

  • Identification of a gephyrin-binding motif in the GDP/GTP exchange factor collybistin.

    Grosskreutz Y, Hermann A, Kins S, Fuhrmann JC, Betz H and Kneussel M

    Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt/Main, Germany.

    The brain-specific GDP/GTP exchange factor collybistin interacts with the receptor-anchoring protein gephyrin and activates the Rho-like GTPase Cdc42, which is known to regulate actin cytoskeleton dynamics. Alternative splicing creates two collybistin variants, I and II. In coexpression experiments, collybistin II has been shown to induce the formation of submembraneous gephyrin aggregates which cluster with hetero-oligomeric glycine receptors (GlyRs). Here we identified residues critical for interaction with gephyrin in the linker region between the SH3 and the DH domains of collybistin. Respective collybistin deletion mutants failed to bind gephyrin upon coexpression in heterologous cells, in GST pull-down assays and in the yeast two-hybrid system. Site-directed mutagenesis revealed polar amino acid residues as essential determinants of gephyrin binding. Furthermore, in vitro gephyrin bound simultaneously to both collybistin and the GlyR beta-subunit binding motif. Our data are consistent with collybistin-gephyrin interactions occuring during inhibitory postsynaptic membrane formation.

    Biological chemistry 2001;382;10;1455-62

  • Crystal structures of human gephyrin and plant Cnx1 G domains: comparative analysis and functional implications.

    Schwarz G, Schrader N, Mendel RR, Hecht HJ and Schindelin H

    Department of Biochemistry and Center for Structural Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5115, USA.

    The molybdenum cofactor (Moco) consists of a unique and conserved pterin derivative, usually referred to as molybdopterin (MPT), which coordinates the essential transition metal molybdenum (Mo). Moco is required for the enzymatic activities of all Mo-enzymes, with the exception of nitrogenase and is synthesized by an evolutionary old multi-step pathway that is dependent on the activities of at least six gene products. In eukaryotes, the final step of Moco biosynthesis, i.e. transfer and insertion of Mo into MPT, is catalyzed by the two-domain proteins Cnx1 in plants and gephyrin in mammals. Gephyrin is ubiquitously expressed, and was initially found in the central nervous system, where it is essential for clustering of inhibitory neuroreceptors in the postsynaptic membrane. Gephyrin and Cnx1 contain at least two functional domains (E and G) that are homologous to the Escherichia coli proteins MoeA and MogA, the atomic structures of which have been solved recently. Here, we present the crystal structures of the N-terminal human gephyrin G domain (Geph-G) and the C-terminal Arabidopsis thaliana Cnx1 G domain (Cnx1-G) at 1.7 and 2.6 A resolution, respectively. These structures are highly similar and compared to MogA reveal four major differences in their three-dimensional structures: (1) In Geph-G and Cnx1-G an additional alpha-helix is present between the first beta-strand and alpha-helix of MogA. (2) The loop between alpha 2 and beta 2 undergoes conformational changes in all three structures. (3) A beta-hairpin loop found in MogA is absent from Geph-G and Cnx1-G. (4) The C terminus of Geph-G follows a different path from that in MogA. Based on the structures of the eukaryotic proteins and their comparisons with E. coli MogA, the predicted binding site for MPT has been further refined. In addition, the characterized alternative splice variants of gephyrin are analyzed in the context of the three-dimensional structure of Geph-G.

    Funded by: NIDDK NIH HHS: DK54835

    Journal of molecular biology 2001;312;2;405-18

  • The human gephyrin (GPHN) gene: structure, chromosome localization and expression in non-neuronal cells.

    David-Watine B

    Laboratoire de Biologie Cellulaire et Moléculaire du Neurone, INSERM U-261, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France. bdwati@pasteur.fr

    Gephyrin was first described as a peripheral membrane protein of 93 kDa anchoring the glycine receptor (GlyR) to subsynaptic microtubules and cytoskeleton. Analysis of knock-out mice demonstrated that gephyrin has additional functions in GABA(A) receptor localization at the synapse and in the biosynthetic pathway of the molybdenum cofactor (Moco). Here we describe a human non-neuronal gephyrin cDNA and the exon/intron organization of the human gephyrin gene. We found the coding region to consist of 27 exons and to span approximately 800 kb on the long arm of chromosome 14. This structure is almost identical to that of the mouse gephyrin gene except that sequences corresponding to three exons described in rat and mouse could not be identified in human. Mutations of the GlyR subunits and of gephyrin lead to severe neuromotor phenotypes in human and mouse. Hyperekplexia involves most frequently a mutation in the GlyR alpha1 subunit in humans. However, inactivation of the Moco biosynthesis pathway results in very similar symptomatology. The recent characterization of a deletion of two exons of the gephyrin gene in a patient with symptoms typical of Moco deficiency confirmed that the involvement of gephyrin in these pathologies cannot be excluded. The precise localization of the gephyrin gene allowed us to exclude it from being a candidate for the autosomal dominant spastic paraplegia, the locus of which maps to 14q between markers D14S259 and D14S1018. A description of its structure and exon boundaries should lay the groundwork for further analysis of its expression in humans.

