G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
acetyl-CoA carboxylase alpha
G00000920 (Mus musculus)

Databases (7)

ENSG00000132142 (Ensembl human gene)
31 (Entrez Gene)
713 (G2Cdb plasticity & disease)
ACACA (GeneCards)
200350 (OMIM)
Marker Symbol
Protein Sequence
Q13085 (UniProt)

Synonyms (1)

  • ACC1

Literature (39)

Pubmed - other

  • Acetyl-coenzyme A carboxylase alpha gene variations may be associated with the direct effects of some antipsychotics on triglyceride levels.

    Diaz FJ, Meary A, Arranz MJ, Ruaño G, Windemuth A and de Leon J

    Department of Biostatistics, Kansas University Medical School, Kansas City, Kansas, United States.

    Acetyl-coenzyme A carboxylase alpha (ACACA) single-nucleotide polymorphism (SNP) (rs2229416) was significantly associated with hypertriglyceridemia, during exploration of antipsychotic direct effects on lipids. Neuropeptide Y (NPY) gene (rs1468271) and ACACB gene (rs2241220) SNPs were significantly associated with severe hypercholesterolemia. In the same sample (173 patients on olanzapine, quetiapine, chlorpromazine or mirtazapine [increasing the risk of hyperlipidemia] and 184 controls taking other antipsychotics), three (rs1266175, rs12453407 and rs9906543) of eight additional ACACA SNPs were significantly associated with hypertriglyceridemia in those taking drugs of interest, but not in controls. Five other ACACA SNPs, three additional NPY SNPs, and seven additional ACACB SNPs were not significant.

    Funded by: NIMH NIH HHS: R44 MH073291, R44 MH073291-04

    Schizophrenia research 2009;115;2-3;136-40

  • Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK.

    Scaglia N, Chisholm JW and Igal RA

    Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.

    Cancer cells activate the biosynthesis of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in order to sustain an increasing demand for phospholipids with appropriate acyl composition during cell replication. We have previously shown that a stable knockdown of stearoyl-CoA desaturase 1 (SCD1), the main Delta9-desaturase that converts SFA into MUFA, in cancer cells decreases the rate of lipogenesis, reduces proliferation and in vitro invasiveness, and dramatically impairs tumor formation and growth. Here we report that pharmacological inhibition of SCD1 with a novel small molecule in cancer cells promoted the activation of AMP-activated kinase (AMPK) and the subsequent reduction of acetylCoA carboxylase activity, with a concomitant inhibition of glucose-mediated lipogenesis. The pharmacological inhibition of AMPK further decreased proliferation of SCD1-depleted cells, whereas AMPK activation restored proliferation to control levels. Addition of supraphysiological concentrations of glucose or pyruvate, the end product of glycolysis, did not reverse the low proliferation rate of SCD1-ablated cancer cells. Our data suggest that cancer cells require active SCD1 to control the rate of glucose-mediated lipogenesis, and that when SCD1 activity is impaired cells downregulate SFA synthesis via AMPK-mediated inactivation of acetyl-CoA carboxylase, thus preventing the harmful effects of SFA accumulation.

    PloS one 2009;4;8;e6812

  • Kidney bean husk extracts exert antitumor effect by inducing apoptosis involving AMP-activated protein kinase signaling pathway.

    Lee YK, Hwang JT, Lee MS, Kim YM and Park OJ

    Department of Food and Nutrition, Hannam University Daedeok Valley Campus, Yuseong-gu, Daejeon, Korea.

    In this study, we investigated the molecular basis of Korean kidney bean husk extract, with emphasis on its ability to control intracellular signaling cascades of AMP-activated protein kinase (AMPK) responsible for inducing antitumor activities in colon cancer cells. Recently, the evolutionarily conserved serine/threonine kinase, AMPK, has emerged as a possible target molecule of tumor control. We investigated the effects of Korean kidney bean husk extract on apoptosis regulation and the activation of AMPK. Korean kidney bean husk extract exhibited a series of antitumor effects such as cell death and apoptotic body appearance. These antitumor potentials were accompanied by the increase in p-AMPK and p-Acc as well as antitumor proteins p53 and p21. The stimulation of AMPK by this extract was blocked with the synthetic AMPK inhibitor Compound C at 10 micromol/L, and the combined treatment of Compound C and the AMPK activator AICAR (5-aminoimiazole-4-carboxamide-1-beta-D-ribofuranoside) showed that Compound C could inhibit the activation of AMPK at the concentration of 20 micromol/L. In conclusion, the ability of carcinogenesis control by Korean kidney bean husk extract with high potency suggests its value as an antitumor agent in colon cancer therapy.

    Annals of the New York Academy of Sciences 2009;1171;484-8

  • Identification and characterization of proteins interacting with SIRT1 and SIRT3: implications in the anti-aging and metabolic effects of sirtuins.

