G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
ryanodine receptor 2 (cardiac)
G00000095 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000039543 (Vega human gene)
ENSG00000198626 (Ensembl human gene)
6262 (Entrez Gene)
432 (G2Cdb plasticity & disease)
RYR2 (GeneCards)
180902 (OMIM)
Marker Symbol
HGNC:10484 (HGNC)
Protein Sequence
Q92736 (UniProt)

Synonyms (2)

  • ARVC2

Literature (85)

Pubmed - other

  • The RYR2-encoded ryanodine receptor/calcium release channel in patients diagnosed previously with either catecholaminergic polymorphic ventricular tachycardia or genotype negative, exercise-induced long QT syndrome: a comprehensive open reading frame mutational analysis.

    Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, Hofman N, Bikker H, van Tintelen JP, Mannens MM, Wilde AA and Ackerman MJ

    Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA.

    Objectives: This study was undertaken to determine the spectrum and prevalence of mutations in the RYR2-encoded cardiac ryanodine receptor in cases with exertional syncope and normal corrected QT interval (QTc).

    Background: Mutations in RYR2 cause type 1 catecholaminergic polymorphic ventricular tachycardia (CPVT1), a cardiac channelopathy with increased propensity for lethal ventricular dysrhythmias. Most RYR2 mutational analyses target 3 canonical domains encoded by <40% of the translated exons. The extent of CPVT1-associated mutations localizing outside of these domains remains unknown as RYR2 has not been examined comprehensively in most patient cohorts.

    Methods: Mutational analysis of all RYR2 exons was performed using polymerase chain reaction, high-performance liquid chromatography, and deoxyribonucleic acid sequencing on 155 unrelated patients (49% females, 96% Caucasian, age at diagnosis 20 +/- 15 years, mean QTc 428 +/- 29 ms), with either clinical diagnosis of CPVT (n = 110) or an initial diagnosis of exercise-induced long QT syndrome but with QTc <480 ms and a subsequent negative long QT syndrome genetic test (n = 45).

    Results: Sixty-three (34 novel) possible CPVT1-associated mutations, absent in 400 reference alleles, were detected in 73 unrelated patients (47%). Thirteen new mutation-containing exons were identified. Two-thirds of the CPVT1-positive patients had mutations that localized to 1 of 16 exons.

    Conclusions: Possible CPVT1 mutations in RYR2 were identified in nearly one-half of this cohort; 45 of the 105 translated exons are now known to host possible mutations. Considering that approximately 65% of CPVT1-positive cases would be discovered by selective analysis of 16 exons, a tiered targeting strategy for CPVT genetic testing should be considered.

    Funded by: NHLBI NIH HHS: P01 HL094291, P01 HL094291-01A1

    Journal of the American College of Cardiology 2009;54;22;2065-74

  • Follow-up examination of linkage and association to chromosome 1q43 in multiple sclerosis.

    McCauley JL, Zuvich RL, Bradford Y, Kenealy SJ, Schnetz-Boutaud N, Gregory SG, Hauser SL, Oksenberg JR, Mortlock DP, Pericak-Vance MA and Haines JL

    Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37232-0700, USA.

    Multiple sclerosis (MS) is a debilitating neuroimmunological and neurodegenerative disease affecting >4,00,000 individuals in the United States. Population and family-based studies have suggested that there is a strong genetic component. Numerous genomic linkage screens have identified regions of interest for MS loci. Our own second-generation genome-wide linkage study identified a handful of non-major histocompatibility complex regions with suggestive linkage. Several of these regions were further examined using single-nucleotide polymorphisms (SNPs) with average spacing between SNPs of approximately 1.0 Mb in a dataset of 173 multiplex families. The results of that study provided further evidence for the involvement of the chromosome 1q43 region. This region is of particular interest given linkage evidence in studies of other autoimmune and inflammatory diseases including rheumatoid arthritis and systemic lupus erythematosus. In this follow-up study, we saturated the region with approximately 700 SNPs (average spacing of 10 kb per SNP) in search of disease-associated variation within this region. We found preliminary evidence to suggest that common variation within the RGS7 locus may be involved in disease susceptibility.

    Funded by: NINDS NIH HHS: NS051695, NS32830, R01 NS032830, R01 NS032830-10A1, R01 NS032830-11, R01 NS032830-12, R01 NS032830-13, R01 NS032830-14, R03 NS051695, R03 NS051695-01A1, R03 NS051695-02

    Genes and immunity 2009;10;7;624-30

  • Germline genomic variants associated with childhood acute lymphoblastic leukemia.

    Treviño LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, Willman C, Neale G, Downing J, Raimondi SC, Pui CH, Evans WE and Relling MV

    St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

    Using the Affymetrix 500K Mapping array and publicly available genotypes, we identified 18 SNPs whose allele frequency differed significantly(P < 1 x 10(-5)) between pediatric acute lymphoblastic leukemia (ALL) cases (n = 317) and non-ALL controls (n = 17,958). Two SNPs in ARID5B not only differed between ALL and non-ALL groups (rs10821936, P = 1.4 x 10(-15), odds ratio (OR) = 1.91; rs10994982, P = 5.7 x 10(-9), OR = 1.62) but also distinguished B-hyperdiploid ALL from other subtypes (rs10821936, P = 1.62 x 10(-5), OR = 2.17; rs10994982, P = 0.003, OR 1.72). These ARID5B SNPs also distinguished B-hyperdiploid ALL from other subtypes in an independent validation cohort (n = 124 children with ALL; P = 0.003 and P = 0.0008, OR 2.45 and 2.86, respectively) and were associated with methotrexate accumulation and gene expression pattern in leukemic lymphoblasts. We conclude that germline variants affect susceptibility to, and characteristics of, specific ALL subtypes.

    Funded by: NCI NIH HHS: CA 078224, CA 21765, CA 36401, CA 51001, P30 CA021765, P30 CA021765-259006, R01 CA036401, R01 CA051001, R01 CA051001-15, R01 CA078224, R01 CA078224-10, R37 CA036401, R37 CA036401-24, U01 CA157937, U10 CA029139-22, U10 CA098413, U10 CA098413-07, U10 CA098543, U10 CA098543-07; NHLBI NIH HHS: U01 HL065899, U01 HL065899-07, U01 HL65899; NIGMS NIH HHS: U01 GM061374, U01 GM061374-07, U01 GM061393, U01 GM061393-100007, U01 GM61393, U01GM61374; NIMH NIH HHS: R01 MH059533, R01 MH059534, R01 MH059535, R01 MH059545, R01 MH059548, R01 MH059553, R01 MH059556, R01 MH059565, R01 MH059566, R01 MH059567, R01 MH059571, R01 MH059586, R01 MH059587, R01 MH059588, R01 MH060068, R01 MH060870, R01 MH060879, R01 MH061675, R01 MH067257, R01 MH081800, U01 MH046276, U01 MH046318, U01 MH079469, U01 MH079470, Z01 MH002810

    Nature genetics 2009;41;9;1001-5

  • Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia.

    Hayashi M, Denjoy I, Extramiana F, Maltret A, Buisson NR, Lupoglazoff JM, Klug D, Hayashi M, Takatsuki S, Villain E, Kamblock J, Messali A, Guicheney P, Lunardi J and Leenhardt A

    Service de Cardiologie, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, INSERM U942, Paris, France.

    Background: The pathophysiological background of catecholaminergic polymorphic ventricular tachycardia is well understood, but the clinical features of this stress-induced arrhythmic disorder, especially the incidence and risk factors of arrhythmic events, have not been fully ascertained.

    The outcome in 101 catecholaminergic polymorphic ventricular tachycardia patients, including 50 probands, was analyzed. During a mean follow-up of 7.9 years, cardiac events defined as syncope, aborted cardiac arrest, including appropriate discharges from implantable defibrillators, or sudden cardiac death occurred in 27 patients, including 2 mutation carriers with normal exercise tests. The estimated 8-year event rate was 32% in the total population and 27% and 58% in the patients with and without beta-blockers, respectively. Absence of beta-blockers (hazard ratio [HR], 5.48; 95% CI, 1.80 to 16.68) and younger age at diagnosis (HR, 0.54 per decade; 95% CI, 0.33 to 0.89) were independent predictors. Fatal or near-fatal events defined as aborted cardiac arrest or sudden cardiac death occurred in 13 patients, resulting in an estimated 8-year event rate of 13%. Absence of beta-blockers (HR, 5.54; 95% CI, 1.17 to 26.15) and history of aborted cardiac arrest (HR, 13.01; 95% CI, 2.48 to 68.21) were independent predictors. No difference was observed in cardiac and fatal or near-fatal event rates between probands and family members.

    Conclusions: Cardiac and fatal or near-fatal events were not rare in both catecholaminergic polymorphic ventricular tachycardia probands and affected family members during the long-term follow-up, even while taking beta-blockers, which was associated with a lower event rate. Further studies evaluating concomitant therapies are necessary to improve outcome in these patients.

    Circulation 2009;119;18;2426-34

  • FKBP12.6 binding of ryanodine receptors carrying mutations associated with arrhythmogenic cardiac disease.

    Zissimopoulos S, Thomas NL, Jamaluddin WW and Lai FA

    Wales Heart Research Institute, Department of Medicine-Cardiology, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK. zissimopouloss@cf.ac.uk

    In the present paper we show that distinct human RyR2 (ryanodine receptor type 2) inherited mutations expressed in mammalian cells exhibit either unaltered or increased FKBP12.6 (12.6 kDa FK506-binding protein) binding compared with the wild-type. Oxidizing conditions result in decreased FKBP12.6 binding, but to the same extent as for the wild-type. Our findings suggest that FKBP12.6 regulation of RyR2 is unlikely to be the primary defect in inherited arrhythmogenic cardiac disease.

    Funded by: British Heart Foundation: PG05/063, PG05/077

    The Biochemical journal 2009;419;2;273-8

  • Ca(2+)-calmodulin can activate and inactivate cardiac ryanodine receptors.

    Sigalas C, Bent S, Kitmitto A, O'Neill S and Sitsapesan R

    Department of Physiology and Pharmacology and Bristol Heart Institute, University of Bristol, Bristol, UK.

    Ca(2+)-calmodulin (Ca(2+)CaM) is widely accepted as an inhibitor of cardiac ryanodine receptors (RyR2); however, the effects of physiologically relevant CaM concentrations have not been fully investigated.

    We investigated the effects of low concentrations of Ca(2+)CaM (50-100 nmol.L(-1)) on the gating of native sheep RyR2, reconstituted into bilayers. Suramin displaces CaM from RyR2 and we have used a gel-shift assay to provide evidence of the mechanism underlying this effect. Finally, using suramin to displace endogenous CaM from RyR2 in permeabilized cardiac cells, we have investigated the effects of 50 nmol.L(-1) CaM on sarcoplasmic reticulum (SR) Ca(2+)-release.

    Ca(2+)CaM activated or inhibited single RyR2, but activation was much more likely at low (50-100 nmol.L(-1)) concentrations. Also, suramin displaced CaM from a peptide of the CaM binding domain of RyR2, indicating that, like the skeletal isoform (RyR1), suramin directly competes with CaM for its binding site on the channel. Pre-treatment of rat permeabilized ventricular myocytes with suramin to displace CaM, followed by addition of 50 nmol x L(-1) CaM to the mock cytoplasmic solution caused an increase in the frequency of spontaneous Ca(2+)-release events. Application of caffeine demonstrated that 50 nmol x L(-1) CaM reduced SR Ca(2+) content.

    We describe for the first time how Ca(2+)CaM is capable, not only of inactivating, but also of activating RyR2 channels in bilayers in a CaM kinase II-independent manner. Similarly, in cardiac cells, CaM stimulates SR Ca(2+)-release and the use of caffeine suggests that this is a RyR2-mediated effect.

    Funded by: British Heart Foundation

    British journal of pharmacology 2009;156;5;794-806

  • New molecular components supporting ryanodine receptor-mediated Ca(2+) release: roles of junctophilin and TRIC channel in embryonic cardiomyocytes.

    Yamazaki D, Yamazaki T and Takeshima H

    Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.

    Ca(2+) mobilization from intracellular stores is mediated by Ca(2+) release channels, designated ryanodine and IP(3) receptors, and directly regulates important cellular reactions including muscle contraction, endo/exocrine secretion, and neural excitability. In order to function as an intracellular store, the endo/sarcoplasmic reticulum is equipped with cooperative Ca(2+) uptake, storage and release machineries, comprising synergic collaborations among integral-membrane, cytoplasmic and luminal proteins. Our recent studies have demonstrated that junctophilins form junctional membrane complexes between the plasma membrane and the endo/sarcoplasmic reticulum in excitable cells, and that TRIC (trimeric intracellular cation) channels act as novel monovalent cation-specific channels on intracellular membrane systems. Knockout mice have provided evidence that both junctophilins and TRIC channels support efficient ryanodine receptor-mediated Ca(2+) release in muscle cells. This review focuses on cardiac Ca(2+) release by discussing pathological defects of mutant cardiomyocytes lacking ryanodine receptors, junctophilins, or TRIC channels.

    Pharmacology & therapeutics 2009;121;3;265-72

  • Search for cardiac calcium cycling gene mutations in familial ventricular arrhythmias resembling catecholaminergic polymorphic ventricular tachycardia.

    Marjamaa A, Laitinen-Forsblom P, Lahtinen AM, Viitasalo M, Toivonen L, Kontula K and Swan H

    Department of Cardiology, University of Helsinki, Helsinki, Finland. annukka.marjamaa@helsinki.fi

    Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a severe inherited cardiac disorder caused by mutations predominantly in the ryanodine receptor (RyR2) gene. We sought to identify mutations in genes affecting cardiac calcium cycling in patients with CPVT and in less typical familial exercise-related ventricular arrhythmias.

    We recruited 33 consecutive patients with frequent ventricular premature complexes (VPCs) without structural heart disease and often history of syncope or sudden death in family. Sixteen of the patients featured a phenotype typical of CPVT. In 17 patients, VPCs emerged also at rest. Exercise stress test and echocardiography were performed to each patient and 232 family members. Familial background was evident in 42% of cases (n = 14). We sequenced all the coding exons of the RyR2, FKBP1B, ATP2A2 and SLC8A1 genes from the index patients. Single channel recordings of a mutant RyR2 were performed in planar lipid bilayers. Two novel RyR2 missense mutations (R1051P and S616L) and two RyR2 exon 3 deletions were identified, explaining 25% of the CPVT phenotypes. A rare variant (N3308S) with open probabilities similar to the wild type channels in vitro, was evident in a patient with resting VPCs. No disease-causing variants were detectable in the FKBP1B, ATP2A2 or SLC8A1 genes.

    Conclusion: We report two novel CPVT-causing RyR2 mutations and a novel RyR2 variant of uncertain clinical significance in a patient with abundant resting VPCs. Our data also strengthen the previous assumption that exon 3 deletions of RyR2 should screened for in CPVT and related phenotypes.

    BMC medical genetics 2009;10;12

  • Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels.

    Meissner G, Pasek DA, Yamaguchi N, Ramachandran S, Dokholyan NV and Tripathy A

    Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA. meissner@med.unc.edu

    The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [(35)S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca(2+) concentrations from <0.01 to 100 microM. At 0.15 microM Ca(2+), [(35)S]CaM bound to RyR2 with decreased affinity and binding enthalpy compared with RyR1. The rates of [(35)S]CaM dissociation from RyR1 increased as the temperature was raised, whereas at 0.15 microM Ca(2+) the rate from RyR2 was little affected. The results suggest major differences in the energetics of CaM binding to and dissociation from RyR1 and RyR2.

    Funded by: NHLBI NIH HHS: HL 073051, R01 HL073051, R01 HL073051-03, R01 HL073051-04, R01 HL073051-08; NIAMS NIH HHS: AR 018687, R01 AR018687-31, R01 AR018687-32, R01 AR018687-33, R37 AR018687

    Proteins 2009;74;1;207-11

  • U-waves and T-wave peak to T-wave end intervals in patients with catecholaminergic polymorphic ventricular tachycardia, effects of beta-blockers.

    Viitasalo M, Oikarinen L, Väänänen H, Kontula K, Toivonen L and Swan H

    Department of Cardiology, Helsinki University Central Hospital, Helsinki, Finland. matti.viitasalo@hus.fi.

    Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is characterized by risk of polymorphic ventricular tachycardia (pVT) and sudden death during stress. Experimental CPVT models show that delayed afterdepolarization (DAD)-induced triggered activity is the initiating mechanism of pVT, whereas an increase in transmural dispersion of repolarization (TDR) controls degeneration of pVT to ventricular fibrillation. U-wave and T-wave peak to T-wave end interval (TPE) are regarded as electrocardiographic counterparts of DAD and TDR, respectively.

    Objective: We tested hypotheses that patients with CPVT might show abnormal U-waves and TPE intervals and that beta-blockers could suppress appearance of these repolarization abnormalities.

    Methods: We reviewed Holter recordings from 19 CPVT patients with a RyR2 mutation (P2328S or V4653F) and from 19 healthy unaffected subjects to record U-waves and TPE intervals as well as to measure beta-blockers' effects on ventricular repolarization by use of an automated computerized program.

    Results: The maximal U-wave to T-wave amplitude ratio was 0.8 +/- 0.6 in CPVT patients and 0.4 +/- 0.3 in unaffected subjects (P = .009). Patients with most ventricular extrasystoles had a higher U-wave to T-wave amplitude ratio than those with fewest extrasystoles. Treatment with beta-blockers decreased U-wave amplitude at high heart rates. CPVT patients had longer TPE intervals than unaffected subjects at high heart rates, and beta-blocker treatment shortened their TPE intervals.