    Gene 2001;271;2;239-45

  • A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency.

    Reiss J, Gross-Hardt S, Christensen E, Schmidt P, Mendel RR and Schwarz G

    Institut für Medizinische Physik und Biophysik der Universität Münster, D-48149 Münster, Germany. jreiss@uni-muenster.de

    Gephyrin was originally identified as a membrane-associated protein that is essential for the postsynaptic localization of receptors for the neurotransmitters glycine and GABA(A). A sequence comparison revealed homologies between gephyrin and proteins necessary for the biosynthesis of the universal molybdenum cofactor (MoCo). Because gephyrin expression can rescue a MoCo-deficient mutation in bacteria, plants, and a murine cell line, it became clear that gephyrin also plays a role in MoCo biosynthesis. Human MoCo deficiency is a fatal disease resulting in severe neurological damage and death in early childhood. Most patients harbor MOCS1 mutations, which prohibit formation of a precursor, or carry MOCS2 mutations, which abrogate precursor conversion to molybdopterin. The present report describes the identification of a gephyrin gene (GEPH) deletion in a patient with symptoms typical of MoCo deficiency. Biochemical studies of the patient's fibroblasts demonstrate that gephyrin catalyzes the insertion of molybdenum into molybdopterin and suggest that this novel form of MoCo deficiency might be curable by molybdate supplementation.

    American journal of human genetics 2001;68;1;208-13

  • The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse.

    Kneussel M, Haverkamp S, Fuhrmann JC, Wang H, Wässle H, Olsen RW and Betz H

    Departments of Neurochemistry and Neuroanatomy, Max Planck Institute for Brain Research, Deutschordenstrasse 46, D-60528 Frankfurt/Main, Germany.

    gamma-Aminobutyric acid type A receptors (GABA(A)Rs) are ligand-gated chloride channels that exist in numerous distinct subunit combinations. At postsynaptic membrane specializations, different GABA(A)R isoforms colocalize with the tubulin-binding protein gephyrin. However, direct interactions of GABA(A)R subunits with gephyrin have not been reported. Recently, the GABA(A)R-associated protein GABARAP was found to bind to the gamma2 subunit of GABA(A)Rs. Here we show that GABARAP interacts with gephyrin in both biochemical assays and transfected cells. Confocal analysis of neurons derived from wild-type and gephyrin-knockout mice revealed that GABARAP is highly enriched in intracellular compartments, but not at gephyrin-positive postsynaptic membrane specializations. Our data indicate that GABARAP-gephyrin interactions are not important for postsynaptic GABA(A)R anchoring but may be implicated in receptor sorting and/or targeting mechanisms. Consistent with this idea, a close homolog of GABARAP, p16, has been found to function as a late-acting intra-Golgi transport factor.

    Funded by: NINDS NIH HHS: NS28772, R01 NS028772

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;15;8594-9

  • Mini-review: gephyrin, a major postsynaptic protein of GABAergic synapses.

    Sassoè-Pognetto M and Fritschy JM

    Department of Anatomy, University of Turin, Torino, Italy. marco.sassoe@unito.it

    gamma-aminobutyric acid type A (GABAA) receptors are located at the majority of inhibitory synapses in the mammalian brain. However, the mechanisms by which GABAA receptor subunits are targeted to, and clustered in, the postsynaptic membrane are poorly understood. Recent studies have demonstrated that gephyrin, a protein first identified as a component of the glycine receptor (GlyR) complex, is colocalized with several subtypes of GABAA receptors and is involved in the stabilization of postsynaptic GABAA receptor clusters. Thus, gephyrin functions as a clustering protein for major subtypes of inhibitory ion channel receptors.

    The European journal of neuroscience 2000;12;7;2205-10

  • Autoimmunity to gephyrin in Stiff-Man syndrome.