    Law IK, Liu L, Xu A, Lam KS, Vanhoutte PM, Che CM, Leung PT and Wang Y

    Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.

    Sirtuins are a family of NAD(+)-dependent protein deacetylases that regulate cellular functions through deacetylation of a wide range of protein targets. Overexpression of Sir2, the first gene discovered in this family, is able to extend the life span in various organisms. The anti-aging effects of human homologues of sirtuins, SIRT1-7, have also been suggested by animal and human association studies. However, the precise mechanisms whereby sirtuins exert their anti-aging effects remain elusive. In this study, we aim to identify novel interacting partners of SIRT1 and SIRT3, two human sirtuins ubiquitously expressed in many tissue types. Our results demonstrate that SIRT1 and SIRT3 are localized within different intracellular compartments, mainly nuclei and mitochondria, respectively. Using affinity purification and MALDI-TOF/TOF-MS/MS analysis, their potential interacting partners have been identified from the enriched subcellular fractions and specific interactions confirmed by co-immunoprecipitation and Western blotting experiment. Further analyses suggest that overexpression of SIRT1 or SIRT3 in HEK293 cells could induce hypoacetylation and affect the intracellular localizations and protein stabilities of their interacting partners. Taken together, the present study has identified a number of novel SIRT protein interacting partners, which might be critically involved in the anti-aging and metabolic regulatory activities of sirtuins.

    Proteomics 2009;9;9;2444-56

  • Physiogenomic comparison of edema and BMI in patients receiving rosiglitazone or pioglitazone.

    Ruaño G, Bernene J, Windemuth A, Bower B, Wencker D, Seip RL, Kocherla M, Holford TR, Petit WA and Hanks S

    Genomas, Inc., 67 Jefferson St, Hartford, CT, United States. g.ruano@genomas.net

    Background: The thiazolidinediones (TZDs) improve tissue sensitivity to insulin in patients with type II diabetes, resulting in reduced levels of fasting blood glucose and glycated hemoglobin. However, TZDs unpredictably demonstrate adverse effects of increased body weight, fluid retention, and edema. The balance of efficacy and safety of TZD varies widely from patient to patient. Genetic variability may reveal pathophysiological pathways underlying weight gain associated with TZD therapy and due to adiposity and/or edema.

    Methods: We analyzed 384 single nucleotide polymorphisms (SNPs) from 222 cardiovascular and metabolic genes in 87 outpatients with type 2 diabetes receiving thiazolidinedione therapy. Physiogenomic analysis was used to discover associations with body mass index (BMI) and edema.

    Results: The 5 most significant gene associations found between BMI and SNPs were ADORA1, adenosine A1 receptor (rs903361, p<0.0003), PKM2, pyruvate kinase-muscle (rs2856929, p<0.002); ADIPOR2, adiponectin receptor 2 (rs7975375, p<0.007); UCP2, uncoupling protein 2 (rs660339, p<0.008); and APOH, apolipoprotein H (rs8178847, p<0.010). For edema, the 5 most significant gene associations were NPY, neuropeptide Y (rs1468271, p<0.006); GYS1, glycogen synthase 1-muscle (rs2287754, p<0.013); CCL2, chemokine C-C motif ligand 2 (rs3760396, p<0.015); OLR1, oxidized LDL receptor 1 (rs2742115, p<0.015); and GHRH, growth hormone releasing hormone (rs6032470, p<0.023). After accounting for multiple comparisons, ADORA1 was significantly associated with BMI at a false discovery rate (FDR) of <10%.

    Conclusion: Physiogenomic associations were discovered suggesting mechanistic links between adenosine signaling and BMI, and between vascular permeability and drug-induced edema.

    Clinica chimica acta; international journal of clinical chemistry 2009;400;1-2;48-55

  • Cell cycle regulation of the BRCA1/acetyl-CoA-carboxylase complex.

    Ray H, Suau F, Vincent A and Dalla Venezia N

    CNRS UMR5201, Laboratoire Génétique Moléculaire Signalisation et Cancer, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France.

    Germ-line alterations in BRCA1 are associated with an increased susceptibility to breast and ovarian cancer. The BRCA1 protein has been implicated in multiple cellular functions. We have recently demonstrated that BRCA1 reduces acetyl-CoA-carboxylase alpha (ACCA) activity through its phospho-dependent binding to ACCA, and further established that the phosphorylation of the Ser1263 of ACCA is required for this interaction. Here, to gain more insight into the cellular conditions that trigger the BRCA1/ACCA interaction, we designed an anti-pSer1263 antibody and demonstrated that the Ser1263 of ACCA is phosphorylated in vivo, in a cell cycle-dependent manner. We further showed that the interaction between BRCA1 and ACCA is regulated during cell cycle progression. Taken together, our findings reveal a novel mechanism of regulation of ACCA distinct from the previously described phosphorylation of Ser79, and provide new insights into the control of lipogenesis through the cell cycle.