    Conclusion: Present data support the hypothesis that U-waves associate with the DAD-triggered extrasystolic activity in CPVT patients. Patients with a RyR2 mutation show increased TPE at high heart rates. Beta-blocker treatment suppresses observed repolarization abnormalities in CPVT patients.

    Heart rhythm 2008;5;10;1382-8

  • Wide long lasting perinuclear Ca2+ release events generated by an interaction between ryanodine and IP3 receptors in canine Purkinje cells.

    Hirose M, Stuyvers B, Dun W, Ter Keurs H and Boyden PA

    Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York NY, USA.

    The purpose of this study was to determine whether IP(3)Rs contribute to the generation of wide long lasting perinuclear Ca(2+) release events in canine Purkinje cells. Spontaneous Ca(2+) release events (elevations of basal [Ca(2+)] equivalent to F/F(0) 3.4SD over F(0)) were imaged using Fluo-4AM and 2D confocal microscope. Only cells free of Ca(2+) waves were analyzed. Subsarcolemmal region (SSL) was defined as 5 microm from cell edges. Core was the remaining cell. The majority of events (94%, 0.0035+/-0.0007 events (ev)/microm(2)/s, N=34 cells) were detected within a single frame (typical events, TE). However, a subpopulation (6.0%, 0.00022+/-0.00005 ev/microm(2)/s, N=41 cells: wide long lasting events, WLE) lasted for several frames, showed a greater spatial extent (51.0+/-3.9 vs. TE 9.0+/-0.3 microm(2), P<0.01) and higher amplitude (F/F(0) 1.38+/-0.02 vs. TE 1.20+/-0.003, P<0.01). WLE event rate was increased by phenylephrine (10 microM, P<0.01), inhibited by 2APB and U73122 (P<0.05), and abolished by tetracaine (1 mM) and ryanodine (100 microM). While SSL WLEs were scattered randomly, Core WLEs (n=69 events) were predominantly distributed longitudinally 18.2+/-1.6 microm from the center of nuclei. Immunocytochemistry showed that IP(3)R1s were located not only at SSL region but also near both ends of nucleus overlapping with RyRs. In Purkinje cells, wide long lasting Ca(2+) release events occur in SSL and in specific perinuclear regions. They are likely due to RyRs and IP(3)R1s evoked Ca(2+) release and may play a role in Ca(2+) dependent nuclear processes.

    Funded by: NHLBI NIH HHS: HL58860, R01 HL058860, R01 HL058860-08

    Journal of molecular and cellular cardiology 2008;45;2;176-84

  • Identification of a novel mutation V2321M of the cardiac ryanodine receptor gene of sudden unexplained death and a phenotypic study of the gene mutations.

    Nishio H, Iwata M, Tamura A, Miyazaki T, Tsuboi K and Suzuki K

    Department of Legal Medicine, Osaka Medical College, Takatsuki 569-8686, Japan. leg010@art.osaka-med.ac.jp

    Mutations of the cardiac ryanodine receptor (RyR2) gene cause catecholaminergic polymorphic ventricular tachycardia, which sometimes results in a finding of sudden unexplained death (SUD) at autopsy. We found a novel mutation (V2321M) in exon 46 of the RyR2 gene in a SUD case. V2321M was localized in a highly conservative site of the RyR2 gene, but was not found in 400 reference alleles. We previously reported two SUD cases with R420W mutations in exon 14 of the RyR2 gene. We examined possible phenotypic characteristics of all three of these cases of SUD with the RyR2 gene mutations. All cases displayed mesenteric lymph node hypertrophy as well as tendencies for aortic narrowing. By contrast, only one of the 14 SUD cases without RyR2 mutations displayed these phenotypes. This study supports the concept that postmortem genetic testing of RyR2 mutations should be considered in autopsy examinations of SUD cases. It also raises the possibility that some cases with RyR2 mutations may display phenotypic changes in lymphoid and cardiovascular organs.

    Legal medicine (Tokyo, Japan) 2008;10;4;196-200

  • Localization of PKA phosphorylation site, Ser(2030), in the three-dimensional structure of cardiac ryanodine receptor.

    Jones PP, Meng X, Xiao B, Cai S, Bolstad J, Wagenknecht T, Liu Z and Chen SR

    Department of Physiology and Biophysics, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada T2N 4N1.

    PKA (protein kinase A)-dependent phosphorylation of the cardiac Ca2+-release channel/RyR2 (type 2 ryanodine receptor)is believed to directly dissociate FKBP12.6 (12.6 kDa FK506-binding protein) from the channel, causing abnormal channel activation and Ca2+ release. To gain insight into the structural basis of the regulation of RyR2 by PKA, we determined the three-dimensional location of the PKA site Ser2030. GFP (green fluorescent protein) was inserted into RyR2-wt (wild-type RyR2)and RyR2 mutant, A4860G, after Thr2023. The resultant GFP-RyR2 fusion proteins, RyR2T2023-GFP and RyR2(A4860G)T2023-GFP, were expressed in HEK-293 (human embryonic kidney) cells and functionally characterized. Ca2+-release assays revealed that both GFP-RyR2 fusion proteins formed caffeine- and ryanodine-sensitive Ca2+-release channels. Further analyses using[3H]ryanodine binding demonstrated that the insertion of GFPinto RyR2-wt after Thr2023 reduced the sensitivity of the channelto activation by Ca2+ or caffeine. RyR2(A4860G)T2023-GFP was found to be structurally more stable than RyR2T2023-GFP and was subsequently used as a basis for three-dimensional reconstruction. Cryo-electronmicroscopy and single particle image processing of the purified RyR2(A4860G)T2023-GFP protein revealed the location of the inserted GFP, and hence the Ser2030 PKA site in domain 4,a region that may be involved in signal transduction between the transmembrane and cytoplasmic domains. Like the Ser2808 PKA site reported previously, the Ser2030 site is not located close to the FKBP12.6-binding site mapped previously, indicating that neither of these PKA sites is directly involved in FKBP12.6 binding. On the basis of the three-dimensional localizations of a number of residues or regions, a model for the subunit organization in the structure of RyR2 is proposed.

    Funded by: NCRR NIH HHS: P41 RR001219-21, RR01219; NIAMS NIH HHS: AR40615, R01 AR040615, R01 AR040615-16

    The Biochemical journal 2008;410;2;261-70

  • Removal of FKBP12.6 does not alter the conductance and activation of the cardiac ryanodine receptor or the susceptibility to stress-induced ventricular arrhythmias.

    Xiao J, Tian X, Jones PP, Bolstad J, Kong H, Wang R, Zhang L, Duff HJ, Gillis AM, Fleischer S, Kotlikoff M, Copello JA and Chen SR

    Libin Cardiovascular Institute of Alberta, Department of Physiology and Biophysics, University of Calgary, Calgary, AB, T2N 4N1, Canada.

    The 12.6-kDa FK506-binding protein (FKBP12.6) is considered to be a key regulator of the cardiac ryanodine receptor (RyR2), but its precise role in RyR2 function is complex and controversial. In the present study we investigated the impact of FKBP12.6 removal on the properties of the RyR2 channel and the propensity for spontaneous Ca(2+) release and the occurrence of ventricular arrhythmias. Single channel recordings in lipid bilayers showed that FK506 treatment of recombinant RyR2 co-expressed with or without FKBP12.6 or native canine RyR2 did not induce long-lived subconductance states. [(3)H]Ryanodine binding studies revealed that coexpression with or without FKBP12.6 or treatment with or without FK506 did not alter the sensitivity of RyR2 to activation by Ca(2+) or caffeine. Furthermore, single cell Ca(2+) imaging analyses demonstrated that HEK293 cells co-expressing RyR2 and FKBP12.6 or expressing RyR2 alone displayed the same propensity for spontaneous Ca(2+) release or store overload-induced Ca(2+) release (SOICR). FK506 increased the amplitude and decreased the frequency of SOICR in HEK293 cells expressing RyR2 with or without FKBP12.6, indicating that the action of FK506 on SOICR is independent of FKBP12.6. As with recombinant RyR2, the conductance and ligand-gating properties of single RyR2 channels from FKBP12.6-null mice were indistinguishable from those of single wild type channels. Moreover, FKBP12.6-null mice did not exhibit enhanced susceptibility to stress-induced ventricular arrhythmias, in contrast to previous reports. Collectively, our results demonstrate that the loss of FKBP12.6 has no significant effect on the conduction and activation of RyR2 or the propensity for spontaneous Ca(2+) release and stress-induced ventricular arrhythmias.

    Funded by: NHLBI NIH HHS: R01 HL075210, R01 HL075210-04, R01HL75210; PHS HHS: R01TM078665

    The Journal of biological chemistry 2007;282;48;34828-38

  • Functional consequence of protein kinase A-dependent phosphorylation of the cardiac ryanodine receptor: sensitization of store overload-induced Ca2+ release.

    Xiao B, Tian X, Xie W, Jones PP, Cai S, Wang X, Jiang D, Kong H, Zhang L, Chen K, Walsh MP, Cheng H and Chen SR

    Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 4N1, Canada.

    The phosphorylation of the cardiac Ca(2+)-release channel (ryanodine receptor, RyR2) by protein kinase A (PKA) has been extensively characterized, but its functional consequence remains poorly defined and controversial. We have previously shown that RyR2 is phosphorylated by PKA at two major sites, serine 2,030 and serine 2,808, of which Ser-2,030 is the major PKA site responding to beta-adrenergic stimulation. Here we investigated the effect of the phosphorylation of RyR2 by PKA on the properties of single channels and on spontaneous Ca(2+) release during sarcoplasmic reticulum Ca(2+) overload, a process we have referred to as store overload-induced Ca(2+) release (SOICR). We found that PKA activated single RyR2 channels in the presence, but not in the absence, of luminal Ca(2+). On the other hand, PKA had no marked effect on the sensitivity of the RyR2 channel to activation by cytosolic Ca(2+). Importantly, the S2030A mutation, but not mutations of Ser-2,808, diminished the effect of PKA on RyR2. Furthermore, a phosphomimetic mutation, S2030D, potentiated the response of RyR2 to luminal Ca(2+) and enhanced the propensity for SOICR in HEK293 cells. In intact rat ventricular myocytes, the activation of PKA by isoproterenol reduced the amplitude and increased the frequency of SOICR. Confocal line-scanning fluorescence microscopy further revealed that the activation of PKA by isoproterenol increased the rate of Ca(2+) release and the propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). Collectively, our data indicate that PKA-dependent phosphorylation enhances the response of RyR2 to luminal Ca(2+) and reduces the threshold for SOICR and that this effect of PKA is largely mediated by phosphorylation at Ser-2,030.

    The Journal of biological chemistry 2007;282;41;30256-64

  • Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features.

    Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC, Alders M, Postma AV, van Langen I, Mannens MM and Wilde AA

    Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, The Netherlands. z.a.bhuiyan@amc.uva.nl

    Background: Catecholaminergic polymorphic ventricular tachycardia is a disease characterized by ventricular arrhythmias elicited exclusively under adrenergic stress. Additional features include baseline bradycardia and, in some patients, right ventricular fatty displacement. The clinical spectrum is expanded by the 2 families described here.

    Sixteen members from 2 separate families have been clinically evaluated and followed over the last 15 years. In addition to exercise-related ventricular arrhythmias, they showed abnormalities in sinoatrial node function, as well as atrioventricular nodal function, atrial fibrillation, and atrial standstill. Left ventricular dysfunction and dilatation was present in several affected individuals. Linkage analysis mapped the disease phenotype to a 4-cM region on chromosome 1q42-q43. Conventional polymerase chain reaction-based screening did not reveal a mutation in either the Ryanodine receptor 2 gene (RYR2) or ACTN2, the most plausible candidate genes in the region of interest. Multiplex ligation-dependent probe amplification and long-range polymerase chain reaction identified a genomic deletion that involved RYR2 exon-3, segregated in all the affected family members (n=16) in these 2 unlinked families. Further investigation revealed that the genomic deletion occurred in both families as a result of Alu repeat-mediated polymerase slippage.

    Conclusions: This is the first report on a large genomic deletion in RYR2, which leads to extended clinical phenotypes (eg, sinoatrial node and atrioventricular node dysfunction, atrial fibrillation, atrial standstill, and dilated cardiomyopathy). These features have not previously been linked to RYR2.

    Circulation 2007;116;14;1569-76

  • Genome-wide association of echocardiographic dimensions, brachial artery endothelial function and treadmill exercise responses in the Framingham Heart Study.

    Vasan RS, Larson MG, Aragam J, Wang TJ, Mitchell GF, Kathiresan S, Newton-Cheh C, Vita JA, Keyes MJ, O'Donnell CJ, Levy D and Benjamin EJ

    The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA. vasan@bu.edu

    Background: Echocardiographic left ventricular (LV) measurements, exercise responses to standardized treadmill test (ETT) and brachial artery (BA) vascular function are heritable traits that are associated with cardiovascular disease risk. We conducted a genome-wide association study (GWAS) in the community-based Framingham Heart Study.

    Methods: We estimated multivariable-adjusted residuals for quantitative echocardiography, ETT and BA function traits. Echocardiography residuals were averaged across 4 examinations and included LV mass, diastolic and systolic dimensions, wall thickness, fractional shortening, left atrial and aortic root size. ETT measures (single exam) included systolic blood pressure and heart rate responses during exercise stage 2, and at 3 minutes post-exercise. BA measures (single exam) included vessel diameter, flow-mediated dilation (FMD), and baseline and hyperemic flow responses. Generalized estimating equations (GEE), family-based association tests (FBAT) and variance-components linkage were used to relate multivariable-adjusted trait residuals to 70,987 SNPs (Human 100K GeneChip, Affymetrix) restricted to autosomal SNPs with minor allele frequency > or =0.10, genotype call rate > or =0.80, and Hardy-Weinberg equilibrium p > or = 0.001.

    Results: We summarize results from 17 traits in up to 1238 related middle-aged to elderly men and women. Results of all association and linkage analyses are web-posted at http://ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 webcite. We confirmed modest-to-strong heritabilities (estimates 0.30-0.52) for several Echo, ETT and BA function traits. Overall, p < 10(-5) in either GEE or FBAT models were observed for 21 SNPs (nine for echocardiography, eleven for ETT and one for BA function). The top SNPs associated were (GEE results): LV diastolic dimension, rs1379659 (SLIT2, p = 1.17*10(-7)); LV systolic dimension, rs10504543 (KCNB2, p = 5.18*10(-6)); LV mass, rs10498091 (p = 5.68*10(-6)); Left atrial size, rs1935881 (FAM5C, p = 6.56*10(-6)); exercise heart rate, rs6847149 (NOLA1, p = 2.74*10(-6)); exercise systolic blood pressure, rs2553268 (WRN, p = 6.3*10(-6)); BA baseline flow, rs3814219 (OBFC1, 9.48*10(-7)), and FMD, rs4148686 (CFTR, p = 1.13*10(-5)). Several SNPs are reasonable biological candidates, with some being related to multiple traits suggesting pleiotropy. The peak LOD score was for LV mass (4.38; chromosome 5); the 1.5 LOD support interval included NRG2.

    Conclusion: In hypothesis-generating GWAS of echocardiography, ETT and BA vascular function in a moderate-sized community-based sample, we identified several SNPs that are candidates for replication attempts and we provide a web-based GWAS resource for the research community.

    Funded by: NCRR NIH HHS: 1S10RR163736-01A1; NHLBI NIH HHS: 1R01 HL60040, HL080124, K23 HL074077, K23 HL080025, K23-HL-074077, K23-HL080025, K24 HL004334, K24-HL04334, N01-HC-25195, N01HC25195, R01 HL060040, R01 HL070100, R01 HL080124, R01 HL70100; NINDS NIH HHS: 6R01-NS 17950, R01 NS017950

    BMC medical genetics 2007;8 Suppl 1;S2

  • Functional genomics of calcium channels in human melanoma cells.

    Deli T, Varga N, Adám A, Kenessey I, Rásó E, Puskás LG, Tóvári J, Fodor J, Fehér M, Szigeti GP, Csernoch L and Tímár J

    Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.

    Ca(2+)-signaling of human melanoma is in the focus of intensive research since the identification of the role of WNT-signaling in melanomagenesis. Genomic and functional studies pointed to the important role of various Ca(2+) channels in melanoma, but these data were contradictory. In the present study we clearly demonstrate, in a number of different ways including microarray analysis, DNA sequencing and immunocytochemistry, that various human melanoma cell lines and melanoma tissues overexpress ryanodine receptor type 2 (RyR2) and express P2X(7) channel proteins as compared to melanocytes. These channels, although retain some of their usual characteristics and pharmacological properties, display unique features in melanoma cells, including a functional interaction between the two molecules. Unlike P2X(7), RyR2 does not function as a calcium channel. On the other hand, the P2X(7) receptor has an antiapoptotic function in melanoma cells, since ATP-activation suppresses induced apoptosis, while knock down of the gene expression significantly enhances that.

    International journal of cancer 2007;121;1;55-65

  • K201 (JTV519) suppresses spontaneous Ca2+ release and [3H]ryanodine binding to RyR2 irrespective of FKBP12.6 association.

    Hunt DJ, Jones PP, Wang R, Chen W, Bolstad J, Chen K, Shimoni Y and Chen SR

    Department of Physiology and Biophysics, University of Calgary, Calgary, AB, Canada T2N 4N1.