    Butler MH, Hayashi A, Ohkoshi N, Villmann C, Becker CM, Feng G, De Camilli P and Solimena M

    Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

    Stiff-Man syndrome (SMS) is a rare disease of the central nervous system (CNS) characterized by chronic rigidity, spasms, and autoimmunity directed against synaptic antigens, most often the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD). In a subset of cases, SMS has an autoimmune paraneoplastic origin. We report here the identification of high-titer autoantibodies directed against gephyrin in a patient with clinical features of SMS and mediastinal cancer. Gephyrin is a cytosolic protein selectively concentrated at the postsynaptic membrane of inhibitory synapses, where it is associated with GABA(A) and glycine receptors. Our findings provide new evidence for a close link between autoimmunity directed against components of inhibitory synapses and neurological conditions characterized by chronic rigidity and spasms.

    Funded by: NCI NIH HHS: CA-46128; NIDDK NIH HHS: DK-45735, DK-53015

    Neuron 2000;26;2;307-12

  • Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Kikuno R, Ishikawa KI, Hirosawa M and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan. nagase@kazusa.or.jp

    We have carried out a human cDNA sequencing project to accumulate information regarding the coding sequences of unidentified human genes. As an extension of the preceding reports, we herein present the entire sequences of 150 cDNA clones of unknown human genes, named KIAA1294 to KIAA1443, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here reached 4.8 kb and 2.7 kb (910 amino acid residues), respectively. From sequence similarities and protein motifs, 73 predicted gene products were functionally annotated and 97% of them were classified into the following four functional categories: cell signaling/communication, nucleic acid management, cell structure/motility and protein management. Additionally, the chromosomal loci of the genes were assigned by using human-rodent hybrid panels for those genes whose mapping data were not available in the public databases. The expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2000;7;1;65-73

  • Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin.

    Kins S, Betz H and Kirsch J

    Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstr. 46, D-60528 Frankfurt, Germany.

    The formation of postsynaptic GABAA and glycine receptor clusters requires the receptor-associated peripheral membrane protein gephyrin. Here we describe two splice variants of a novel gephyrin-binding protein, termed collybistin I and II, which belong to the family of dbl-like GDP/GTP exchange factors (GEFs). Co-expression of collybistin II with gephyrin induced the formation of submembrane gephyrin aggregates that accumulate hetero-oligomeric glycine receptors. Our data suggest that collybistin II regulates the membrane deposition of gephyrin by activating a GTPase of the Rho/Rac family. Therefore, this protein may be an important determinant of inhibitory postsynaptic membrane formation and plasticity.

    Nature neuroscience 2000;3;1;22-9

  • Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling.

    Sabatini DM, Barrow RK, Blackshaw S, Burnett PE, Lai MM, Field ME, Bahr BA, Kirsch J, Betz H and Snyder SH

    The Johns Hopkins University School of Medicine, Department of Neuroscience, 725 North Wolfe Street, Baltimore, MD 21205, USA.

    RAFT1 (rapamycin and FKBP12 target 1; also called FRAP or mTOR) is a member of the ATM (ataxia telangiectasia mutated)-related family of proteins and functions as the in vivo mediator of the effects of the immunosuppressant rapamycin and as an important regulator of messenger RNA translation. In mammalian cells RAFT1 interacted with gephyrin, a widely expressed protein necessary for the clustering of glycine receptors at the cell membrane of neurons. RAFT1 mutants that could not associate with gephyrin failed to signal to downstream molecules, including the p70 ribosomal S6 kinase and the eIF-4E binding protein, 4E-BP1. The interaction with gephyrin ascribes a function to the large amino-terminal region of an ATM-related protein and reveals a role in signal transduction for the clustering protein gephyrin.

    Funded by: NIDA NIH HHS: DA-00074, DA-00266; NIGMS NIH HHS: GM-07309

    Science (New York, N.Y.) 1999;284;5417;1161-4

  • Hydrophobic interactions mediate binding of the glycine receptor beta-subunit to gephyrin.

    Kneussel M, Hermann A, Kirsch J and Betz H

    Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt/Main, Germany.

    Glycine receptors (GlyRs) are ligand-gated chloride channel proteins composed of alpha- and beta-subunits. GlyRs are located to and anchored at postsynaptic sites by the receptor-associated protein gephyrin. Previous work from our laboratory has identified a core motif for gephyrin binding in the cytoplasmic loop of the GlyR beta-subunit. Here, we localized amino acid residues implicated in gephyrin binding by site-directed mutagenesis. In a novel transfection assay, a green fluorescent protein-gephyrin binding motif fusion protein was used to monitor the consequences of amino acid substitutions for beta-subunit interaction with gephyrin. Only multiple, but not single, replacements of hydrophobic side chains abolished the interaction between the two proteins. Our data are consistent with gephyrin binding being mediated by the hydrophobic side of an imperfect amphipathic helix.