    Biochemical and biophysical research communications 2009;378;3;615-9

  • Multiple genetic variants along candidate pathways influence plasma high-density lipoprotein cholesterol concentrations.

    Lu Y, Dollé ME, Imholz S, van 't Slot R, Verschuren WM, Wijmenga C, Feskens EJ and Boer JM

    Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands. kevin.lu@wur.nl

    The known genetic variants determining plasma HDL cholesterol (HDL-C) levels explain only part of its variation. Three hundred eighty-four single nucleotide polymorphisms (SNPs) across 251 genes based on pathways potentially relevant to HDL-C metabolism were selected and genotyped in 3,575 subjects from the Doetinchem cohort, which was examined thrice over 11 years. Three hundred fifty-three SNPs in 239 genes passed the quality-control criteria. Seven SNPs [rs1800777 and rs5882 in cholesteryl ester transfer protein (CETP); rs3208305, rs328, and rs268 in LPL; rs1800588 in LIPC; rs2229741 in NRIP1] were associated with plasma HDL-C levels with false discovery rate (FDR) adjusted q values (FDR_q) < 0.05. Five other SNPs (rs17585739 in SC4MOL, rs11066322 in PTPN11, rs4961 in ADD1, rs6060717 near SCAND1, and rs3213451 in MBTPS2 in women) were associated with plasma HDL-C levels with FDR_q between 0.05 and 0.2. Two less well replicated associations (rs3135506 in APOA5 and rs1800961 in HNF4A) known from the literature were also observed, but their significance disappeared after adjustment for multiple testing (P = 0.008, FDR_q = 0.221 for rs3135506; P = 0.018, FDR_q = 0.338 for rs1800961, respectively). In addition to replication of previous results for candidate genes (CETP, LPL, LIPC, HNF4A, and APOA5), we found interesting new candidate SNPs (rs2229741 in NRIP1, rs3213451 in MBTPS2, rs17585739 in SC4MOL, rs11066322 in PTPN11, rs4961 in ADD1, and rs6060717 near SCAND1) for plasma HDL-C levels that should be evaluated further.

    Journal of lipid research 2008;49;12;2582-9

  • Myocardial hypertrophy and the maturation of fatty acid oxidation in the newborn human heart.

    Yatscoff MA, Jaswal JS, Grant MR, Greenwood R, Lukat T, Beker DL, Rebeyka IM and Lopaschuk GD

    Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.

    After birth dramatic decreases in cardiac malonyl CoA levels result in the rapid maturation of fatty acid oxidation. We have previously demonstrated that the decrease in malonyl CoA is due to increased activity of malonyl CoA decarboxylase (MCD), and decreased activity of acetyl CoA carboxylase (ACC), enzymes which degrade and synthesize malonyl CoA, respectively. Decreased ACC activity corresponds to an increase in the activity of 5'-AMP activated protein kinase (AMPK), which phosphorylates and inhibits ACC. These alterations are delayed by myocardial hypertrophy. As rates of fatty acid oxidation can influence the ability of the heart to withstand an ischemic insult, we examined the expression of MCD, ACC, and AMPK in the newborn human heart. Ventricular biopsies were obtained from infants undergoing cardiac surgery. Immunoblot analysis showed a positive correlation between MCD expression and age. In contrast, a negative correlation in both ACC and AMPK expression and age was observed. All ventricular samples displayed some degree of hypertrophy, however, no differences in enzyme expression were found between moderate and severe hypertrophy. This indicates that increased expression of MCD, and the decreased expression of ACC and AMPK are important regulators of the maturation of fatty acid oxidation in the newborn human heart.

    Pediatric research 2008;64;6;643-7

  • Acute exercise does not cause sustained elevations in AMPK signaling or expression.

    Lee-Young RS, Koufogiannis G, Canny BJ and McConell GK

    Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia. robert.s.lee-young@vanderbilt.edu

    Purpose: No study has examined the response of skeletal muscle AMP-activated protein kinase (AMPK) signaling beyond the first 3 h after an acute exercise bout in humans. The purpose of this study was to assess AMPK signaling in human skeletal muscle immediately after a single bout of moderate-intensity endurance exercise and 3 and 24 h after the exercise bout.

    Methods: We examined AMPK signaling, and protein expression of AMPK alpha, ACC-beta, and nNOS mu in untrained individuals (four females and four males) during the 24-h period after a 60-min bout of moderate-intensity (63 +/- 1% VO2peak) cycling endurance exercise.

    Results: AMPK alpha2 activity, AMPK alpha2 Thr172 phosphorylation, and ACC-beta Ser222 phosphorylation were increased immediately after exercise. These increases had all returned to basal levels at 3 and 24 h after exercise. Furthermore, an acute bout of exercise did not alter AMPK alpha1, AMPK alpha2, ACC-beta, or nNOS mu protein expression during the 24-h period after exercise.