    K201 (JTV519), a benzothiazepine derivative, has been shown to possess anti-arrhythmic and cardioprotective properties, but the mechanism of its action is both complex and controversial. It is believed to stabilize the closed state of the RyR2 (cardiac ryanodine receptor) by increasing its affinity for the FKBP12.6 (12.6 kDa FK506 binding protein) [Wehrens, Lehnart, Reiken, Deng, Vest, Cervantes, Coromilas, Landry and Marks (2004) Science 304, 292-296]. In the present study, we investigated the effect of K201 on spontaneous Ca2+ release induced by Ca2+ overload in rat ventricular myocytes and in HEK-293 cells (human embryonic kidney cells) expressing RyR2 and the role of FKBP12.6 in the action of K201. We found that K201 abolished spontaneous Ca2+ release in cardiac myocytes in a concentration-dependent manner. Treating ventricular myocytes with FK506 to dissociate FKBP12.6 from RyR2 did not affect the suppression of spontaneous Ca2+ release by K201. Similarly, K201 was able to suppress spontaneous Ca2+ release in FK506-treated HEK-293 cells co-expressing RyR2 and FKBP12.6. Furthermore, K201 suppressed spontaneous Ca2+ release in HEK-293 cells expressing RyR2 alone and in cells co-expressing RyR2 and FKBP12.6 with the same potency. In addition, K201 inhibited [3H]ryanodine binding to RyR2-wt (wild-type) and an RyR2 mutant linked to ventricular tachycardia and sudden death, N4104K, in the absence of FKBP12.6. These observations demonstrate that FKBP12.6 is not involved in the inhibitory action of K201 on spontaneous Ca2+ release. Our results also suggest that suppression of spontaneous Ca2+ release and the activity of RyR2 contributes, at least in part, to the anti-arrhythmic properties of K201.

    Funded by: NHLBI NIH HHS: 1R01HL75210

    The Biochemical journal 2007;404;3;431-8

  • Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.

    Wellcome Trust Case Control Consortium

    There is increasing evidence that genome-wide association (GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study (using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined approximately 2,000 individuals for each of 7 major diseases and a shared set of approximately 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 x 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals (including 58 loci with single-point P values between 10(-5) and 5 x 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

    Funded by: Chief Scientist Office: CZB/4/540; Medical Research Council: G0000934, G0100594, G0501942, G0600329, G0600705, G0800759, G0901461, G19/9, G90/106, G9806740, G9810900; Wellcome Trust: 076113, 077011, 090532

    Nature 2007;447;7145;661-78

  • A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors.

    Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR and Ackerman MJ

    Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota 55901, USA.

    Background: Sudden infant death syndrome (SIDS) is the leading cause of postneonatal mortality in the United States. Mutations in the RyR2-encoded cardiac ryanodine receptor cause the highly lethal catecholaminergic polymorphic ventricular tachycardia (CPVT1) in the young.

    Objective: The purpose of this study was to determine the spectrum and prevalence of RyR2 mutations in a large cohort of SIDS cases.

    Methods: Using polymerase chain reaction, denaturing high performance liquid chromatography, and direct DNA sequencing, a targeted mutational analysis of RyR2 was performed on genomic DNA isolated from frozen necropsy tissue on 134 unrelated cases of SIDS (57 females, 77 males; 83 white, 50 black, 1 Hispanic; average age = 2.7 months). RyR2 mutations were engineered by site-directed mutagenesis, heterologously expressed in HEK293 cells, and functionally characterized using single-channel recordings in planar lipid bilayers.

    Results: Overall, two distinct and novel RyR2 mutations were identified in two cases of SIDS. A 6-month-old black female hosted an R2267H missense mutation, and a 4-week-old white female infant harbored a S4565R mutation. Both nonconservative amino acid substitutions were absent in 400 reference alleles, involved conserved residues, and were localized to key functionally significant domains. Under conditions that simulate stress [Protein Kinase A (PKA) phosphorylation] during diastole (low activating [Ca2+]), SIDS-associated RyR2 mutant channels displayed a significant gain-of-function phenotype consistent with the functional effect of previously characterized CPVT-associated RyR2 mutations.

    Conclusions: Here we report a novel pathogenic mechanism for SIDS, whereby SIDS-linked RyR2 mutations alter the response of the channels to sympathetic nervous system stimulation such that during stress the channels become "leaky" and thus potentially trigger fatal cardiac arrhythmias.

    Funded by: NICHD NIH HHS: HD42569, R01 HD042569, R01 HD042569-06, R01 HD042569-07

    Heart rhythm 2007;4;6;733-9

  • Skeletal and cardiac ryanodine receptors exhibit different responses to Ca2+ overload and luminal ca2+.

    Kong H, Wang R, Chen W, Zhang L, Chen K, Shimoni Y, Duff HJ and Chen SR

    Cardiovascular Research Group, Department of Physiology and Biophysics, and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.

    Spontaneous Ca(2+) release occurs in cardiac cells during sarcoplasmic reticulum Ca(2+) overload, a process we refer to as store-overload-induced Ca(2+) release (SOICR). Unlike cardiac cells, skeletal muscle cells exhibit little SOICR activity. The molecular basis of this difference is not well defined. In this study, we investigated the SOICR properties of HEK293 cells expressing RyR1 or RyR2. We found that HEK293 cells expressing RyR2 exhibited robust SOICR activity, whereas no SOICR activity was observed in HEK293 cells expressing RyR1. However, in the presence of low concentrations of caffeine, SOICR could be triggered in these RyR1-expressing cells. At the single-channel level, we showed that RyR2 is much more sensitive to luminal Ca(2+) than RyR1. To identify the molecular determinants responsible for these differences, we constructed two chimeras between RyR1 and RyR2, N-RyR1(1-4006)/C-RyR2(3962-4968) and N-RyR2(1-3961)/C-RyR1(4007-5037). We found that replacing the C-terminal region of RyR1 with the corresponding region of RyR2 (N-RyR1/C-RyR2) dramatically enhanced the propensity for SOICR and the response to luminal Ca(2+), whereas replacing the C-terminal region of RyR2 with the corresponding region of RyR1 (N-RyR2/C-RyR1) reduced the propensity for SOICR and the luminal Ca(2+) response. These observations indicate that the C-terminal region of RyR is a critical determinant of both SOICR and the response to luminal Ca(2+). These chimeric studies also reveal that the N-terminal region of RyR plays an important role in regulating SOICR and luminal Ca(2+) response. Taken together, our results demonstrate that RyR1 differs markedly from RyR2 with respect to their responses to Ca(2+) overload and luminal Ca(2+), and suggest that the lack of spontaneous Ca(2+) release in skeletal muscle cells is, in part, attributable to the unique intrinsic properties of RyR1.

    Funded by: NHLBI NIH HHS: 1R01HL75210, R01 HL075210

    Biophysical journal 2007;92;8;2757-70

  • Alternative splicing of ryanodine receptors modulates cardiomyocyte Ca2+ signaling and susceptibility to apoptosis.

    George CH, Rogers SA, Bertrand BM, Tunwell RE, Thomas NL, Steele DS, Cox EV, Pepper C, Hazeel CJ, Claycomb WC and Lai FA

    Department of Cardiology, Wales Heart Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff, UK. georgech@cf.ac.uk

    Ca(2+) release via type 2 ryanodine receptors (RyR2) regulates cardiac function. Molecular cloning of human RyR2 identified 2 alternatively spliced variants, comprising 30- and 24-bp sequence insertions; yet their role in shaping cardiomyocyte Ca(2+) signaling and cell phenotype is unknown. We profiled the developmental regulation and the tissue and species specificity of these variants and showed that their recombinant expression in HL-1 cardiomyocytes profoundly modulated nuclear and cytoplasmic Ca(2+) release. All splice variants localized to the sarcoplasmic reticulum, perinuclear Golgi apparatus, and to finger-like invaginations of the nuclear envelope (nucleoplasmic reticulum). Strikingly, the 24-bp splice insertion that was present at low levels in embryonic and adult hearts was essential for targeting RyR2 to an intranuclear Golgi apparatus and promoted the intracellular segregation of this variant. The amplitude variability of nuclear and cytoplasmic Ca(2+) fluxes were reduced in nonstimulated cardiomyocytes expressing both 30- and 24-bp splice variants and were associated with lower basal levels of apoptosis. Expression of RyR2 containing the 24-bp insertion also suppressed intracellular Ca(2+) fluxes following prolonged caffeine exposure (1 mmol/L, 16 hours) that protected cells from apoptosis. The antiapoptotic effects of this variant were linked to increased levels of Bcl-2 phosphorylation. In contrast, RyR2 containing the 30-bp insertion, which was abundant in human embryonic heart but was decreased during cardiac development, did not protect cardiomyocytes from caffeine-evoked apoptosis. Thus, we provide the first evidence that RyR2 splice variants exquisitely modulate intracellular Ca(2+) signaling and are key determinants of cardiomyocyte apoptotic susceptibility.

    Circulation research 2007;100;6;874-83

  • Redox sensitivity of the ryanodine receptor interaction with FK506-binding protein.

    Zissimopoulos S, Docrat N and Lai FA

    Wales Heart Research Institute, Department of Cardiology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom. zissimopouloss@cardiff.ac.uk

    The ryanodine receptor (RyR) calcium release channel functions as a redox sensor that is sensitive to channel modulators. The FK506-binding protein (FKBP) is an important regulator of channel activity, and disruption of the RyR2-FKBP12.6 association has been implicated in cardiac disease. In the present study, we investigated whether the RyR-FKBP association is redox-regulated. Using co-immunoprecipitation assays of solubilized native RyR2 from cardiac muscle sarcoplasmic reticulum (SR) with recombinant [(35)S]FKBP12.6, we found that the sulfydryl-oxidizing agents, H(2)O(2) and diamide, result in diminished RyR2-FKBP12.6 binding. Co-sedimentation experiments of cardiac SR vesicles with [(35)S]FKBP12.6 also demonstrated that oxidizing reagents decreased FKBP binding. Matching results were obtained with skeletal muscle SR. Notably, H(2)O(2) and diamide differentially affected the RyR2-FKBP12.6 interaction, decreasing binding to approximately 75 and approximately 50% of control, respectively. In addition, the effect of H(2)O(2) was negligible when the channel was in its closed state or when applied after FKBP binding had occurred, whereas diamide was always effective. A cysteine-null mutant FKBP12.6 retained redox-sensitive interaction with RyR2, suggesting that the effect of the redox reagents is exclusively via sites on the ryanodine receptor. K201 (or JTV519), a drug that has been proposed to prevent FKBP12.6 dissociation from the RyR2 channel complex, did not restore normal FKBP binding under oxidizing conditions. Our results indicate that the redox state of the RyR is intimately connected with FKBP binding affinity.

    The Journal of biological chemistry 2007;282;10;6976-83

  • Characterization of familial and sporadic arrhythmogenic right ventricular cardiomyopathy in Finland.

    Kaartinen M, Heliö T, Lehtonen A, Lahtinen AM, Kärkkäinen S, Keto P, Kontula K and Toivonen L

    Department of Cardiology, Helsinki University Central Hospital, Helsinki, Finland. maija.kaartinen@hus.fi

    Background: Autosomal dominant inheritance is reported in arrhythmogenic right ventricular cardiomyopathy (ARVC) but the prevalence of the familial and sporadic forms in the general population is unknown.

    Aim: To evaluate the familial occurrence and clinical features of ARVC in the genetically homogenous Finnish population.

    Methods: The study included 29 Finnish ARVC index patients and 135 relatives from 21 families evaluated. They underwent echocardiography, 24-hour electrocardiographic monitoring, signal-averaged electrocardiography, and exercise stress test.

    Results: Twenty-two index patients had ventricular arrhythmias as first manifestation, and three developed arrhythmias later. The right ventricle (RV) was mildly affected in 22 and strongly dilated in 7 index patients. Patients with dilated RV manifested first symptoms at younger age (mean 28 years) than those without RV dilatation (mean 38 years). Of the 135 relatives, ARVC was present in 12 (9%) patients belonging to 5 of the 21 families studied, resulting in 24% familial involvement. In addition, 46 relatives (34%) had subtle cardiac abnormalities, suggesting subclinical presentation.

    Conclusions: The ARVC in Finland presents with distinct arrhythmic and RV dilative subtypes. The sporadic disease is similar to the familial one which may reflect low penetration in relatives. The proportion of familial manifestation of ARVC in Finland seems comparable to that elsewhere in Europe.

    Annals of medicine 2007;39;4;312-8

  • Postmortem molecular screening for cardiac ryanodine receptor type 2 mutations in sudden unexplained death: R420W mutated case with characteristics of status thymico-lymphatics.

    Nishio H, Iwata M and Suzuki K

    Department of Legal Medicine, Osaka Medical College, Takatsuki 569-8686, Japan. leg010@art.osaka-med.ac.jp

    Background: Mutations of the cardiac ryanodine receptor type 2 (RyR2) gene are known to cause effort-induced polymorphic ventricular arrhythmia, syncope and sudden death.

    The possible mutations in the RyR2 gene were examined in 18 autopsy cases of sudden unexplained death (SUD). Two cases were found to have the heterozygous missense mutation in exon 14 (nucleotide change C1258T, coding effect R420W). Both cases showed mild fatty infiltration of the right ventricular apex. Interestingly, 1 case showed an enlarged thymus with accompanying hypertrophy of the tonsils and mesenteric lymph nodes. In addition, a narrowing of the aorta was observed in this case. These phenotypic characteristics are consistent with status thymico-lymphaticus, which combines sudden death with an enlargement of lymphoid organs and hypoplasia of the cardiovascular system. The second case also displayed some characteristics of status thymico-lymphaticus.

    Conclusion: The R420W mutation has already been reported in families with juvenile sudden death and may be causative of sudden death in our cases. Postmortem molecular screening of the RyR2 gene could be useful for investigation for cause of death in SUD. The possible association of the RyR2 mutation with status thymico-lymphaticus is discussed.

    Circulation journal : official journal of the Japanese Circulation Society 2006;70;11;1402-6

  • Role of ryanodine receptor mutations in cardiac pathology: more questions than answers?

    Thomas NL, George CH and Lai FA

    Department of Cardiology, Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK. ThomasNL1@cardiff.ac.uk

    The RyR (ryanodine receptor) mediates rapid Ca2+ efflux from the ER (endoplasmic reticulum) and is responsible for triggering numerous Ca2+-activated physiological processes. The most studied RyR-mediated process is excitation-contraction coupling in striated muscle, where plasma membrane excitation is transmitted to the cell interior and results in Ca2+ efflux that triggers myocyte contraction. Recently, single-residue mutations in the cardiac RyR (RyR2) have been identified in families that exhibit CPVT (catecholaminergic polymorphic ventricular tachycardia), a condition in which physical or emotional stress can trigger severe tachyarrhythmias that can lead to sudden cardiac death. The RyR2 mutations in CPVT are clustered in the N- and C-terminal domains, as well as in a central domain. Further, a critical signalling role for dysfunctional RyR2 has also been implicated in the generation of arrhythmias in the common condition of HF (heart failure). We have prepared cardiac RyR2 plasmids with various CPVT mutations to enable expression and analysis of Ca2+ release mediated by the wild-type and mutated RyR2. These studies suggest that the mutational locus may be important in the mechanism of Ca2+ channel dysfunction. Understanding the causes of aberrant Ca2+ release via RyR2 may assist in the development of effective treatments for the ventricular arrhythmias that often leads to sudden death in HF and in CPVT.

    Biochemical Society transactions 2006;34;Pt 5;913-8

  • Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia: insights from a RyR2 R4496C knock-in mouse model.

    Liu N, Colombi B, Memmi M, Zissimopoulos S, Rizzi N, Negri S, Imbriani M, Napolitano C, Lai FA and Priori SG

    Molecular Cardiology, IRCCS Fondazione Salvatore Maugeri, Pavia, Italy.

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease characterized by life threatening arrhythmias and mutations in the gene encoding the ryanodine receptor (RyR2). Disagreement exists on whether (1) RyR2 mutations induce abnormal calcium transients in the absence of adrenergic stimulation; (2) decreased affinity of mutant RyR2 for FKBP12.6 causes CPVT; (3) K201 prevent arrhythmias by normalizing the FKBP12.6-RyR2 binding. We studied ventricular myocytes isolated from wild-type (WT) and knock-in mice harboring the R4496C mutation (RyR2(R4496C+/-)). Pacing protocols did not elicit delayed afterdepolarizations (DADs) (n=20) in WT but induced DADs in 21 of 33 (63%) RyR2(R4496C+/-) myocytes (P=0.001). Superfusion with isoproterenol (30 nmol/L) induced small DADs (45%) and no triggered activity in WT myocytes, whereas it elicited DADs in 87% and triggered activity in 60% of RyR2(R4496C+/-) myocytes (P=0.001). DADs and triggered activity were abolished by ryanodine (10 micromol/L) but not by K201 (1 micromol/L or 10 micromol/L). In vivo administration of K201 failed to prevent induction of polymorphic ventricular tachycardia (VT) in RyR2(R4496C+/-) mice. Measurement of the FKBP12.6/RyR2 ratio in the heavy sarcoplasmic reticulum membrane showed normal RyR2-FKBP12.6 interaction both in WT and RyR2(R4496C+/-) either before and after treatment with caffeine and epinephrine. We suggest that (1) triggered activity is the likely arrhythmogenic mechanism of CPVT; (2) K201 fails to prevent DADs in RyR2(R4496C+/-) myocytes and ventricular arrhythmias in RyR2(R4496C+/-) mice; and (3) RyR2-FKBP12.6 interaction in RyR2(R4496C+/-) is identical to that of WT both before and after epinephrine and caffeine, thus suggesting that it is unlikely that the R4496C mutation interferes with the RyR2/FKBP12.6 complex.

    Funded by: Telethon: GP0227Y01

    Circulation research 2006;99;3;292-8

  • Composite polymorphisms in the ryanodine receptor 2 gene associated with arrhythmogenic right ventricular cardiomyopathy.