    Journal of neurochemistry 1999;72;3;1323-6

  • Interactions of drebrin and gephyrin with profilin.

    Mammoto A, Sasaki T, Asakura T, Hotta I, Imamura H, Takahashi K, Matsuura Y, Shirao T and Takai Y

    Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita, Japan.

    Profilin is an actin monomer-binding protein which stimulates actin polymerization. Recent studies have revealed that profilin interacts with VASP, Mena, Bnilp, Bnrlp, and mDia, all of which have the proline-rich domain. Here, we isolated three profilin-binding proteins from rat brain cytosol by glutathione S-transferase-profilin affinity column chromatography and identified them as Mena, drebrin, and gephyrin. These proteins had a proline-rich domain and directly interacted with profilin.

    Biochemical and biophysical research communications 1998;243;1;86-9

  • Identification of a gephyrin binding motif on the glycine receptor beta subunit.

    Meyer G, Kirsch J, Betz H and Langosch D

    Abteilung Neurochemie, Max-Planck-Institut für Hirnforschung, Frankfurt Federal Republic of Germany.

    The tubulin-binding protein gephyrin copurifies with the inhibitory glycine receptor (GlyR) and is essential for its postsynaptic localization. Here we have analyzed the interaction between the GlyR and recombinant gephyrin and identified a gephyrin binding site in the cytoplasmic loop between the third and fourth transmembrane segments of the beta subunit. GlyR alpha subunits and GABAA receptor proteins failed to bind recombinant gephyrin. However, insertion of an 18 residue segment of the GlyR beta subunit into the GABAA receptor beta 1 subunit conferred gephyrin binding both in an overlay assay and in transfected mammalian cells. These results indicate that beta subunit expression is essential for the formation of a postsynaptic GlyR matrix.

    Neuron 1995;15;3;563-72

  • Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein.

    Prior P, Schmitt B, Grenningloh G, Pribilla I, Multhaup G, Beyreuther K, Maulet Y, Werner P, Langosch D, Kirsch J et al.

    Abteilung Neurochemie, Max-Planck-Institut für Hirnforschung, Frankfurt/M., Germany.

    A 93 kd polypeptide associated with the mammalian inhibitory glycine receptor (GlyR) is localized at central synapses and binds with high affinity to polymerized tubulin. This protein, named gephyrin (from the Greek gamma epsilon phi upsilon rho alpha, bridge), is thought to anchor the GlyR to subsynaptic microtubules. Here we report its primary structure deduced from cDNA and show that corresponding transcripts are found in all rat tissues examined. In brain, at least five different gephyrin mRNAs are generated by alternative splicing. Expression of gephyrin cDNAs in 293 kidney cells yields polypeptides reactive with a gephyrin-specific antibody, which coprecipitate with polymerized tubulin. Thus, gephyrin may define a novel type of microtubule-associated protein involved in membrane protein-cytoskeleton interactions.

    Neuron 1992;8;6;1161-70

  • The 93-kDa glycine receptor-associated protein binds to tubulin.

    Kirsch J, Langosch D, Prior P, Littauer UZ, Schmitt B and Betz H

    Abteilung Neurochemie, Max-Planck-Institut für Hirnforschung, Frankfurt, Germany.

    A peripheral membrane protein with a relative molecular mass of 93,000 Da is associated with cytoplasmic domains of the inhibitory glycine receptor of mammalian spinal cord. Here, evidence is given that this 93-kDa protein binds to polymerized tubulin. First, tubulin cofractionated with the 93-kDa protein upon affinity purification of the glycine receptor. Second, tubulin bound to the isolated 93-kDa protein in an overlay procedure. Third, in assays containing the purified glycine receptor, the 93-kDa protein as well as the glycine receptor alpha and beta subunits coassembled with tubulin and microtubules. The interaction of the 93-kDa protein with tubulin displayed high affinity (KD approximately 2.5 nM) and significant cooperativity (Hill coefficient approximately 2.1) and approached a stoichiometry of approximately 1:4 under saturating conditions. These data suggest that the 93-kDa protein anchors the glycine receptor at postsynaptic sites via binding to subsynaptic tubulin.

    The Journal of biological chemistry 1991;266;33;22242-5

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.