    Conclusion: Although an acute bout of exercise elicits increases in AMPK signaling, this alone is not sufficient to induce sustained increases in either AMPK signaling or protein expression during the postexercise period.

    Medicine and science in sports and exercise 2008;40;8;1490-4

  • Differential activation of recombinant human acetyl-CoA carboxylases 1 and 2 by citrate.

    Locke GA, Cheng D, Witmer MR, Tamura JK, Haque T, Carney RF, Rendina AR and Marcinkeviciene J

    Department of Chemical Enzymology, Bristol Myers-Squibb Pharmaceutical Company, R&D, P.O. Box 5400, Princeton, NJ 08543-5400, USA.

    The role of citrate as a physiological modulator of mammalian acetyl-CoA carboxylases (ACCs) has been well studied; however, the mechanism has not been clearly defined. In the current study, we found that citrate activated recombinant human ACC2 by more than approximately 1000-fold, but activated recombinant human ACC1 only by approximately 4-fold. The data fit best to a model which accounts for cooperative binding of two citrate molecules. Citrate activates ACCs at lower concentrations and inhibits at higher concentrations with apparent K(d) values of 0.8+/-0.3 and 3.4+/-0.6 mM, and apparent K(i) values of 20+/-8 and 38 +/-8 mM for ACC1 and ACC2, respectively. In the absence of added citrate, both ACC1 and ACC2 were inactivated by avidin rapidly and completely. Addition of 10 mM citrate protected ACC2 from avidin inactivation; however, protection by citrate was less pronounced for ACC1. In response to citrate treatment, different aggregation patterns for the two isoforms were also observed by dynamic light scattering. Although formation of aggregates by both isoforms was sensitive to citrate, with Mg2+ and Mg-citrate addition only formation of the ACC2 aggregates showed a dependence on citrate concentration. Mass spectrometry data indicated phosphorylation of Ser79 of ACC1 (a serine known to regulate activity), and the corresponding Ser221 of ACC2. Taken together, these data suggest that recombinant human ACC1 and ACC2 are differentially activated by citrate, most likely through conformational changes leading to aggregation, with ACC2 being more sensitive to this activator.

    Archives of biochemistry and biophysics 2008;475;1;72-9

  • Fine expression profiling of full-length transcripts using a size-unbiased cDNA library prepared with the vector-capping method.

    Oshikawa M, Sugai Y, Usami R, Ohtoko K, Toyama S and Kato S

    Department of Rehabilitation Engineering, Research Institute, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan.

    Recently, we have developed a vector-capping method for constructing a full-length cDNA library. In the present study, we performed in-depth analysis of the vector-capped cDNA library prepared from a single type of cell. As a result of single-pass sequencing analysis of 24,000 clones randomly isolated from the unamplified library, we identified 19,951 full-length cDNA clones whose intactness was confirmed by the presence of an additional G at their 5' end. The full-length cDNA content was >95%. Mapping these sequences to the human genome, we identified 4,513 transcriptional units that include 36 antisense transcripts against known genes. Comparison of the frequencies of abundant clones showed that the expression profiles of different libraries, including the distribution of transcriptional start sites (TSSs), were reproducible. The analysis of long-sized cDNAs showed that this library contained many cDNAs with a long-sized insert up to 11,199 bp of golgin B, including multiple slicing variants for filamin A and filamin B. These results suggest that the size-unbiased full-length cDNA library constructed using the vector-capping method will be an ideal resource for fine expression profiling of transcriptional variants with alternative TSSs and alternative splicing.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2008;15;3;123-36

  • Structural evidence for direct interactions between the BRCT domains of human BRCA1 and a phospho-peptide from human ACC1.

    Shen Y and Tong L

    Department of Biological Sciences, Columbia University, New York City, New York 10027, USA.

    The tandem BRCA1 C-terminal (BRCT) domains are phospho-serine/threonine recognition modules essential for the function of BRCA1. Recent studies suggest that acetyl-CoA carboxylase 1 (ACC1), an enzyme with crucial roles in de novo fatty acid biosynthesis and lipogenesis and essential for cancer cell survival, may be a novel binding partner for BRCA1, through interactions with its BRCT domains. We report here the crystal structure at 3.2 A resolution of human BRCA1 BRCT domains in complex with a phospho-peptide from human ACC1 (p-ACC1 peptide, with the sequence 1258-DSPPQ-pS-PTFPEAGH-1271), which provides molecular evidence for direct interactions between BRCA1 and ACC1. The p-ACC1 peptide is bound in an extended conformation, located in a groove between the tandem BRCT domains. There are recognizable and significant structural differences to the binding modes of two other phospho-peptides to these domains, from BACH1 and CtIP, even though they share a conserved pSer-Pro-(Thr/Val)-Phe motif. Our studies establish a framework for understanding the regulation of lipid biosynthesis by BRCA1 through its inhibition of ACC1 activity, which could be a novel tumor suppressor function of BRCA1.