    Milting H, Lukas N, Klauke B, Körfer R, Perrot A, Osterziel KJ, Vogt J, Peters S, Thieleczek R and Varsányi M

    Herz- und Diabeteszentrum NRW, Klinik der Ruhr-Universität Bochum, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Georgstr. 11, 32545 Bad Oeynhausen, Germany. hmilting@hdz-nrw.de

    Objective: Mutations in the cardiac ryanodine receptor (RYR2) gene have been reported to cause arrhythmogenic right ventricular cardiomyopathy (ARVC). The molecular mechanisms by which genetic modifications lead to ARVC are still not well understood.

    Methods: ARVC patients were screened for mutations in the RYR2 gene by denaturing HPLC and DNA sequencing. Single channel measurements were carried out with RyR2 channels purified from explanted hearts of ARVC patients.

    Results: None of the published RYR2 mutations were found in our ARVC-cohort. However, we identified two single nucleotide polymorphisms (SNPs) in exon 37 of the human RYR2 gene which lead to the amino acid exchanges G1885E and G1886S, respectively. Both SNPs together were found exclusively in 3 out of 85 ARVC patients in a composite heterozygous fashion (genotype T4). This genotype was associated with ARVC (p<0.05) but not with dilated cardiomyopathy (DCM, 79 patients) or none-failing controls (463 blood donors). However, either one of the two SNPs were identified in further 7 ARVC patients, in 11 DCM patients, and in 64 blood donors. The SNP leading to G1886S may create a protein kinase C phosphorylation site in the human RyR2. Single channel recordings at pCa4.3 revealed four conductance states for the RyR2 of genotype T4 and a single open state for the wild type RyR2. At pCa7.7, the lowest subconductance state of the RyR2 channel of genotype T4 persisted with a greatly enhanced open probability indicating a leaky channel.

    Conclusion: The RyR2 channel leak under diastolic conditions could cause SR-Ca2+ depletion, concomitantly arrhythmogenesis and heart failure in a subgroup of ARVC patients of genotype T4. A change in the RyR2 subunit composition due to the combined expression of both SNPs alters the behaviour of the tetrameric channel complex.

    Cardiovascular research 2006;71;3;496-505

  • Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing.

    Tester DJ, Arya P, Will M, Haglund CM, Farley AL, Makielski JC and Ackerman MJ

    Department of Molecular Pharmacology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.

    Background: Mutations in the RyR2-encoded cardiac ryanodine receptor/calcium release channel and in CASQ2-encoded calsequestrin cause catecholaminergic polymorphic ventricular tachycardia (CPVT1 and CPVT2, respectively).

    Objectives: The purpose of this study was to evaluate the extent of genotypic and phenotypic heterogeneity among referrals for CPVT genetic testing.

    Methods: Using denaturing high-performance liquid chromatography and DNA sequencing, mutational analysis of 23 RyR2 exons previously implicated in CPVT1, comprehensive analysis of all translated exons in CASQ2 (CPVT2), KCNQ1 (LQT1), KCNH2 (LQT2), SCN5A (LQT3), KCNE1 (LQT5), KCNE2 (LQT6), and KCNJ2 (Andersen-Tawil syndrome [ATS1], also annotated LQT7), and analysis of 10 ANK2 exons implicated in LQT4 were performed on genomic DNA from 11 unrelated patients (8 females) referred to Mayo Clinic's Sudden Death Genomics Laboratory explicitly for CPVT genetic testing.

    Results: Overall, putative disease causing mutations were identified in 8 patients (72%). Only 4 patients (3 males) hosted CPVT1-associated RyR2 mutations: P164S, V186M, S3938R, and T4196A. Interestingly, 4 females instead possessed either ATS1- or LQT5-associated mutations. Mutations were absent in >400 reference alleles.

    Conclusion: Putative CPVT1-causing mutations in RyR2 were seen in <40% of unrelated patients referred with a diagnosis of CPVT and preferentially in males. Phenotypic mimicry is evident with the identification of ATS1- and LQT5-associated mutations in females displaying a normal QT interval and exercise-induced bidirectional VT, suggesting that observed exercise-induced polymorphic VT in patients may reflect disorders other than CPVT. Clinical consideration for either Andersen-Tawil syndrome or long QT syndrome and appropriate genetic testing may be warranted for individuals with RyR2 mutation-negative CPVT, particularly females.

    Funded by: NICHD NIH HHS: HD42569

    Heart rhythm 2006;3;7;800-5

  • Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts.

    Xiao B, Zhong G, Obayashi M, Yang D, Chen K, Walsh MP, Shimoni Y, Cheng H, Ter Keurs H and Chen SR

    Cardiovascular Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada.

    We have recently shown that RyR2 (cardiac ryanodine receptor) is phosphorylated by PKA (protein kinase A/cAMP-dependent protein kinase) at two major sites, Ser-2030 and Ser-2808. In the present study, we examined the properties and physiological relevance of phosphorylation of these two sites. Using site- and phospho-specific antibodies, we demonstrated that Ser-2030 of both recombinant and native RyR2 from a number of species was phosphorylated by PKA, indicating that Ser-2030 is a highly conserved PKA site. Furthermore, we found that the phosphorylation of Ser-2030 responded to isoproterenol (isoprenaline) stimulation in rat cardiac myocytes in a concentration- and time-dependent manner, whereas Ser-2808 was already substantially phosphorylated before beta-adrenergic stimulation, and the extent of the increase in Ser-2808 phosphorylation after beta-adrenergic stimulation was much less than that for Ser-2030. Interestingly, the isoproterenol-induced phosphorylation of Ser-2030, but not of Ser-2808, was markedly inhibited by PKI, a specific inhibitor of PKA. The basal phosphorylation of Ser-2808 was also insensitive to PKA inhibition. Moreover, Ser-2808, but not Ser-2030, was stoichiometrically phosphorylated by PKG (protein kinase G). In addition, we found no significant phosphorylation of RyR2 at the Ser-2030 PKA site in failing rat hearts. Importantly, isoproterenol stimulation markedly increased the phosphorylation of Ser-2030, but not of Ser-2808, in failing rat hearts. Taken together, these observations indicate that Ser-2030, but not Ser-2808, is the major PKA phosphorylation site in RyR2 responding to PKA activation upon beta-adrenergic stimulation in both normal and failing hearts, and that RyR2 is not hyperphosphorylated by PKA in heart failure. Our results also suggest that phosphorylation of RyR2 at Ser-2030 may be an important event associated with altered Ca2+ handling and cardiac arrhythmia that is commonly observed in heart failure upon beta-adrenergic stimulation.

    The Biochemical journal 2006;396;1;7-16

  • Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death.

    Terentyev D, Nori A, Santoro M, Viatchenko-Karpinski S, Kubalova Z, Gyorke I, Terentyeva R, Vedamoorthyrao S, Blom NA, Valle G, Napolitano C, Williams SC, Volpe P, Priori SG and Gyorke S

    Department of Physiology and Cell Biology, Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA.

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca(2+)-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2(R33Q) in adult rat myocytes led to an increase in excitation-contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca(2+)-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia.

    Funded by: NHLBI NIH HHS: HL-63043, HL-74045; Telethon: GGP04066

    Circulation research 2006;98;9;1151-8

  • Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients.

    Postma AV, Denjoy I, Kamblock J, Alders M, Lupoglazoff JM, Vaksmann G, Dubosq-Bidot L, Sebillon P, Mannens MM, Guicheney P and Wilde AA

    Background: The aim of the study was to assess underlying genetic cause(s), clinical features, and response to therapy in catecholaminergic polymorphic ventricular tachycardia (CPVT) probands.

    We identified 13 missense mutations in the cardiac ryanodine receptor (RYR2) in 12 probands with CPVT. Twelve were new, of which two are de novo mutations. A further 11 patients were silent gene carriers, suggesting that some mutations are associated with low penetrance. A marked resting sinus bradycardia off drugs was observed in all carriers. On beta blocker treatment, 98% of the RYR2 mutation carriers remained symptom free with a median follow up of 2 (range: 2-37) years.

    Conclusion: CPVT patients with RYR2 mutation have bradycardia regardless of the site of the mutation, which could direct molecular diagnosis in (young) patients without structural heart disease presenting with syncopal events and a slow heart rate but with normal QTc at resting ECG. Treatment with beta blockers has been very effective in our CPVT patients during initial or short term follow up. Given the risk of sudden death and the efficacy of beta blocker therapy, the identification of large numbers of RYR2 mutations thus calls for genetic screening, early diagnosis, and subsequent preventive strategies.

    Journal of medical genetics 2005;42;11;863-70

  • Spectrum and prevalence of cardiac ryanodine receptor (RyR2) mutations in a cohort of unrelated patients referred explicitly for long QT syndrome genetic testing.

    Tester DJ, Kopplin LJ, Will ML and Ackerman MJ

    Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.

    Background: Mutations in the RyR2-encoded cardiac ryanodine receptor/calcium release channel cause type 1 catecholaminergic polymorphic ventricular tachycardia (CPVT1).

    Objectives: Because CPVT and concealed long QT syndrome (LQTS) phenotypically mimic one other, we sought to determine the spectrum and prevalence of RyR2 mutations in a cohort of unrelated patients who were referred specifically for LQTS genetic testing.

    Methods: Using denaturing high-performance liquid chromatography and direct DNA sequencing, targeted mutational analysis of 23 RyR2 exons previously implicated in CPVT1 was performed on genomic DNA from 269 unrelated patients (180 females, average age at diagnosis 24 +/- 17 years) who were referred to Mayo Clinic's Sudden Death Genomics Laboratory for LQTS genetic testing. Previously, comprehensive mutational analysis of the five LQTS-associated cardiac channel genes proved negative for this entire subset of patients now designated as "genotype-negative" LQTS referrals.

    Results: Fifteen distinct RyR2 mutations (14 missense, 1 duplication/insertion, 12 novel) were found in 17 (6.3%) of 269 patients. None of these mutations were present in 400 reference alleles. Two mutations localized to the calstabin-2 (FKBP12.6) binding domain. Upon review of the clinical records, the referral diagnosis for all 17 patients was "atypical" or "borderline" LQTS.

    Conclusion: Putative pathogenic CPVT1-causing mutations in RyR2 were detected in 6% of unrelated, genotype-negative LQTS referrals. These findings suggest that CPVT may be underrecognized among physicians referring patients because of a suspected channelopathy. A diagnosis of "atypical LQTS" may warrant consideration of CPVT and analysis of RyR2 if the standard cardiac channel gene screen for LQTS is negative.

    Funded by: NICHD NIH HHS: HD42569

    Heart rhythm 2005;2;10;1099-105

  • Pathogenesis of unexplained drowning: new insights from a molecular autopsy.

    Tester DJ, Kopplin LJ, Creighton W, Burke AP and Ackerman MJ

    Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minn 55905, USA.

    Objective: To perform a molecular autopsy involving the RyR2-encoded cardiac ryanodine receptor/calcium release channel to determine whether mutations responsible for catecholaminergic polymorphic ventricular tachycardia (CPVT) represent a novel pathogenic basis for unexplained drownings.

    Methods: A cardiac channel molecular autopsy was performed on 2 individuals who died of unexplained drowning and whose cases were referred to the Sudden Death Genomics Laboratory at the Mayo Clinic in Rochester, Minn. Comprehensive mutational analysis of all 60 protein-encoded exons of the 5 long QT syndrome-causing cardiac channel genes and a targeted analysis of 18 RyR2 exons known to host RyR2-mediated CPVT-causing mutations (CPVT1) was performed using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing.

    Results: Both individuals harbored novel mutations in RyR2. Postmortem mutational analysis revealed a familial missense mutation in exon 14, R414C, in a 16-year-old girl. A 9-year-old boy possessed a sporadic missense mutation in exon 49, V2475F. Both amino acid positions involve highly conserved residues that localize to critical functional domains in the calcium release channel. Neither substitution was present in 1000 reference alleles.

    Conclusions: This molecular autopsy study provides proof of principle that RyR2 mutations can underlie some unexplained drownings. A population-based genetic epidemiology study that involves molecular autopsies of individuals who die of unexplained drowning is needed to determine the prevalence and spectrum of KCNQ1 and now RyR2 mutations as potential pathogenic mechanisms for drowning.

    Funded by: NICHD NIH HHS: HD42569

    Mayo Clinic proceedings 2005;80;5;596-600

  • Defective cardiac ryanodine receptor regulation during atrial fibrillation.

    Vest JA, Wehrens XH, Reiken SR, Lehnart SE, Dobrev D, Chandra P, Danilo P, Ravens U, Rosen MR and Marks AR

    Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.

    Background: Ca2+ leak from the sarcoplasmic reticulum (SR) may play an important role in triggering and/or maintaining atrial arrhythmias, including atrial fibrillation (AF). Protein kinase A (PKA) hyperphosphorylation of the cardiac ryanodine receptor (RyR2) resulting in dissociation of the channel-stabilizing subunit calstabin2 (FK506-binding protein or FKBP12.6) causes SR Ca2+ leak in failing hearts and can trigger fatal ventricular arrhythmias. Little is known about the role of RyR2 dysfunction in AF, however.

    Left and right atrial tissue was obtained from dogs with AF induced by rapid right atrial pacing (n=6 for left atrial, n=4 for right atrial) and sham instrumented controls (n=6 for left atrial, n=4 for right atrial). Right atrial tissue was also collected from humans with AF (n=10) and sinus rhythm (n=10) and normal cardiac function. PKA phosphorylation of immunoprecipitated RyR2 was determined by back-phosphorylation and by immunoblotting with a phosphospecific antibody. The amount of calstabin2 bound to RyR2 was determined by coimmunoprecipitation. RyR2 channel currents were measured in planar lipid bilayers. Atrial tissue from both the AF dogs and humans with chronic AF showed a significant increase in PKA phosphorylation of RyR2, with a corresponding decrease in calstabin2 binding to the channel. Channels isolated from dogs with AF exhibited increased open probability under conditions simulating diastole compared with channels from control hearts, suggesting that these AF channels could predispose to a diastolic SR Ca2+ leak.

    Conclusions: SR Ca2+ leak due to RyR2 PKA hyperphosphorylation may play a role in initiation and/or maintenance of AF.

    Circulation 2005;111;16;2025-32

  • A novel mutation in FKBP12.6 binding region of the human cardiac ryanodine receptor gene (R2401H) in a Japanese patient with catecholaminergic polymorphic ventricular tachycardia.

    Aizawa Y, Ueda K, Komura S, Washizuka T, Chinushi M, Inagaki N, Matsumoto Y, Hayashi T, Takahashi M, Nakano N, Yasunami M, Kimura A, Hiraoka M and Aizawa Y

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an autosomal dominant inherited disorder characterized by adrenergic induced polymorphic ventricular tachycardias and associated with sudden cardiac death. The human cardiac ryanodine receptor gene (RyR2) was linked to CPVT. A 20-year-old male was referred to our hospital because of recurrent syncope after physical and emotional stress. Routine cardiac examinations including catheterization revealed no structural abnormality. Exercise on treadmill induced premature ventricular contraction in bigeminy and bidirectional ventricular tachycardia was induced during isoproterenol infusion. Beta-blocking drug was effective in suppressing the arrhythmias. We performed genetic screening by PCR-SSCP method followed by DNA sequencing, and a novel missense mutation R2401H in RyR2 located in FKBP12.6 binding region was identified. This mutation was not detected in 190 healthy controls. Since FKBP12.6 plays a critical role in Ca channel gating, the R2401H mutation can be expected to alter Ca-induced Ca release and E-C coupling resulting in CPVT. This is the first report of RyR2 mutation in CPVT patient from Asia including Japan.

    International journal of cardiology 2005;99;2;343-5

  • Interaction of FKBP12.6 with the cardiac ryanodine receptor C-terminal domain.

    Zissimopoulos S and Lai FA

    Wales Heart Research Institute, Department of Cardiology, University of Wales College of Medicine, Cardiff CF14 4XN, UK.

    The ryanodine receptor-calcium release channel complex (RyR) plays a pivotal role in excitation-contraction coupling in skeletal and cardiac muscle. RyR channel activity is modulated by interaction with FK506-binding protein (FKBP), and disruption of the RyR-FKBP association has been implicated in cardiomyopathy, cardiac hypertrophy, and heart failure. Evidence for an interaction between RyR and FKBP is well documented, both in skeletal muscle (RyR1-FKBP12) and in cardiac muscle (RyR2-FKBP12.6), however definition of the FKBP-binding site remains elusive. Early reports proposed interaction of a short RyR central domain with FKBP12/12.6, however this site has been questioned, and recently an alternative FKBP12.6 interaction site has been identified within the N-terminal half of RyR2. In this study, we report evidence for the human RyR2 C-terminal domain as a novel FKBP12.6-binding site. Using competition binding assays, we find that short C-terminal RyR2 fragments can displace bound FKBP12.6 from the native RyR2, although they are unable to exclusively support interaction with FKBP12.6. However, expression of a large RyR2 C-terminal construct in mammalian cells encompassing the pore-forming transmembrane domains exhibits rapamycin-sensitive binding specifically to FKBP12.6 but not to FKBP12. We also obtained some evidence for involvement of the RyR2 N-terminal, but not the central domain, in FKBP12.6 interaction. Our studies suggest that a novel interaction site for FKBP12.6 may be present at the RyR2 C terminus, proximal to the channel pore, a sterically appropriate location that would enable this protein to play a central role in the modulation of this critical ion channel.

    The Journal of biological chemistry 2005;280;7;5475-85

  • Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes.

    Choi G, Kopplin LJ, Tester DJ, Will ML, Haglund CM and Ackerman MJ

    Department of Pediatric and Adolescent Medicine/Division of Cardiovascular Disease, Mayo Clinic College of Medicine, Rochester, Minn, USA.

    Background: Swimming is a relatively genotype-specific arrhythmogenic trigger for type 1 long-QT syndrome (LQT1). We hypothesize that mimickers of concealed LQT1, namely catecholaminergic polymorphic ventricular tachycardia (CPVT), may also underlie swimming-triggered cardiac events.

    Between August 1997 and May 2003, 388 consecutive, unrelated patients were referred specifically for LQTS genetic testing. The presence of a personal and/or family history of a near-drowning or drowning was determined by review of the medical records and/or phone interviews and was blinded to genetic test results. Comprehensive mutational analysis of the 5 LQTS-causing channel genes, KCNQ1 (LQT1), KCNH2 (LQT2), SCN5A (LQT3), KCNE1 (LQT5), and KCNE2 (LQT6), along with KCNJ2 (Andersen-Tawil syndrome) and targeted analysis of 18 CPVT1-associated exons in RyR2, was performed with the use of denaturing high-performance liquid chromatography and direct DNA sequencing. Approximately 11% (43 of 388) of the index cases had a positive swimming phenotype. Thirty-three of these 43 index cases had a "Schwartz" score (> or =4) suggesting high clinical probability of LQTS. Among this subset, 28 patients (85%) were LQT1, 2 patients (6%) were LQT2, and 3 were genotype negative. Among the 10 cases with low clinical probability for LQTS, 9 had novel, putative CPVT1-causing RyR2 mutations.

    Conclusions: In contrast to previous studies that suggested universal LQT1 specificity, genetic heterogeneity underlies channelopathies that are suspected chiefly because of a near-drowning or drowning. CPVT1 and strategic genotyping of RyR2 should be considered when LQT1 is excluded in the pathogenesis of a swimming-triggered arrhythmia syndrome.

    Funded by: NICHD NIH HHS: HD42569

    Circulation 2004;110;15;2119-24

  • Different regions in skeletal and cardiac muscle ryanodine receptors are involved in transducing the functional effects of calmodulin.

    Yamaguchi N, Xu L, Evans KE, Pasek DA and Meissner G

    Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA.

    Calmodulin (CaM) inhibits the skeletal muscle ryanodine receptor-1 (RyR1) and cardiac muscle RyR2 at micromolar Ca(2+) but activates RyR1 and inhibits RyR2 at submicromolar Ca(2+) by binding to a single, highly conserved CaM-binding site. To identify regions responsible for the differential regulation of RyR1 and RyR2 by CaM, we generated chimeras encompassing and flanking the CaM-binding domain. We found that the exchange of the N- and C-terminal flanking regions differentially affected RyR1 and RyR2. A RyR1/RyR2 chimera with an N-terminal flanking RyR2 substitution (RyR2 amino acid (aa) 3537-3579) was activated by CaM in single channel measurements at both submicromolar and micromolar Ca(2+). A RyR2/RyR1 chimera with a C-terminal flanking the 86-amino acid RyR1 substitution (RyR1 aa 3640-3725) bound (35)S-CaM but was not inhibited by CaM at submicromolar Ca(2+). In this region, five non-conserved amino acid residues (RyR1 aa 3680 and 3682-3685 and RyR2 aa 3647 and 3649-3652) differentially affect RyR helical probability. Substitution of the five amino acid residues in RyR1 with those of RyR2 showed responses to CaM comparable with wild type RyR1. In contrast, substitution of the five amino acid residues in RyR2 with those of RyR1 showed loss of CaM inhibition, whereas substitution of the five RyR2 sequence residues in the RyR2 chimera containing the RyR1 calmodulin-binding domain and C-flanking sequence restored wild type RyR2 inhibition by CaM at submicromolar Ca(2+). The results suggest that different regions are involved in CaM modulation of RyR1 and RyR2. They further suggest that five non-conserved amino acids in the C-terminal region flanking the CaM-binding domain have a key role in CaM inhibition of RyR2.

    Funded by: NHLBI NIH HHS: HL 73051; NIAMS NIH HHS: AR 18687

    The Journal of biological chemistry 2004;279;35;36433-9

  • CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels.

    Board PG, Coggan M, Watson S, Gage PW and Dulhunty AF

    Division of Molecular Bioscience, John Curtin School of Medical Research, The Australian National University, P.O. Box 334, Canberra, ACT 2601, Australia. philip.board@anu.edu.au

    We have examined the biochemical and functional properties of the recently identified, uncharacterised CLIC-2 protein. Sequence alignments showed that CLIC-2 has a high degree of sequence similarity with CLIC-1 and some similarity to the omega class of glutathione transferases (GSTO). A homology model of CLIC-2 based on the crystal structure of CLIC-1 suggests that CLIC-2 belongs to the GST structural family but, unlike the GSTs, CLIC-2 exists as a monomer. It also has an unusual enzyme activity profile. While the CXXC active site motif is conserved between CLIC-2 and the glutaredoxins, no thiol transferase activity was detected. In contrast, low glutathione peroxidase activity was recorded. CLIC-2 was found to be widely distributed in tissues including heart and skeletal muscle. Functional studies showed that CLIC-2 inhibited cardiac ryanodine receptor Ca2+ release channels in lipid bilayers when added to the cytoplasmic side of the channels and inhibited Ca2+ release from cardiac sarcoplasmic reticulum vesicles. The inhibition of RyR channels was reversed by removing CLIC-2 from the solution or by adding an anti-CLIC-2 antibody. The results suggest that one function of CLIC-2 might be to limit Ca2+ release from internal stores in cells.

    The international journal of biochemistry & cell biology 2004;36;8;1599-612

  • Functional proteomics mapping of a human signaling pathway.

    Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P and Gauthier JM

    Hybrigenics SA, 75014 Paris, France. fcolland@hybrigenics.fr

    Access to the human genome facilitates extensive functional proteomics studies. Here, we present an integrated approach combining large-scale protein interaction mapping, exploration of the interaction network, and cellular functional assays performed on newly identified proteins involved in a human signaling pathway. As a proof of principle, we studied the Smad signaling system, which is regulated by members of the transforming growth factor beta (TGFbeta) superfamily. We used two-hybrid screening to map Smad signaling protein-protein interactions and to establish a network of 755 interactions, involving 591 proteins, 179 of which were poorly or not annotated. The exploration of such complex interaction databases is improved by the use of PIMRider, a dedicated navigation tool accessible through the Web. The biological meaning of this network is illustrated by the presence of 18 known Smad-associated proteins. Functional assays performed in mammalian cells including siRNA knock-down experiments identified eight novel proteins involved in Smad signaling, thus validating this integrated functional proteomics approach.

    Genome research 2004;14;7;1324-32

  • Sudden death in familial polymorphic ventricular tachycardia associated with calcium release channel (ryanodine receptor) leak.

    Lehnart SE, Wehrens XH, Laitinen PJ, Reiken SR, Deng SX, Cheng Z, Landry DW, Kontula K, Swan H and Marks AR

    Center for Molecular Cardiology, Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, 630 W. 168th St, P&S 9-401, Box 65, New York, NY 10032, USA.

    Background: Familial polymorphic ventricular tachycardia (FPVT) is characterized by exercise-induced arrhythmias and sudden cardiac death due to missense mutations in the cardiac ryanodine receptor (RyR2), an intracellular Ca2+ release channel required for excitation-contraction coupling in the heart.

    Three RyR2 missense mutations, P2328S, Q4201R, and V4653F, which occur in Finnish families, result in similar mortality rates of approximately 33% by age 35 years and a threshold heart rate of 130 bpm, above which exercise induces ventricular arrhythmias. Exercise activates the sympathetic nervous system, increasing cardiac performance as part of the fight-or-flight stress response. We simulated the effects of exercise on mutant RyR2 channels using protein kinase A (PKA) phosphorylation. All 3 RyR2 mutations exhibited decreased binding of calstabin2 (FKBP12.6), a subunit that stabilizes the closed state of the channel. After PKA phosphorylation, FPVT-mutant RyR2 channels showed a significant gain-of-function defect consistent with leaky Ca2+ release channels and a significant rightward shift in the half-maximal inhibitory Mg2+ concentration (IC50). Treatment with the experimental drug JTV519 enhanced binding of calstabin2 to RyR2 and normalized channel function.

    Conclusions: Sympathetic activation during exercise induces ventricular arrhythmias above a threshold heart rate in RyR2 mutation carriers. Simulating the downstream effects of the sympathetic activation by PKA phosphorylation of RyR2 channels containing these FPVT missense mutations produced a consistent gain-of-function defect. RyR2 function and calstabin2 depletion were rescued by JTV519, suggesting stabilization of the RyR2 channel complex may represent a molecular target for the treatment and prevention of exercise-induced arrhythmias and sudden death in these patients.

    Circulation 2004;109;25;3208-14

  • RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets.

    Johnson JD, Han Z, Otani K, Ye H, Zhang Y, Wu H, Horikawa Y, Misler S, Bell GI and Polonsky KS

    Department of Internal Medicine, Washington University, St. Louis, Missouri 63110, USA.

    Cells are programmed to die when critical signaling and metabolic pathways are disrupted. Inhibiting the type 2 ryanodine receptor (RyR2) in human and mouse pancreatic beta-cells markedly increased apoptosis. This mode of programmed cell death was not associated with robust caspase-3 activation prompting a search for an alternative mechanism. Increased calpain activity and calpain gene expression suggested a role for a calpain-dependent death pathway. Using a combination of pharmacological and genetic approaches, we demonstrated that the calpain-10 isoform mediated ryanodine-induced apoptosis. Apoptosis induced by the fatty acid palmitate and by low glucose also required calpain-10. Ryanodine-induced calpain activation and apoptosis were reversed by glucagon-like peptide or short-term exposure to high glucose. Thus RyR2 activity seems to play an essential role in beta-cell survival in vitro by suppressing a death pathway mediated by calpain-10, a type 2 diabetes susceptibility gene with previously unknown function.

    Funded by: NIDDK NIH HHS: DK-20595, DK-31842, DK-47486, P60 DK-20579

    The Journal of biological chemistry 2004;279;23;24794-802

  • Ryanodine receptor regulation by intramolecular interaction between cytoplasmic and transmembrane domains.

    George CH, Jundi H, Thomas NL, Scoote M, Walters N, Williams AJ and Lai FA

    Wales Heart Research Institute, Department of Cardiology, University of Wales College of Medicine, Cardiff, United Kingdom CF14 4XN. georgech@cf.ac.uk

    Ryanodine receptors (RyR) function as Ca(2+) channels that regulate Ca(2+) release from intracellular stores to control a diverse array of cellular processes. The massive cytoplasmic domain of RyR is believed to be responsible for regulating channel function. We investigated interaction between the transmembrane Ca(2+)-releasing pore and a panel of cytoplasmic domains of the human cardiac RyR in living cells. Expression of eGFP-tagged RyR constructs encoding distinct transmembrane topological models profoundly altered intracellular Ca(2+) handling and was refractory to modulation by ryanodine, FKBP12.6 and caffeine. The impact of coexpressing dsRed-tagged cytoplasmic domains of RyR2 on intracellular Ca(2+) phenotype was assessed using confocal microscopy coupled with parallel determination of in situ protein: protein interaction using fluorescence resonance energy transfer (FRET). Dynamic interactions between RyR cytoplasmic and transmembrane domains were mediated by amino acids 3722-4610 (Interacting or "I"-domain) which critically modulated intracellular Ca(2+) handling and restored RyR sensitivity to caffeine activation. These results provide compelling evidence that specific interaction between cytoplasmic and transmembrane domains is an important mechanism in the intrinsic modulation of RyR Ca(2+) release channels.

    Molecular biology of the cell 2004;15;6;2627-38

  • An investigation into the human serum "interactome".

    Zhou M, Lucas DA, Chan KC, Issaq HJ, Petricoin EF, Liotta LA, Veenstra TD and Conrads TP

    Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD, USA.

    The protein content of human serum is composed of a millieu of proteins from almost every type of cell and tissue within the body. The serum proteome has been shown to contain information that directly reflects pathophysiological states and represents an invaluable source of diagnostic information for a variety of different diseases. Unfortunately, the dynamic range of protein abundance, ranging from > mg/mL level to < pg/mL level, renders complete characterization of this proteome nearly impossible with current analytical methods. To study low-abundance proteins, which have potential value for clinical diagnosis, the high-abundant species, such as immunoglobulins and albumin, are generally eliminated as the first step in many analytical protocols. This step, however, is hypothesized to concomitantly remove proteins/peptides associated with the high-abundant proteins targeted for depletion. In this study, immunoprecipitation was combined with microcapillary reversed-phase liquid chromatography (microRPLC) coupled on-line with tandem mass spectrometry (MS/MS) to investigate the low-molecular-weight proteins/peptides that associate with the most abundant species in serum. By this targeted isolation of select highly abundant serum proteins, the associated proteins/peptides can be enriched and effectively identified by microRPLC-MS/MS. Among the 210 proteins identified, 73% and 67% were not found in previous studies of the low-molecular-weight or whole-serum proteome, respectively.

    Funded by: NCI NIH HHS: N01-CO-12400

    Electrophoresis 2004;25;9;1289-98

  • Ryanodine receptors in human pancreatic beta cells: localization and effects on insulin secretion.

    Johnson JD, Kuang S, Misler S and Polonsky KS

    Division of Metabolism, Department of Internal Medicine, Washington University School of Medicine, Box 8126, 8831 Wohl Clinic, 660 S. Euclid, St. Louis, MO 63110, USA. jim@jimjohnson.ca

    It is clear that pancreatic beta-cell dysfunction, including basal hyperinsulinemia and reduced insulin release in response to glucose, is a key determinant of disease progression in type 2 diabetes, but the underlying molecular defects are not known. In diabetes, the expression and function of ryanodine receptor (RyR) Ca2+ release channels are reduced. The present studies were undertaken to define the subcellular location and role of RyR in the control of stimulated and basal insulin release from human pancreatic beta cells. Using confocal microscopy, we observed RyR immunoreactivity in a vesicular pattern. RyRs did not colocalize with insulin secretory granules but partially colocalized with endosomes. Direct activation with nanomolar concentrations of ryanodine evoked increases in cytosolic Ca2+ that were coupled to transient insulin release. Insulin release stimulated by 1 nM ryanodine was sensitive to BAPTA-AM preincubation but independent of thapsigargin-sensitive endoplasmic reticulum (ER) Ca2+ pools. Blocking RyRs with micromolar concentrations of ryanodine led to BAPTA-resistant insulin release that was not associated with an increase in cytosolic Ca2+, which implicated alterations in luminal Ca2+. However, neither Ca2+ signals nor insulin release stimulated by glucose was blocked by 10-50 microM ryanodine, which suggests that the CD38/cyclic ADP-ribose/RyR pathway is not a primary mechanism of glucose action in nontransformed beta cells. We provide the first evidence that RyRs directly control insulin secretion in primary beta cells. Unexpectedly, stimulation of insulin secretion by ryanodine occurs independently of glucose and by two mechanisms, including a novel cytosolic Ca2+-independent mechanism likely involving changes in Ca2+ within the lumens of non-ER organelles, such as endosomes.

    FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2004;18;7;878-80

  • Ryanodine receptor oligomeric interaction: identification of a putative binding region.

    Blayney LM, Zissimopoulos S, Ralph E, Abbot E, Matthews L and Lai FA

    Wales Heart Research Institute, Department of Cardiology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom. blayney@cf.ac.uk

    Specific interactions between adjacent ryanodine receptor (RyR) molecules to form ordered two-dimensional arrays in the membrane have been demonstrated using electron microscopy both in situ, in tissues and cells, and in vitro, with the purified protein. RyR interoligomeric association has also been inferred from observations of simultaneous channel gating during multi-RyR channel recordings in lipid bilayers. In this study, we report experiments designed to identify the region(s) of the RyR molecule, participating in this reciprocal interaction. Using epitope-specific antibodies, we identified a RyR tryptic fragment that specifically bound the intact immobilized RyR. Three overlapping RyR fragments encompassing this epitope, expressed using an in vitro mammalian expression system, were immunoprecipitated by RyR. To refine the binding regions, smaller RyR fragments were expressed as glutathione S-transferase (GST) fusion proteins, and their binding to RyR was monitored using a "sandwich" enzyme-linked immunosorbent assay. Three GST-RyR fusion proteins demonstrated specific binding, dependent upon ionic strength. Binding was greatest at 50-150 mm NaCl for two GST-RyR constructs, and a third GST-RyR construct demonstrated maximum binding between 150 and 450 mm NaCl. The binding at high NaCl concentration suggested involvement of a hydrophobic interaction. In silico analysis of secondary structure showed evidence of coil regions in two of these RyR fragment sequences, which might explain these data. In GST pull-down assays, these same three fragments captured RyR2, and two of them retained RyR1. These results identify a region at the center of the linear RyR (residues 2540-3207 of human RyR2) which is able to bind to the RyR oligomer. This region may constitute a specific subdomain participating in RyR-RyR interaction.

    The Journal of biological chemistry 2004;279;15;14639-48

  • Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor.

    Wehrens XH, Lehnart SE, Reiken SR and Marks AR

    Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, 630 W 168th St, P&S 9-401, Box 65, New York, NY 10032, USA.

    The cardiac ryanodine receptor (RyR2)/calcium release channel on the sarcoplasmic reticulum is required for muscle excitation-contraction coupling. Using site-directed mutagenesis, we identified the specific Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation site on recombinant RyR2, distinct from the site for protein kinase A (PKA) that mediates the "fight-or-flight" stress response. CaMKII phosphorylation increased RyR2 Ca2+ sensitivity and open probability. CaMKII was activated at increased heart rates, which may contribute to enhanced Ca2+-induced Ca2+ release. Moreover, rate-dependent CaMKII phosphorylation of RyR2 was defective in heart failure. CaMKII-mediated phosphorylation of RyR2 may contribute to the enhanced contractility observed at higher heart rates. The full text of this article is available online at http://circres.ahajournals.org.