    Funded by: NIDDK NIH HHS: DK067238, R01 DK067238, R01 DK067238-04

    Biochemistry 2008;47;21;5767-73

  • Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells.

    Ma J, Yan R, Zu X, Cheng JM, Rao K, Liao DF and Cao D

    Department of Medical Microbiology, Immunology, and Cell Biology, SimmonsCooper Cancer InstituteSouthern Illinois University School of Medicine, Springfield, Illinois 62702.

    Recent studies have demonstrated that aldo-keto reductase family 1 B10 (AKR1B10), a novel protein overexpressed in human hepatocellular carcinoma and non-small cell lung carcinoma, may facilitate cancer cell growth by detoxifying intracellular reactive carbonyls. This study presents a novel function of AKR1B10 in tumorigenic mammary epithelial cells (RAO-3), regulating fatty acid synthesis. In RAO-3 cells, Sephacryl-S 300 gel filtration and DEAE-Sepharose ion exchange chromatography demonstrated that AKR1B10 exists in two distinct forms, monomers (approximately 40 kDa) bound to DEAE-Sepharose column and protein complexes (approximately 300 kDa) remaining in flow-through. Co-immunoprecipitation with AKR1B10 antibody and protein mass spectrometry analysis identified that AKR1B10 associates with acetyl-CoA carboxylase-alpha (ACCA), a rate-limiting enzyme of de novo fatty acid synthesis. This association between AKR1B10 and ACCA proteins was further confirmed by co-immunoprecipitation with ACCA antibody and pulldown assays with recombinant AKR1B10 protein. Intracellular fluorescent studies showed that AKR1B10 and ACCA proteins co-localize in the cytoplasm of RAO-3 cells. More interestingly, small interfering RNA-mediated AKR1B10 knock down increased ACCA degradation through ubiquitination-proteasome pathway and resulted in >50% decrease of fatty acid synthesis in RAO-3 cells. These data suggest that AKR1B10 is a novel regulator of the biosynthesis of fatty acid, an essential component of the cell membrane, in breast cancer cells.

    Funded by: NCI NIH HHS: CA122327

    The Journal of biological chemistry 2008;283;6;3418-3423

  • Exploring genetic variations that may be associated with the direct effects of some antipsychotics on lipid levels.

    de Leon J, Correa JC, Ruaño G, Windemuth A, Arranz MJ and Diaz FJ

    University of Kentucky Mental Health Research Center at Eastern State Hospital, College of Medicine, Lexington, Kentucky 40508, United States. jdeleon@uky.edu

    The goal of this study was to select some genes that may serve as good candidates for future studies of the direct effects (not explained by obesity) of some antipsychotics on hyperlipidemia. A search for single-nucleotide polymorphisms (SNPs) that may be associated with these direct effects was conducted. From a published cross-sectional sample, 357 patients on antipsychotics were genotyped using a DNA microarray with 384 SNPs. A total of 165 patients were taking olanzapine, quetiapine or chlorpromazine which may directly cause hypertriglyceridemia or hypercholesterolemia. Another 192 patients taking other antipsychotics were controls. A two-stage statistical analysis that included loglinear and logistic models was developed to select SNPs blindly. In a third stage, physiological knowledge was used to select promising SNPs. Known physiological mechanisms were supported for 3 associations found in patients taking olanzapine, quetiapine or chlorpromazine [acetyl-coenzyme A carboxylase alpha SNP (rs4072032) in the hypertriglyceridemia model, and for the neuropeptide Y (rs1468271) and ACCbeta, (rs2241220) in the hypercholesterolemia model]. These genes may be promising candidates for studies of the direct effects of some antipsychotics on hyperlipidemia.

    Schizophrenia research 2008;98;1-3;40-6

  • Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells.

    Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, Park BW and Kim KS

    Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Science, Institute of Genetic Science, Center for Chronic Metabolic Disease Research, Seoul, Korea.

    Expression of the HER2 oncogene is increased in approximately 30% of human breast carcinomas and is closely correlated with the expression of fatty acid synthase (FASN). In the present study, we determined the mechanism by which FASN and acetyl-CoA carboxylase alpha (ACCalpha) could be induced by HER2 overexpression. SK-BR-3 and BT-474 cells, breast cancer cells that overexpress HER2, expressed higher levels of FASN and ACCalpha compared with MCF-7 and MDA-MB-231 breast cancer cells in which HER2 expression is low. The induction of FASN and ACCalpha in BT474 cells were not mediated by the activation of SREBP-1. Exogenous HER2 expression in MDA-MB-231 cells induced the expression of FASN and ACCalpha, and the HER2-mediated increase in ACCalpha and FASN was inhibited by both LY294002, a phosphatidylinositol 3-kinase inhibitor, and rapamycin, a mammalian target of rapamycin (mTOR) inhibitor. In addition, the activation of mTOR by the overexpression of RHEB in MDA-MB-231 cells increased the synthetic rates of both FASN and ACCalpha. On the other hand, FASN and ACCalpha were reduced in BT-474 cells by a blockade of the mTOR signaling pathway. These changes observed in their protein levels were not accompanied by changes in their mRNA levels. The 5'- and 3'-untranslated regions of both FASN and ACCalpha mRNAs were involved in selective translational induction that was mediated by mTOR signal transduction. These results strongly suggest that the major mechanism of HER2-mediated induction of FASN and ACCalpha in the breast cancer cells used in this study is translational regulation primarily through the mTOR signaling pathway.

    The Journal of biological chemistry 2007;282;36;26122-31

  • Specific pattern of LKB1 and phospho-acetyl-CoA carboxylase protein immunostaining in human normal tissues and lung carcinomas.

    Conde E, Suarez-Gauthier A, García-García E, Lopez-Rios F, Lopez-Encuentra A, García-Lujan R, Morente M, Sanchez-Verde L and Sanchez-Cespedes M

    Lung Cancer Group, Pathology Programme, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain.

    The LKB1 tumor suppressor gene codes for a serine/threonine protein kinase, and among its substrates is the adenosine monophosphate-dependent protein kinase, a sensor of intracellular energy levels. LKB1 is genetically inactivated in several types of tumors, especially lung adenocarcinomas. Here we used immunohistochemistry to evaluate the levels of LKB1 and the phosphorylated form of the acetyl-CoA carboxylase (ACC) protein in a variety of human adult normal tissues and in 159 lung carcinomas. The enzyme ACC becomes inactive upon phosphorylation by adenosine monophosphate-dependent protein kinase. Our analysis in normal tissues revealed strong LKB1 immunostaining in most epithelia, in the seminiferous tubules of the testis, in myocytes from skeletal muscle, and in glia cells. In contrast to the cytosolic location of LKB1 found in most tissues, glia cells carried mainly nuclear LKB1. Some epithelial cells showed apical accumulation of LKB1, supporting its role in cell polarity. Regarding phospho-ACC (p-ACC), strong immunostaining was observed in myocytes from the skeletal muscle and heart, and in Leydig cells of the testis. In lung tumors, LKB1 immunostaining was absent, moderate, and high in 20%, 61%, and 19% of the tumors, respectively, whereas p-ACC immunostaining was found to be absent/low, moderate, and high in 35%, 34%, and 31% of the tumors, respectively. High levels of LKB1 and p-ACC immunostaining predominated in lung adenocarcinomas compared with squamous cell carcinomas. Finally, high p-ACC was an independent marker for prediction of better survival in lung adenocarcinoma patients. Median overall survival was longer in patients with p-ACC-positive than those with p-ACC-negative tumors (96 versus 44 months, P = .04). In conclusion, our observations provide complete information about the pattern and levels of LKB1 and p-ACC immunostaining in normal tissues and in lung tumors, and highlight the special relevance of abnormalities of the LKB1 pathway in lung adenocarcinoma.

    Human pathology 2007;38;9;1351-60

  • Haplotype-based analysis of common variation in the acetyl-coA carboxylase alpha gene and breast cancer risk: a case-control study nested within the European Prospective Investigation into Cancer and Nutrition.

    Sinilnikova OM, McKay JD, Tavtigian SV, Canzian F, DeSilva D, Biessy C, Monnier S, Dossus L, Boillot C, Gioia L, Hughes DJ, Jensen MK, Overvad K, Tjonneland A, Olsen A, Clavel-Chapelon F, Chajès V, Joulin V, Linseisen J, Chang-Claude J, Boeing H, Dahm S, Trichopoulou A, Trichopoulos D, Koliva M, Khaw KT, Bingham S, Allen NE, Key T, Palli D, Panico S, Berrino F, Tumino R, Vineis P, Bueno-de-Mesquita HB, Peeters PH, van Gils CH, Lund E, Pera G, Quirós JR, Dorronsoro M, Martínez García C, Tormo MJ, Ardanaz E, Hallmans G, Lenner P, Berglund G, Manjer J, Riboli E, Lenoir GM and Kaaks R

    IARC, Lyon, France.