    Circulation research 2004;94;6;e61-70

  • The predicted TM10 transmembrane sequence of the cardiac Ca2+ release channel (ryanodine receptor) is crucial for channel activation and gating.

    Wang R, Bolstad J, Kong H, Zhang L, Brown C and Chen SR

    Cardiovascular Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 4N1, Canada.

    The predicted TM10 transmembrane sequence, (4844)IIFDITFFFFVIVILLAIIQGLII(4867), has been proposed to be the pore inner helix of the ryanodine receptor (RyR) and to play a crucial role in channel activation and gating, as with the inner helix of bacterial potassium channels. However, experimental evidence for the involvement of the TM10 sequence in RyR channel activation and gating is lacking. In the present study, we have systematically investigated the effects of mutations of each residue within the 24-amino acid TM10 sequence of the mouse cardiac ryanodine receptor (RyR2) on channel activation by caffeine and Ca(2+). Intracellular Ca(2+) release measurements in human embryonic kidney 293 cells expressing the RyR2 wild type and TM10 mutants revealed that several mutations in the TM10 sequence either abolished caffeine response or markedly reduced the sensitivity of the RyR2 channel to activation by caffeine. By assessing the Ca(2+) dependence of [(3)H]ryanodine binding to RyR2 wild type and TM10 mutants we also found that mutations in the TM10 sequence altered the sensitivity of the channel to activation by Ca(2+) and enhanced the basal activity of [(3)H]ryanodine binding. Furthermore, single I4862A mutant channels exhibited considerable channel openings and altered gating at very low concentrations of Ca(2+). Our data indicate that the TM10 sequence constitutes an essential determinant for channel activation and gating, in keeping with the proposed role of TM10 as an inner helix of RyR. Our results also shed insight into the orientation of the TM10 helix within the RyR channel pore.

    The Journal of biological chemistry 2004;279;5;3635-42

  • Membrane topology and membrane retention of the ryanodine receptor calcium release channel.

    Ma J, Hayek SM and Bhat MB

    Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA. maj2@umdnj.edu

    The ryanodine receptor (RyR) is a Ca2+ release channel located in the sarcoplasmic/endoplasmic reticulum (ER) membrane and plays a critical role in excitation-contraction coupling of skeletal and cardiac muscles. RyR normally exists in a tetrameric structure and contains two functional domains: a carboxyl-terminal hydrophobic domain that contains the conduction pore of the Ca2+ release channel, and a large amino-terminal domain that contains sites responsible for channel regulation. Recent studies involving mutagenesis and heterologous expression have helped unravel the structure-function relationship of RyR, including transmembrane topology and intracellular localization of the Ca2+-release channel. The carboxyl-terminal portion of RyR contains the putative transmembrane segments and is sufficient to form a functional Ca2+-release channel. The amino-terminal region of the protein contains sites responsible for regulation by endogenous modulators such as Ca2+ and Mg2+ and by exogenous ligands such as caffeine. The membrane topology of RyR appears to contain an even number (four or six) of transmembrane segments with a ion selectivity filter present within a region residing between the last two segments, similar to potassium channel, whose atomic structure was described recently. The transmembrane segments also contain sequences that are responsible for localization of RyR in the endoplasmic reticulum, and this sequence is highly conserved in IP3 receptors, which also function as Ca2+-release channels.

    Cell biochemistry and biophysics 2004;40;2;207-24

  • Oligomerization of the cardiac ryanodine receptor C-terminal tail.

    Stewart R, Zissimopoulos S and Lai FA

    Wales Heart Research Institute, Department of Cardiology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK.

    The C-terminal 100 amino acids of the RyR (ryanodine receptor), referred to as the C-terminal tail, is a highly conserved sequence that is present in all known RyR isoforms and which has been implicated in channel function. Deleting the final 15 amino acids from the full-length skeletal muscle RyR resulted in an inactive channel, attributed to impaired assembly of a tetrameric RyR complex [Gao, Tripathy, Lu and Meissner (1997) FEBS Lett. 412, 223-226]. To account for these observations, the C-terminal tail itself may be an important molecular determinant of oligomerization. Alternatively, the large N-terminal cytoplasmic domain may fold back upon itself to interact with the C-terminal tail to provide a correctly folded tetrameric structure. We explored these possibilities for RyR2 (cardiac RyR) using the yeast two-hybrid interaction assay and in vitro translation followed by immunoprecipitation and chemical cross-linking. The data indicate that the C-terminal tail of RyR2 is capable of self-tetramerization. Moreover, a truncated C-terminal tail, lacking the final 15 amino acids, failed to self-associate. These observations suggest that the intrinsic ability of the RyR C-terminal tail to self-tetramerize may be vitally important for the oligomeric assembly of the native RyR channel.

    The Biochemical journal 2003;376;Pt 3;795-9

  • Molecular genetics of exercise-induced polymorphic ventricular tachycardia: identification of three novel cardiac ryanodine receptor mutations and two common calsequestrin 2 amino-acid polymorphisms.

    Laitinen PJ, Swan H and Kontula K

    Department of Medicine and Biomedicum Helsinki, Helsinki, Finland.

    Mutations of two myocardial calcium signaling molecules, ryanodine receptor 2 (RYR2) and calsequestrin 2 (CASQ2), may cause catecholaminergic polymorphic ventricular tachycardia (CPVT), a severe inherited arrhythmic disease manifesting with salvoes of exercise-induced bidirectional and polymorphic tachycardias. We screened 12 Finnish CPVT probands for mutations in these genes and identified three novel RYR2 mutations (V2306I, P4902L, R4959Q), which were absent in unaffected and control individuals. Although no obvious disease-causing mutations were identified in the CASQ2 gene, the molecular screening revealed two novel amino-acid polymorphisms (T66A and V76M). The frequencies of these polymorphisms in 185 unrelated probands with long QT syndrome and in 280 healthy blood donors were not significantly different. These data, combined with our previous findings, show that RYR2 mutations are present in at least 6/16 (38%) of the catecholaminergic polymorphic ventricular tachycardia families, while CASQ2 mutations must be a rare cause of CPVT.

    European journal of human genetics : EJHG 2003;11;11;888-91

  • Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes.

    George CH, Higgs GV and Lai FA

    Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff, UK. georgech@cf.ac.uk

    Ca2+ release from the sarcoplasmic reticulum mediated by the cardiac ryanodine receptor (RyR2) is a fundamental event in cardiac muscle contraction. RyR2 mutations suggested to cause defective Ca2+ channel function have recently been identified in catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia (ARVD) affected individuals. We report expression of three CPVT-linked human RyR2 (hRyR2) mutations (S2246L, N4104K, and R4497C) in HL-1 cardiomyocytes displaying correct targeting to the endoplasmic reticulum. N4104K also localized to the Golgi apparatus. Phenotypic characteristics including intracellular Ca2+ handling, proliferation, viability, RyR2:FKBP12.6 interaction, and beat rate in resting HL-1 cells expressing mutant hRyR2 were indistinguishable from wild-type (WT) hRyR2. However, Ca2+ release was augmented in cells expressing mutant hRyR2 after RyR activation (caffeine and 4-chloro-m-cresol) or beta-adrenergic stimulation (isoproterenol). RyR2:FKBP12.6 interaction remained intact after caffeine or 4-CMC activation, but was dramatically disrupted by isoproterenol or forskolin, an activator of adenylate cyclase. Isoproterenol and forskolin elevated cyclic-AMP to similar magnitudes in all cells and were associated with equivalent hyperphosphorylation of mutant and WT hRyR2. CPVT-linked mutations in hRyR2 did not alter resting cardiomyocyte phenotype but mediated augmented Ca2+ release on RyR-agonist or beta-AR stimulation. Furthermore, equivalent interaction between mutant and WT hRyR2 and FKBP12.6 was demonstrated.

    Circulation research 2003;93;6;531-40

  • Vesl/Homer proteins regulate ryanodine receptor type 2 function and intracellular calcium signaling.

    Westhoff JH, Hwang SY, Duncan RS, Ozawa F, Volpe P, Inokuchi K and Koulen P

    Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.

    Cellular signaling proteins such as metabotropic glutamate receptors, Shank, and different types of ion channels are physically linked by Vesl (VASP/Ena-related gene up-regulated during seizure and LTP)/Homer proteins [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23 (2000) 80; J. Cell Sci. 113 (2000) 1851]. Vesl/Homer proteins have also been implicated in differentiation and physiological adaptation processes [Nat. Neurosci. 4 (2001) 499; Nature 411 (2001) 962; Biochem. Biophys. Res. Commun. 279 (2000) 348]. Here we provide evidence that a Vesl/Homer subtype, Vesl-1L/Homer-1c (V-1L), reduces the function of the intracellular calcium channel ryanodine receptor type 2 (RyR2). In contrast, Vesl-1S/Homer-1a (V-1S) had no effect on RyR2 function but reversed the effects of V-1L. In live cells, in calcium release studies and in single-channel electrophysiological recordings of RyR2, V-1L reduced RyR2 activity. Important physiological functions and pharmacological properties of RyR2 are preserved in the presence of V-1L. Our findings demonstrate that a protein-protein interaction between V-1L and RyR2 is not only necessary for organizing the structure of intracellular calcium signaling proteins [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23(2000)80; J. Cell Sci. 113 (2000) 1851; Nat Neurosci. 4 (2001) 499; Nature 411 (2001) 962; Biochem. Biophys. Res. Commun. 279 (2000) 348; Nature 386 (1997) 284], but that V-1L also directly regulates RyR2 channel activity by changing its biophysical properties. Thereby it may control cellular calcium homeostasis. These observations suggest a novel mechanism for the regulation of RyR2 and calcium-dependent cellular functions.

    Cell calcium 2003;34;3;261-9

  • Dysregulated ryanodine receptors mediate cellular toxicity: restoration of normal phenotype by FKBP12.6.

    George CH, Higgs GV, Mackrill JJ and Lai FA

    Department of Cardiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom. georgech@cf.ac.uk

    Ca2+ homeostasis is a vital cellular control mechanism in which Ca2+ release from intracellular stores plays a central role. Ryanodine receptor (RyR)-mediated Ca2+ release is a key modulator of Ca2+ homeostasis, and the defective regulation of RyR is pathogenic. However, the molecular events underlying RyR-mediated pathology remain undefined. Cells stably expressing recombinant human RyR2 (Chinese hamster ovary cells, CHOhRyR2) had similar resting cytoplasmic Ca2+ levels ([Ca2+]c) to wild-type CHO cells (CHOWT) but exhibited increased cytoplasmic Ca2+ flux associated with decreased cell viability and proliferation. Intracellular Ca2+ flux increased with human RyR2 (hRyR2) expression levels and determined the extent of phenotypic modulation. Co-expression of FKBP12.6, but not FKBP12, or incubation of cells with ryanodine suppressed intracellular Ca2+ flux and restored normal cell viability and proliferation. Restoration of normal phenotype was independent of the status of resting [Ca2+]c or ER Ca2+ load. Heparin inhibition of endogenous inositol trisphosphate receptors (IP3R) had little effect on intracellular Ca2+ handling or viability. However, purinergic stimulation of endogenous IP3R resulted in apoptotic cell death mediated by hRyR2 suggesting functional interaction occurred between IP3R and hRyR2 Ca2+ release channels. These data demonstrate that defective regulation of RyR causes altered cellular phenotype via profound perturbations in intracellular Ca2+ signaling and highlight a key modulatory role of FKBP12.6 in hRyR2 Ca2+ channel function.

    The Journal of biological chemistry 2003;278;31;28856-64

  • Three-dimensional localization of divergent region 3 of the ryanodine receptor to the clamp-shaped structures adjacent to the FKBP binding sites.

    Zhang J, Liu Z, Masumiya H, Wang R, Jiang D, Li F, Wagenknecht T and Chen SR

    Cardiovascular Research Group, Department of Physiology, University of Calgary, Alberta T2N 4N1, Canada.

    Of the three divergent regions of ryanodine receptors (RyRs), divergent region 3 (DR3) is the best studied and is believed to be involved in excitation-contraction coupling as well as in channel regulation by Ca(2+) and Mg(2+). To gain insight into the structural basis of DR3 function, we have determined the location of DR3 in the three-dimensional structure of RyR2. We inserted green fluorescent protein (GFP) into the middle of the DR3 region after Thr-1874 in the sequence. HEK293 cells expressing this GFP-RyR2 fusion protein, RyR2(T1874-GFP,) were readily detected by their green fluorescence, indicating proper folding of the inserted GFP. RyR2(T1874-GFP) was further characterized functionally by assays of Ca(2+) release and [(3)H]ryanodine binding. These analyses revealed that RyR2(T1874-GFP) functions as a caffeine- and ryanodine-sensitive Ca(2+) release channel and displays Ca(2+) dependence and [(3)H]ryanodine binding properties similar to those of the wild type RyR2. RyR2(T1874-GFP) was purified from cell lysates in a single step by affinity chromatography using GST-FKBP12.6 as the affinity ligand. The three-dimensional structure of the purified RyR2(T1874-GFP) was then reconstructed using cryoelectron microscopy and single particle image analysis. Comparison of the three-dimensional reconstructions of wild type RyR2 and RyR2(T1874-GFP) revealed the location of the inserted GFP, and hence the DR3 region, in one of the characteristic domains of RyR, domain 9, in the clamp-shaped structure adjacent to the FKBP12 and FKBP12.6 binding sites. COOH-terminal truncation analysis demonstrated that a region between 1815 and 1855 near DR3 is essential for GST-FKBP12.6 binding. These results provide a structural basis for the role of the DR3 region in excitation-contraction coupling and in channel regulation.

    Funded by: NIAMS NIH HHS: AR40615

    The Journal of biological chemistry 2003;278;16;14211-8

  • In situ modulation of the human cardiac ryanodine receptor (hRyR2) by FKBP12.6.

    George CH, Sorathia R, Bertrand BM and Lai FA

    Department of Cardiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK. GeorgeCH@cardiff.ac.uk

    The ryanodine receptor complex (RyR), a large oligomeric assembly that functions as a Ca(2+)-release channel in the sarcoplasmic reticulum (SR)/endoplasmic reticulum (ER), comprises four RyR subunits and four FK506-binding proteins (FKBP). The precise mode of interaction and modulation of the cardiac RyR (RyR2) channel by FKBP12/FKBP12.6 remains to be fully defined. We have generated a series of Chinese-hamster ovary (CHO) cell lines stably expressing discrete levels of recombinant human RyR2 (hRyR2) (CHO(hRyR2)). Confocal microscopy of CHO(hRyR2) cells co-expressing either FKBP12 or FKBP12.6 demonstrated that FKBP12.6 was sequestered from the cytoplasm to ER membranes as the cellular levels of hRyR2 increased. There was negligible hRyR2-induced subcellular redistribution of FKBP12. The magnitude of Ca(2+) release in CHO(hRyR2) cells in response to stimulation by 4-chloro- m -cresol was in direct proportion to the expression levels of hRyR2. However, in CHO(hRyR2) cells co-expressing FKBP12.6, Ca(2+) release triggered by the addition of 4-chloro- m -cresol was markedly decreased. In contrast, co-expression of FKBP12 did not affect agonist-induced Ca(2+) release in CHO(hRyR2) cells. Resting cytoplasmic [Ca(2+)] in CHO(hRyR2) remained unaltered after co-expression of FKBP12 or FKBP12.6, but estimation of the ER Ca(2+) load status showed that co-expression of FKBP12.6, but not FKBP12, promoted superfilling of the ER Ca(2+) store which could not be released by RyR2 after agonist activation. The effects of FKBP12.6 on hRyR2-mediated intracellular Ca(2+) handling could be antagonized using rapamycin (5 microM). These results suggest that FKBP12.6 associates with hRyR2 in situ to modulate precisely the functionality of hRyR2 Ca(2+)-release channel.

    The Biochemical journal 2003;370;Pt 2;579-89

  • Localization of the 12.6-kDa FK506-binding protein (FKBP12.6) binding site to the NH2-terminal domain of the cardiac Ca2+ release channel (ryanodine receptor).

    Masumiya H, Wang R, Zhang J, Xiao B and Chen SR

    Cardiovascular Research Group, Department of Physiology & Biophysics, University of Calgary, Alberta T2N 4N1, Canada.

    The 12.6-kDa FK506-binding protein (FKBP12.6) interacts with the cardiac ryanodine receptor (RyR2) and modulates its channel function. However, the molecular basis of FKBP12.6-RyR2 interaction is poorly understood. To investigate the significance of the isoleucine-proline (residues 2427-2428) dipeptide epitope, which is thought to form an essential part of the FKBP12.6 binding site in RyR2, we generated single and double mutants, P2428Q, I2427E/P2428A, and P2428A/L2429E, expressed them in HEK293 cells, and assessed their ability to bind GST-FKBP12.6. None of these mutations abolished GST-FKBP12.6 binding, indicating that this isoleucine-proline motif is unlikely to form the core of the FKBP12.6 binding site in RyR2. To systematically define the molecular determinants of FKBP12.6 binding, we constructed a series of internal and NH(2)- and COOH-terminal deletion mutants of RyR2 and examined the effect of these deletions on GST-FKBP12.6 binding. These deletion analyses revealed that the first 305 NH(2)-terminal residues and COOH-terminal residues 1937-4967 are not essential for GST-FKBP12.6 binding, whereas multiple sequences within a large region between residues 305 and 1937 are required for GST-FKBP12.6 interaction. Furthermore, an NH(2)-terminal fragment containing the first 1937 residues is sufficient for GST-FKBP12.6 binding. Co-expression of overlapping NH(2) and COOH-terminal fragments covering the entire sequence of RyR2 produced functional channels but did not restore GST-FKBP12.6 binding. These data suggest that FKBP12.6 binding is likely to be conformationdependent. Binding of FKBP12.6 to the NH(2)-terminal domain may play a role in stabilizing the conformation of this region.