    A key fatty acid synthesis enzyme, acetyl-CoA carboxylase alpha (ACC-alpha), has been shown to be highly expressed in human breast cancer and other tumor types and also to specifically interact with the protein coded by one of two major breast cancer susceptibility genes BRCA1. We used a comprehensive haplotype analysis to examine the contribution of the ACC-alpha common genetic variation (allele frequency >5%) to breast cancer in a case-control study (1,588 cases/2,600 controls) nested within the European Prospective Investigation into Cancer and Nutrition. We identified 21 haplotype-tagging polymorphisms efficiently capturing common variation within 325 kb of ACC-alpha and surrounding sequences using genotype data from the HapMap project and our resequencing data. We found an effect on overall risk of breast cancer in homozygous carriers of one common haplotype [odds ratio (OR), 1.74; 95% confidence interval (95% CI), 1.03-2.94]. When the data were subdivided by menopausal status, we found statistical evidence of heterogeneity for two other common haplotypes (P value for heterogeneity = 0.016 and 0.045). In premenopausal women, the carriers of these haplotypes, compared with noncarriers, had an altered risk of breast cancer (OR, 0.70; 95% CI, 0.53-0.92 and OR, 1.35; 95% CI, 1.04-1.76). These findings were not significant after adjustment for multiple testing and therefore should be considered as preliminary and evaluated in larger independent studies. However, they suggest a possible role of the ACC-alpha common sequence variants in susceptibility to breast cancer and encourage studies of other genes involved in fatty acid synthesis.

    Funded by: Medical Research Council: G0401527

    Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2007;16;3;409-15

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • ACCA phosphopeptide recognition by the BRCT repeats of BRCA1.

    Ray H, Moreau K, Dizin E, Callebaut I and Venezia ND

    Laboratoire de Génétique Moléculaire, Signalisation et Cancer, CNRS UMR 5201, Faculté de Médecine Rockefeller, 8 Avenue Rockefeller, 69373 Lyon cedex 08, France.

    The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.

    Journal of molecular biology 2006;359;4;973-82

  • A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration.

    Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M and Zoghbi HY

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

    Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins involved in PC degeneration, we developed an interaction network for 54 proteins involved in 23 inherited ataxias and expanded the network by incorporating literature-curated and evolutionarily conserved interactions. We identified 770 mostly novel protein-protein interactions using a stringent yeast two-hybrid screen; of 75 pairs tested, 83% of the interactions were verified in mammalian cells. Many ataxia-causing proteins share interacting partners, a subset of which have been found to modify neurodegeneration in animal models. This interactome thus provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders and for identifying candidate genes for inherited ataxias.

    Funded by: NICHD NIH HHS: HD24064; NINDS NIH HHS: NS27699

    Cell 2006;125;4;801-14

  • BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase.

    Moreau K, Dizin E, Ray H, Luquain C, Lefai E, Foufelle F, Billaud M, Lenoir GM and Venezia ND

    CNRS UMR 5201, Laboratoire de Génétique Moléculaire, Signalisation et Cancer, Faculté deMédecine Rockefeller, 69373 Lyon cedex 08, France.

    Germ line alterations in BRCA1 (breast cancer susceptibility gene 1) are associated with an increased susceptibility to breast and ovarian cancer. BRCA1 acts as a scaffold protein implicated in multiple cellular functions, such as transcription, DNA repair, and ubiquitination. However, the molecular mechanisms responsible for tumorigenesis are not yet fully understood. We have recently demonstrated that BRCA1 interacts in vivo with acetyl coenzyme A carboxylase alpha (ACCA) through its tandem of BRCA1 C terminus (BRCT) domains. To understand the biological function of the BRCA1.ACCA complex, we sought to determine whether BRCA1 is a regulator of lipogenesis through its interaction with ACCA. We showed here that RNA inhibition-mediated down-regulation of BRCA1 expression induced a marked increase in the fatty acid synthesis. We then delineated the biochemical characteristics of the complex and found that BRCA1 interacts solely with the phosphorylated and inactive form of ACCA (P-ACCA). Finally, we demonstrated that BRCA1 affects lipid synthesis by preventing P-ACCA dephosphorylation. These results suggest that BRCA1 affects lipogenesis through binding to P-ACCA, providing a new mechanism by which BRCA1 may exert a tumor suppressor function.

    The Journal of biological chemistry 2006;281;6;3172-81

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • Asymmetric expression of transcripts derived from the shared promoter between the divergently oriented ACACA and TADA2L genes.

    Travers MT, Cambot M, Kennedy HT, Lenoir GM, Barber MC and Joulin V

    Hannah Research Institute, Ayr KA6 5HL, UK.

    The mammalian gene (ACACA) encoding acetyl-CoA carboxylase-alpha, a key regulatory enzyme of fatty acid synthesis, is transcribed from multiple promoters. We have delineated the 5' boundary of ACACA in four species (human, mouse, rat, and ovine). The 5' end of ACACA is located within a 600- to 700-bp CpG island encompassing a bidirectional promoter shared with the divergently oriented TADA2L, which encodes a component of chromatin-modifying complexes. In mouse and rat, this promoter, now referred to as Acaca PI, is located 43 kb upstream of the previously known regulatory regions. The shared promoter coregulates transcripts for TADA2L and ACACA in an asymmetric fashion in human and mouse tissues. A higher concentration of RNA polymerase II (Pol II) within the intergenic region in brain compared to liver of mouse reflects the greater abundance of the two transcripts in brain. The concentration of Pol II tracking downstream, which is lower than at the promoter, is not significantly different in either gene in the two tissues and does not reflect the 10- and >200-fold greater abundance of Tada2l and Acaca PI transcripts, respectively, in brain. Thus, regulation of clearance of Pol II from the promoter and the rate of elongation may therefore be determinants of the asymmetric expression of these transcripts.