    The Journal of biological chemistry 2003;278;6;3786-92

  • The binding of the RyR2 calcium channel to its gating protein FKBP12.6 is oppositely affected by ARVD2 and VTSIP mutations.

    Tiso N, Salamon M, Bagattin A, Danieli GA, Argenton F and Bortolussi M

    Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padua, Italy. natascia@telethon.bio.unipd.it

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy type 2 (ARVD2, OMIM 600996) and stress-induced polymorphic ventricular tachycardia (VTSIP, OMIM 604772) are two cardiac diseases causing juvenile sudden death, both associated with mutations in the RyR2 calcium channel. By using a quantitative yeast two-hybrid system, we show that VTSIP- and ARVD2-associated point mutations influence positively and negatively, respectively, the binding of RyR2 to its gating protein FKBP12.6. These findings suggest that ARVD2 mutations increase RyR2-mediated calcium release to cytoplasm, while VTSIP mutations do not affect significantly cytosolic calcium levels, thereby explaining the clinical differences between the two diseases. The present two-hybrid system appears to be an efficient molecular tool to assay the binding of FKBP12s proteins to both cardiac RyR2 and skeletal muscle RyR1 isoforms, circumventing the full-length expression of this class of giant channels. We also provide evidence of the suitability of this system to test new drugs that target RyRs-FKBP12s interactions and do not affect yeast growth.

    Biochemical and biophysical research communications 2002;299;4;594-8

  • Isoform-dependent formation of heteromeric Ca2+ release channels (ryanodine receptors).

    Xiao B, Masumiya H, Jiang D, Wang R, Sei Y, Zhang L, Murayama T, Ogawa Y, Lai FA, Wagenknecht T and Chen SR

    Cardiovascular Research Group, Department of Physiology & Biophysics, University of Calgary, Alberta T2N 4N1, Canada.

    Three ryanodine receptor (RyR) isoforms, RyR1, RyR2, and RyR3, are expressed in mammalian tissues. It is unclear whether RyR isoforms are capable of forming heteromeric channels. To investigate their ability to form heteromeric channels, we co-expressed different RyR isoforms in HEK293 cells and examined their interactions biochemically and functionally. Immunoprecipitation studies revealed that RyR2 is able to interact physically with RyR3 and RyR1 in HEK293 cells and that RyR1 does not interact with RyR3. Co-expression of a ryanodine binding deficient mutant of RyR2, RyR2 (I4827T), with RyR3 (wt) restored [(3)H]ryanodine binding to the mutant. Interactions between RyR isoforms were further assessed by complementation analysis using mutants RyR2 (I4827T), RyR2 (E3987A), RyR3 (I4732T), RyR3 (E3885A), and RyR1 (E4032A), all of which are deficient in caffeine response. Caffeine-induced Ca(2+) release was restored in HEK293 cells co-transfected with mutants RyR2 (I4827T) and RyR3 (E3885A), RyR2 (E3987A) and RyR3 (I4732T), or RyR2 (I4827T) and RyR1 (E4032A), but not with RyR1 (E4032A) and RyR3 (I4732T), indicating that mutants of RyR2 and RyR3, or RyR2 and RyR1, but not RyR1 and RyR3, are able to complement each other. Co-expression of RyR3 (wt) and a pore mutant of RyR2, RyR2 (G4824A), produced regulatable single channels with intermediate unitary conductances. These observations demonstrate that RyR2 is capable of forming functional heteromeric channels with RyR3 and RyR1, whereas RyR1 is incapable of forming heteromeric channels with RyR3.

    Funded by: NIAMS NIH HHS: AR40615

    The Journal of biological chemistry 2002;277;44;41778-85

  • Screening for ryanodine receptor type 2 mutations in families with effort-induced polymorphic ventricular arrhythmias and sudden death: early diagnosis of asymptomatic carriers.

    Bauce B, Rampazzo A, Basso C, Bagattin A, Daliento L, Tiso N, Turrini P, Thiene G, Danieli GA and Nava A

    Department of Cardiology, University of Padua Medical School, Via A. Gabelli, 86-35121 Padua, Italy.

    Objectives: We sought to establish the role of genetic screening for ryanodine receptor type 2 (RyR2) gene mutations in families with effort-induced polymorphic ventricular arrhythmia (PVA), syncope and juvenile sudden death.

    Background: The RyR2 mutations have been associated with PVA, syncope and sudden death in response to physical or emotional stress.

    Methods: We studied 81 subjects (39 males and 42 females; mean age 31 +/- 20 years) belonging to eight families with pathogenic RyR2 mutations. All subjects underwent screening for RyR2 mutations, electrocardiography (ECG), 24-h Holter monitoring, signal-averaged electrocardiography (SAECG), two-dimensional echocardiography and exercise stress testing. Electrophysiologic (EP) study was performed in nine patients.

    Results: Six different RyR2 mutations were found in eight families. Forty-three family members carried the gene mutation. Of these, 28 (65%) showed effort-induced arrhythmic symptoms or signs and one died suddenly during follow-up. Family history revealed 19 juvenile cases of sudden death during effort or emotion. In two families sharing the same mutation, no subject presented with PVA during the stress test; thus, sudden death and syncope were the only clinical manifestations. The 12-lead ECG was normal in all but two subjects, whereas five patients showed positive late potentials on the SAECG. In 17 (39.5%) of 43 subjects, the two-dimensional echocardiogram revealed localized kinetic abnormalities and mild structural alterations of the right ventricle. The EP study was not able to induce PVA.

    Conclusions: The absence of symptoms and PVA on the stress test in more than one-third of carriers of RyR2 mutations, as well as the lack of PVA inducibility by the EP study, underlies the importance of genetic screening for the early diagnosis of asymptomatic carriers and prevention of sudden death.

    Funded by: Telethon: 1288

    Journal of the American College of Cardiology 2002;40;2;341-9

  • Genetics of arrhythmogenic right ventricular cardiomyopathy.

    Danieli GA and Rampazzo A

    Human Molecular Genetics Unit, Department of Biology, University of Padua, Italy. danieli@bio.unipd.it

    Recent advances in molecular genetics of arrhythmogenic right ventricular cardiomyopathy (ARVD) are reviewed. In particular, the finding of mutations in the gene coding for cardiac ryanodine receptor (hRYR2), both in patients affected with ARVD2 and in patients affected with catecholaminergic ventricular arrhythmias or with familial ventricular tachyarrhythmia, is discussed. Novel data support the hypothesis that apoptosis may be a key step in molecular pathogenesis of ARVDs. A series of studies on drugs with apparent protective effect against apoptosis in myocardial cells might open new perspectives in the therapeutic approach.

    Current opinion in cardiology 2002;17;3;218-21

  • Ryanodine receptors, FKBP12, and heart failure.

    Marks AR

    Center for Molecular Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA. arm42@columbia.edu

    RyR2 function is regulated by highly conserved signaling pathways that modulate excitation-contraction (EC) coupling. cAMP dependent protein kinase (PKA) phosphorylation of RyR2 plays an important role in regulating channel function in response to stress signaled by the sympathetic nervous system (the classic "fight or flight response") (1). PKA phosphorylation of RyR2 induces dissociation of the regulatory protein FKBP12.6 resulting in channels with increased sensitivity to Ca2+-induced Ca2+ release. Under normal physiological conditions (no cardiac damage) PKA phosphorylation of RyR2 is part of an integrated physiological response that leads to increased EC coupling gain and increased cardiac output. PKA-hyperphosphorylation of RyR2 in failing hearts is a maladaptive response that results in depletion of FKBP12.6 from the RyR2 macromolecular complex and defective channel function (pathologically increased sensitivity to Ca2+-induced Ca2+ release) that may cause depletion of SR Ca2+ and diastolic release of SR Ca2+ that can initiate delayed after depolarizations (DADs) that trigger ventricular arrhythmias (1). RyR2 mutations in patients with catecholaminergic induced sudden cardiac death provide further evidence linking the sympathetic nervous system, RyR2 and ventricular arrhythmias (2-4). The chronic hyperadrenergic state of heart failure is associated with defective Ca2+ signaling in part due to PKA hyperphosphorylation of RyR2.

    Frontiers in bioscience : a journal and virtual library 2002;7;d970-7

  • Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia.

    Marks AR, Priori S, Memmi M, Kontula K and Laitinen PJ

    Center for Molecular Cardiology, Department of Pharmacology, Box 65, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA. arm42@columbia.edu

    The cardiac ryanodine receptor (RyR2), the major calcium release channel on the sarcoplasmic reticulum (SR) in cardiomyocytes, has recently been shown to be involved in at least two forms of sudden cardiac death (SCD): (1) Catecholaminergic polymorphic ventricular tachycardia (CPVT) or familial polymorphic VT (FPVT); and (2) Arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Eleven RyR2 missense mutations have been linked to these diseases. All eleven RyR2 mutations cluster into 3 regions of RyR2 that are homologous to the three malignant hyperthermia (MH)/central core disease (CCD) mutation regions of the skeletal muscle ryanodine receptor/calcium release channel RyR1. MH/CCD RyR1 mutations have been shown to alter calcium-induced calcium release. Sympathetic nervous system stimulation leads to phosphorylation of RyR2 by protein kinase A (PKA). PKA phosphorylation of RyR2 activates the channel. In conditions associated with high rates of SCD such as heart failure RyR2 is PKA hyperphosphorylated resulting in "leaky" channels. SR calcium leak during diastole can generate "delayed after depolarizations" that can trigger fatal cardiac arrhythmias (e.g., VT). We propose that RyR2 mutations linked to genetic forms of catecholaminergic-induced SCD may alter the regulation of the channel resulting in increased SR calcium leak during sympathetic stimulation.

    Journal of cellular physiology 2002;190;1;1-6

  • B-lymphocytes from malignant hyperthermia-susceptible patients have an increased sensitivity to skeletal muscle ryanodine receptor activators.

    Girard T, Cavagna D, Padovan E, Spagnoli G, Urwyler A, Zorzato F and Treves S

    Department of Anaesthesia and Research, Hebelstrasse 20, University of Basel Kantonsspital, 4031 Basel, Switzerland.

    Malignant hyperthermia (MH) is a pharmacogenetic disease triggered by volatile anesthetics and succinylcholine in genetically predisposed individuals. The underlying feature of MH is a hypersensitivity of the calcium release machinery of the sarcoplasmic reticulum, and in many cases this is a result of point mutations in the skeletal muscle ryanodine receptor calcium release channel (RYR1). RYR1 is mainly expressed in skeletal muscle, but a recent report demonstrated the existence of this isoform in human B-lymphocytes. As B-cells can produce a number of cytokines, including endogenous pyrogens, we investigated whether some of the symptoms seen during MH could be related to the involvement of the immune system. Our results show that (i) Epstein-Barr virus-immortalized B-cells from MH-susceptible individuals carrying the V2168M RYR1 gene mutation were more sensitive to the RYR activator 4-chloro-m-cresol and (ii) their peripheral blood leukocytes produce more interleukin (IL)-1beta after treatment with the RYR activators caffeine and 4-chloro-m-cresol, compared with cells from healthy controls. Our result demonstrate that RYR1-mediated calcium signaling is involved in release of IL-1beta from B-lymphocytes and suggest that some of the symptoms seen during an MH episode may be due to IL-1beta production.

    Funded by: Telethon: 1259

    The Journal of biological chemistry 2001;276;51;48077-82

  • Expression of the ryanodine receptor isoforms in immune cells.

    Hosoi E, Nishizaki C, Gallagher KL, Wyre HW, Matsuo Y and Sei Y

    Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.

    Ryanodine receptor (RYR) is a Ca(2+) channel that mediates Ca(2+) release from intracellular stores. We have used RT-PCR analysis and examined its expression in primary peripheral mononuclear cells (PBMCs) and in 164 hemopoietic cell lines. In PBMCs, type 1 RYR (RYR1) was expressed in CD19(+) B lymphocytes, but less frequently in CD3(+) T lymphocytes and in CD14(+) monocytes. Type 2 RYR (RYR2) was mainly detected in CD3(+) T cells. Induction of RYR1 and/or RYR2 mRNA was found after treatment with stromal cell-derived factor 1, macrophage-inflammatory protein-1alpha (MIP1alpha) or TGF-beta. Type 3 RYR (RYR3) was not detected in PBMCs. Many hemopoietic cell lines expressed not only RYR1 or RYR2 but also RYR3. The expression of the isoforms was not associated with specific cell lineage. We showed that the RYR-stimulating agent 4-chloro-m-cresol (4CmC) induced Ca(2+) release and thereby confirmed functional expression of the RYR in the cell lines expressing RYR mRNA. Moreover, concordant induction of RYR mRNA with Ca(2+) channel function was found in Jurkat T cells. In untreated Jurkat T cells, 4CmC (>1 mM) had no effect on Ca(2+) release, whereas 4CmC (<400 microM) caused Ca(2+) release after the induction of RYR2 and RYR3 that occurred after treatment with stromal cell-derived factor 1, macrophage-inflammatory protein-1alpha, or TGF-beta. Our results demonstrate expression of all three isoforms of RYR mRNA in hemopoietic cells. Induction of RYRs in response to chemokines and TGF-beta suggests roles in regulating Ca(2+)-mediated cellular responses during the immune response.

    Funded by: PHS HHS: R08078

    Journal of immunology (Baltimore, Md. : 1950) 2001;167;9;4887-94

  • Skeletal and cardiac ryanodine receptors bind to the Ca(2+)-sensor region of dihydropyridine receptor alpha(1C) subunit.

    Mouton J, Ronjat M, Jona I, Villaz M, Feltz A and Maulet Y

    Laboratoire de Neurobiologie Cellulaire, CNRS FRE 2180, Strasbourg, France.

    In striated muscles, excitation-contraction coupling is mediated by the functional interplay between dihydropyridine receptor L-type calcium channels (DHPR) and ryanodine receptor calcium-release channel (RyR). Although significantly different molecular mechanisms are involved in skeletal and cardiac muscles, bidirectional cross-talk between the two channels has been described in both tissues. In the present study using surface plasmon resonance spectroscopy, we demonstrate that both RyR1 and RyR2 can bind to structural elements of the C-terminal cytoplasmic domain of alpha(1C). The interaction is restricted to the CB and IQ motifs involved in the calmodulin-mediated Ca(2+)-dependent inactivation of the DHPR, suggesting functional interactions between the two channels.

    FEBS letters 2001;505;3;441-4

  • Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers.

    Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N and Marks AR

    Center for Molecular Cardiology, Department of Medicine, College of Physicians and Surgeons of Columbia University, 630 West 168th St., New York, NY 10032, USA.

    Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function.

    The Journal of cell biology 2001;153;4;699-708

  • FKBP binding characteristics of cardiac microsomes from diverse vertebrates.

    Jeyakumar LH, Ballester L, Cheng DS, McIntyre JO, Chang P, Olivey HE, Rollins-Smith L, Barnett JV, Murray K, Xin HB and Fleischer S

    Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA.

    FK506 binding protein (FKBP) is a cytosolic receptor for the immunosuppressive drug FK-506. The common isoform, FKBP12, was found to be associated with the calcium release channel (ryanodine receptor 1) of different species of vertebrate skeletal muscle, whereas 12.6, a novel FKBP isoform was found to be associated with canine cardiac ryanodine receptor (ryanodine receptor 2). Until recently, canine cardiac sarcoplasmic reticulum was considered to be the prototype for studying heart RyR2 and its interactions with FKBP. In this study, cardiac microsomes were isolated from diverse vertebrates: human, rabbit, rat, mice, dog, chicken, frog, and fish and were analyzed for their ability to bind or exchange with FKBP isoforms 12 and 12.6. Our studies indicate that RyR2 from seven out of the eight animals contain both FKBP12 and 12.6. Dog is the exception. It can now be concluded that the association of FKBP isoforms with RyR2 is widely conserved in the hearts of different species of vertebrates.

    Funded by: NHLBI NIH HHS: 1F32 HL 10298-01

    Biochemical and biophysical research communications 2001;281;4;979-86

  • Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2).

    Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, Larderet G, Brahmbhatt B, Brown K, Bauce B, Muriago M, Basso C, Thiene G, Danieli GA and Rampazzo A

    Department of Biology, University of Padova, 35121 Padova, Italy.

    Arrhythmogenic right ventricular dysplasia type 2 (ARVD2, OMIM 600996) is an autosomal dominant cardiomyopathy, characterized by partial degeneration of the myocardium of the right ventricle, electrical instability and sudden death. The disease locus was mapped to chromosome 1q42--q43. We report here on the physical mapping of the critical ARVD2 region, exclusion of two candidate genes (actinin 2 and nidogen), elucidation of the genomic structure of the cardiac ryanodine receptor gene (RYR2) and identification of RYR2 mutations in four independent families. In myocardial cells, the RyR2 protein, activated by Ca(2+), induces the release of calcium from the sarcoplasmic reticulum into the cytosol. RyR2 is the cardiac counterpart of RyR1, the skeletal muscle ryanodine receptor, involved in malignant hyperthermia (MH) susceptibility and in central core disease (CCD). The RyR2 mutations detected in the present study occurred in two highly conserved regions, strictly corresponding to those where mutations causing MH or CCD are clustered in the RYR1 gene. The detection of RyR2 mutations causing ARVD2, reported in this paper, opens the way to pre-symptomatic detection of carriers of the disease in childhood, thus enabling early monitoring and treatment.

    Human molecular genetics 2001;10;3;189-94

  • Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia.

    Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B, Donarum EA, Marino M, Tiso N, Viitasalo M, Toivonen L, Stephan DA and Kontula K

    Department of Medicine, University of Helsinki, Helsinki, Finland.

    Background: Familial polymorphic ventricular tachycardia is an autosomal-dominant, inherited disease with a relatively early onset and a mortality rate of approximately 30% by the age of 30 years. Phenotypically, it is characterized by salvoes of bidirectional and polymorphic ventricular tachycardias in response to vigorous exercise, with no structural evidence of myocardial disease. We previously mapped the causative gene to chromosome 1q42-q43. In the present study, we demonstrate that patients with familial polymorphic ventricular tachycardia have missense mutations in the cardiac sarcoplasmic reticulum calcium release channel (ryanodine receptor type 2 [RyR2]).

    In 3 large families studied, 3 different RyR2 mutations (P2328S, Q4201R, V4653F) were detected and shown to fully cosegregate with the characteristic arrhythmic phenotype. These mutations were absent in the nonaffected family members and in 100 healthy controls. In addition to identifying 3 causative mutations, we identified a number of single nucleotide polymorphisms that span the genomic structure of RyR2 and will be useful for candidate-based association studies for other arrhythmic disorders.

    Conclusions: Our data illustrate that mutations of the RyR2 gene cause at least one variety of inherited polymorphic tachycardia. These findings define a new entity of disorders of myocardial calcium signaling.

    Circulation 2001;103;4;485-90

  • Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia.

    Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V and Danieli GA

    Molecular Cardiology Laboratories, IRCCS Fondazione Salvatore Maugeri, Pavia, Italy. spriori@fsm.it

    Background: Catecholaminergic polymorphic ventricular tachycardia is a genetic arrhythmogenic disorder characterized by stress-induced, bidirectional ventricular tachycardia that may degenerate into cardiac arrest and cause sudden death. The electrocardiographic pattern of this ventricular tachycardia closely resembles the arrhythmias associated with calcium overload and the delayed afterdepolarizations observed during digitalis toxicity. We speculated that a genetically determined abnormality of intracellular calcium handling might be the substrate of the disease; therefore, we considered the human cardiac ryanodine receptor gene (hRyR2) a likely candidate for this genetically transmitted arrhythmic disorder.

    Twelve patients presenting with typical catecholaminergic polymorphic ventricular tachycardia in the absence of structural heart abnormalities were identified. DNA was extracted from peripheral blood lymphocytes, and single-strand conformation polymorphism analysis was performed on polymerase chain reaction-amplified exons of the hRyR2 gene. Four single nucleotide substitutions leading to missense mutations were identified in 4 probands affected by the disease. Genetic analysis of the asymptomatic parents revealed that 3 probands carried de novo mutations. In 1 case, the identical twin of the proband died suddenly after having suffered syncopal episodes. The fourth mutation was identified in the proband, in 4 clinically affected family members, and in none of 3 nonaffected family members in a kindred with 2 sudden deaths that occurred at 16 and 14 years, respectively, in the sisters of the proband.

    Conclusions: We demonstrated that, in agreement with our hypothesis, hRyR2 is a gene responsible for catecholaminergic polymorphic ventricular tachycardia.

    Circulation 2001;103;2;196-200

  • PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts.

    Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N and Marks AR

    Center for Molecular Cardiology, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.

    The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is the major source of calcium (Ca2+) required for cardiac muscle excitation-contraction (EC) coupling. The channel is a tetramer comprised of four type 2 RyR polypeptides (RyR2) and four FK506 binding proteins (FKBP12.6). We show that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (Po). Using cosedimentation and coimmunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein, mAKAP. In failing human hearts, RyR2 is PKA hyperphosphorylated, resulting in defective channel function due to increased sensitivity to Ca2+-induced activation.

    Funded by: NHLBI NIH HHS: R01 HL56180, R01 HL61503; NIAID NIH HHS: R01 AI39794; ...

    Cell 2000;101;4;365-76

  • Developmental changes in expression of the three ryanodine receptor mRNAs in the mouse brain.

    Mori F, Fukaya M, Abe H, Wakabayashi K and Watanabe M

    Department of Neuropathology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan. neuropal@cc.hirosaki-u.ac.jp

    Ryanodine receptors (RyR) are Ca(2+)-induced Ca(2+) release channels located on the endoplasmic reticulum, and consist of three isoforms, termed RyR1-3. We examined their expression in developing mouse brains by in situ hybridization. During the embryonic stage, RyR1 mRNA levels were highest in the rostral cortical plate, whereas RyR3 mRNA was most prominent in the caudal cortical plate and hippocampus. Initially, low levels of RyR2 mRNA were distributed in the diencephalon and brainstem. However, from postnatal day 7 onward, RyR2 mRNA became the major isoform in many brain regions, while RyR1 mRNA became prominent in the dentate gyrus and Purkinje cell layer. Postnatal down-regulation in the caudal cerebral cortex restricted RyR3 mRNA expression to the hippocampus, particularly the CA1 region. Therefore, RyR expression undergoes dynamic changes during the early postnatal period, when neurons are undergoing structural and functional differentiation.

    Neuroscience letters 2000;285;1;57-60

  • Ryanodine receptors in human bladder smooth muscle.

    Chambers P, Neal DE and Gillespie JI

    Department of Surgery, Medical School, University of Newcastle upon Tyne, UK.

    The role of intracellular Ca2+ release in the activation of human bladder smooth muscle is controversial. We have measured the expression of mRNA encoding for the ryanodine receptor (RyR) isoforms (RyR1, RyR2 and RyR3) in isolated human detrusor smooth muscle. mRNA for RyR2 was detected in all samples but no mRNA for RyR1 or RyR3 could be found. Human bladder smooth muscle cells in culture are unresponsive to caffeine, suggesting the absence of a functional RyR system. However, mRNA encoding for RyR2 was detected in these cells. Using saponin-permeabilized cells, a Ruthenium Red-sensitive Ca(2+)-dependent 45Ca2+ release could be demonstrated from the sarcoplasmic reticulum (SR). These data confirm the functional presence of Ca(2+)-induced Ca2+ release (CICR) in cells and suggest that the properties of the RyR2 isoform in human detrusor may change when the cells are maintained in culture. The implications of these observations to detrusor smooth muscle function are discussed.

    Experimental physiology 1999;84;1;41-6

  • Ryanodine receptor isoforms in excitation-contraction coupling.

    Ogawa Y, Kurebayashi N and Murayama T

    Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan.

    Three genomically distinct isoforms of RyR are now known. RyR1 homologue is the primary isoform in skeletal muscles, whereas in cardiac muscles it is RyR2 homologue. RyR3 homologue occurs ubiquitously in many cells, but the biological function is little known, partly because of its minuscule amount in mammalian cells. The difference among RyR isoforms may not be so great in CICR activity, in other words, in the interaction of RyR isoforms with Ca2+, adenine nucleotides and caffeine. Species specificity among RyR1 homologues may be more important in the apparent difference between RyR1 and RyR3 homologues. CICR is likely to be the dominant underlying mechanism for E-C coupling in the cardiac muscle and probably in cells other than the skeletal muscle where the significance of CICR is controversial in physiological contraction. In E-C coupling of skeletal muscle (DICR), the reciprocal tight interactions between DHPR and RyR1 are critically required. The alpha 1 subunit of DHPR was only the main target of our current interests in the interaction with RyR1; the involvement of auxiliary subunits of alpha 2/delta and beta subunits and their mutual interactions, however, are also important. DICR and CICR in RyR1 share common properties of stimulation by concentrated solutes and modulation by luminal calcium or Ca2+, suggesting that the main difference between the two Ca2+ release mechanisms may be in the gating mechanism of the channel. Further investigations are required to understand molecular interactions during E-C coupling.

    Advances in biophysics 1999;36;27-64

  • Partial cloning and differential expression of ryanodine receptor/calcium-release channel genes in human tissues including the hippocampus and cerebellum.

    Martin C, Chapman KE, Seckl JR and Ashley RH

    Department of Biochemistry, University of Edinburgh, UK.

    Cellular Ca2+ signalling is an important factor in the control of neuronal metabolism and electrical activity. Although the roles of Ca2+-release channels are well established for skeletal and cardiac muscle, less is known about their expression and roles in the central nervous system, especially in the human brain. We have isolated partial complementary DNAs derived from the human ryanodine receptor Ca2+-release channel genes (ryr1, ryr2 and ryr3), and examined their expression in the human hippocampus and cerebellum. For comparison, we have included in our analysis an inositol trisphosphate Ca2+-release channel type I complementary RNA probe. All four messenger RNAs show widespread distribution in the human hippocampus, where ryr2 is the most abundant isoform, and all four are expressed in the human cerebellum. However, striking differences were seen between ryr and inositol trisphosphate Ca2+-release channel type I complementary RNA expression in the cerebellum, with inositol trisphosphate Ca2+-release channel type I messenger RNA being largely restricted to, and very highly expressed, in Purkinje cells, whereas ryr1, ryr2 and ryr3 were all expressed predominantly in the granular layer. The widespread expression of ryr isoforms in the human hippocampus and cerebellum suggests that ryanodine receptor proteins may have a central role in Ca2+ signalling and Ca2+ homeostasis in the human central nervous system. These may include roles in fundamental processes like synaptic plasticity. Furthermore, these Ca2+-release channels may be involved in pathogenic processes such as excitotoxicity, where excessive rises in intracellular Ca2+ concentration mediate neuronal cell death.

    Funded by: Wellcome Trust

    Neuroscience 1998;85;1;205-16

  • Differential expression of ryanodine receptor RyR2 mRNA in the non-pregnant and pregnant human myometrium.

    Awad SS, Lamb HK, Morgan JM, Dunlop W and Gillespie JI

    Department of Physiological Sciences, The Medical School, The University, Newcastle upon Tyne NE2 4HH, UK.

    We describe here the expression of the ryanodine receptor isoforms RyR2 and RyR3 in human non-pregnant and pregnant (non-labouring) myometrium, and in isolated cultured myometrial cells. The mRNA encoding the RyR3 isoform was found in both non-pregnant and pregnant myometrial tissue samples; however, the mRNA for RyR2 was found only in pregnant samples. It can be speculated that the appearance of this additional isoform in the pregnant myometrium may increase the ability of this tissue to contract at term. Control of expression of the RyR2 gene may therefore be another example of an up-regulated signalling system in pregnancy. Although the mRNA for RyR3 was expressed in cultured myometrial cells, the mRNA for RyR2 could not be detected. Thus cultured myometrial cells appear to be similar to the non-pregnant myometrium. The cytokine transforming growth factor beta (TGF-beta) has been reported to alter RyR mRNA expression in many cell types. After treatment with TGF-beta, both RyR2 and RyR3 mRNAs could be detected in cultured myometrial cells. These observations support the idea that the expression of the RyR2 isoform is up-regulated both in pregnancy and in TGF-beta-treated cultured myometrial cells. Using measurements of 45Ca2+ release, we have further demonstrated that cultured human myometrial cells show a significant augmentation of both the Ca2+-induced Ca2+ release (CICR) mechanism and ryanodine-induced Ca2+ release after treatment with TGF-beta. Additionally, caffeine was able to induce Ca2+ release and sensitize the CICR mechanism to ryanodine. Thus we suggest that the appearance of RyR2 mRNA leads to the expression of this receptor/channel protein with identifiable pharmacological characteristics. These results are discussed in the context of the potential role of gene activation in the process of maturation of the human myometrium during pregnancy.

    The Biochemical journal 1997;322 ( Pt 3);777-83

  • The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis.

    Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD and Lai FA

    MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, U.K.

    Rapid Ca2+ efflux from intracellular stores during cardiac muscle excitation-contraction coupling is mediated by the ryanodine-sensitive calcium-release channel, a large homotetrameric complex present in the sarcoplasmic reticulum. We report here the identification, primary structure and topological analysis of the ryanodine receptor-calcium release channel from human cardiac muscle (hRyR-2). Consistent with sedimentation and immunoblotting studies on the hRyR-2 protein, sequence analysis of ten overlapping cDNA clones reveals an open reading frame of 14901 nucleotides encoding a protein of 4967 amino acid residues with a predicted molecular mass of 564 569 Da for hRyR-2. In-frame insertions corresponding to eight and ten amino acid residues were found in two of the ten cDNAs isolated, suggesting that novel, alternatively spliced transcripts of the hRyR-2 gene might exist. Six hydrophobic stretches, which are present within the hRyR-2 C-terminal 500 amino acids and are conserved in all RyR sequences, may be involved in forming the transmembrane domain that constitutes the Ca(2+)-conducting pathway, in agreement with competitive ELISA studies with a RyR-2-specific antibody. Sequence alignment of hRyR-2 with other RyR isoforms indicates a high level of overall identity within the RyR family, with the exception of two important regions that exhibit substantial variability. Phylogenetic analysis suggests that the RyR-2 isoform diverged from a single ancestral gene before the RyR-1 and RyR-3 isoforms to form a distinct branch of the RyR family tree.

    The Biochemical journal 1996;318 ( Pt 2);477-87

  • Association of sorcin with the cardiac ryanodine receptor.

    Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW and Fishman GI

    Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

    Sorcin is a 22-kDa calcium-binding protein initially identified in multidrug-resistant cells; however, its patterns of expression and function in normal tissues are unknown. Here we demonstrate that sorcin is widely distributed in rodent tissues, including the heart, where it was localized by immunoelectron microscopy to the sarcoplasmic reticulum. A > 500-kDa protein band immunoprecipitated from cardiac myocytes by sorcin antiserum was indistinguishable in size on gels from the 565-kDa ryanodine receptor/calcium release channel recognized by ryanodine receptor-specific antibody. Association of sorcin with a ryanodine receptor complex was confirmed by complementary co-immunoprecipitations of sorcin with the receptor antibody. Forced expression of sorcin in ryanodine receptor-negative Chinese hamster lung fibroblasts resulted in accumulation of the predicted 22-kDa protein as well as the unexpected appearance of ryanodine receptor protein. In contrast to the parental host fibroblasts, sorcin transfectants displayed a rapid and transient rise in intracellular calcium in response to caffeine, suggesting organization of the accumulated ryanodine receptor protein into functional calcium release channels. These data demonstrate an interaction between sorcin and the ryanodine receptor and suggest a role for sorcin in modulation of calcium release channel activity, perhaps by stabilizing the channel protein.

    Funded by: NCI NIH HHS: P30-CA-08748; NHLBI NIH HHS: HL-33333; NIMH NIH HHS: MH-00078; ...

    The Journal of biological chemistry 1995;270;44;26411-8

  • A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1q42-q43.

    Rampazzo A, Nava A, Erne P, Eberhard M, Vian E, Slomp P, Tiso N, Thiene G and Danieli GA

    Department of Biology, University of Padua, Italy.

    Autosomal dominant arrhythmogenic right ventricular cardiomyopathy (ARVD, MIM 107970) is one of the major causes of juvenile sudden death. We have previously assigned the disease locus to chromosome 14q23-q24. Here we report on a novel variant of ARVD, which is transmitted associated to 1q42-q43 and is characterized by a concealed form, showing effort-induced polymorphic tachycardias. Since both loci ARVD1 and ARVD2 map in proximity of alpha-actinin genes, the possible implication of these myofibrillar proteins in the pathogenesis of ARVD is discussed. Two additional ARVD families, tested with markers of chromosomes 1q42-q43 and 14q23-q24, failed to show linkage, providing evidence of further genetic heterogeneity.

    Funded by: Telethon: 527

    Human molecular genetics 1995;4;11;2151-4

  • Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes.

    Otsu K, Fujii J, Periasamy M, Difilippantonio M, Uppender M, Ward DC and MacLennan DH

    Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Ontario, Canada.

    Fluorescence in situ hybridization (FISH) experiments were performed using genomic and complementary DNA probes in order to determine the location on human chromosomes for five genes expressed in cardiac and skeletal muscle sarcoplasmic reticulum. The chromosome location of each gene was determined in terms of both cytogenetic bands and fractional chromosome length. The ATP2A2 gene, expressing the SERCA2 isoform of the Ca2+ pump, maps to bands 12q23-q24.1, the phospholamban gene (PLN) to 6q22.1, the human skeletal muscle calsequestrin gene (CASQ1) to band 1q21, the cardiac calsequestrin gene (CASQ2) to bands 1p11-p13.3, and the cardiac calcium release channel gene (RYR2) to the interval between band 1q42.1 (distal) and band 1q43 (proximal).

    Funded by: NHGRI NIH HHS: HG-00272

    Genomics 1993;17;2;507-9

  • Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum.

    Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM and MacLennan DH

    Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Ontario, Canada.

    We have cloned and sequenced cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. The cDNA, 16,532 base pairs in length, encodes a protein of 4,969 amino acids with a Mr of 564,711. The deduced amino acid sequence is 66% identical with that of the skeletal muscle ryanodine receptor, but analysis of predicted secondary structures and hydropathy plots suggests that the two isoforms exhibit the same topology in both transmembrane and cytoplasmic domains. A potential ATP binding domain was identified at residues 2619-2652, a potential phosphorylation site at residue 2809, and potential calmodulin binding sites at residues 2775-2807, 2877-2898, and 2998-3016. We suggest that a modulator binding domain in the protein lies between residues 2619 and 3016. Northern blot analysis of mRNA from a variety of tissues demonstrated that the cardiac isoform is expressed in heart and brain, while the skeletal muscle isoform is expressed in both fast- and slow-twitch muscle. No ryanodine receptor mRNA was detected in extracts from smooth muscle or any other non-muscle tissue examined. The two receptors are clearly the products of separate genes, and the gene encoding the cardiac muscle ryanodine receptor was localized to chromosome 1.

    The Journal of biological chemistry 1990;265;23;13472-83

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.