    Genomics 2005;85;1;71-84

  • Acetyl-CoA carboxylase alpha gene and breast cancer susceptibility.

    Sinilnikova OM, Ginolhac SM, Magnard C, Léoné M, Anczukow O, Hughes D, Moreau K, Thompson D, Coutanson C, Hall J, Romestaing P, Gérard JP, Bonadona V, Lasset C, Goldgar DE, Joulin V, Venezia ND and Lenoir GM

    International Agency for Research on Cancer, 150, cours A. Thomas, 69372 Lyon, France. sinilnikova@iarc.fr

    The identification of an interaction between BRCA1 and acetyl-CoA carboxylase alpha (ACCalpha), a key enzyme in lipid synthesis, led us to investigate the role of ACCalpha in breast cancer development, where it might contribute to the energy-sensing mechanisms of malignant transformation. In order to investigate if certain ACCalpha alleles may be high-risk breast cancer susceptibility alleles, 37 extended breast and breast/ovarian cancer families negative for BRCA1 and BRCA2 mutations were exhaustively screened for sequence variations in the entire coding sequence, intron-exon junctions, 5'UTR, 3'UTR (untranslated regions) and the promoter regions of the ACCalpha gene. Two possibly disease-associated ACCalpha variants were each identified in a single family and were not present in 137 controls. Multiple polymorphisms were detected in breast cancer families, including 12 single nucleotide polymorphisms where the frequency of the rare allele estimated in controls was >0.10. The observed lack of variation in the ACCalpha coding region along with the presence of extended areas of linkage disequilibrium and low haplotype diversity indicates an overall high preservation of this gene. The prevalence of the ACCalpha haplotypes composed of common polymorphisms was determined in 453 breast cancer cases and 469 female controls. One haplotype was found to be associated with a substantial and highly significant increase in breast cancer risk (odds ratio = 3.10, 95% confidence interval 1.87-5.14, P < 0.0001), whereas three other haplotypes were found to have a protective effect. Our results indicate that mutations in the ACCalpha gene are unlikely to be a major cause of high-risk breast cancer susceptibility; however, certain common ACCalpha alleles may influence breast cancer risk. This study provides the first insight into the involvement of the ACCalpha gene in breast cancer predisposition and calls for further, large-scale studies that will be needed to understand the role of ACCalpha in tumour susceptibility and development.

    Carcinogenesis 2004;25;12;2417-24

  • Large-scale characterization of HeLa cell nuclear phosphoproteins.

    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC and Gygi SP

    Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

    Determining the site of a regulatory phosphorylation event is often essential for elucidating specific kinase-substrate relationships, providing a handle for understanding essential signaling pathways and ultimately allowing insights into numerous disease pathologies. Despite intense research efforts to elucidate mechanisms of protein phosphorylation regulation, efficient, large-scale identification and characterization of phosphorylation sites remains an unsolved problem. In this report we describe an application of existing technology for the isolation and identification of phosphorylation sites. By using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate. From 967 proteins, 2,002 phosphorylation sites were determined by tandem MS. This unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.

    Funded by: NHGRI NIH HHS: HG00041, K22 HG000041, T32 HG000041; NIGMS NIH HHS: GM67945, GMS6203, R01 GM056203, R01 GM067945

    Proceedings of the National Academy of Sciences of the United States of America 2004;101;33;12130-5

  • Characterisation of an N-terminal variant of acetyl-CoA carboxylase-alpha: expression in human tissues and evolutionary aspects.

    Travers MT, Vallance AJ, Clegg RA, Thomson R, Price NT and Barber MC

    Cell Biochemistry Group, Hannah Research Institute, Hannah Research Park, Ayr, Scotland KA6 5HL, UK.

    mRNA encoding a variant acetyl-CoA carboxylase (ACC)-alpha isozyme, transcribed from a downstream promoter, PIII, was detected in human tissues. Such exon 5A-containing transcripts (E5A-mRNA) encode ACC-alpha with a distinct N-terminus, with 15/17 residues identical to those encoded by the ovine mRNA. In the current study we used antisera directed against the E5A N-terminus to verify that ovine E5A translates are present in tissues consistent with the distribution of E5A-mRNA. The presence of E5A alters the context of adjacent regulatory phosphorylation sites in E6, which may indicate altered regulation of activity for this isozyme. Sequences with high identity to the proximal promoter of PIII and E5A are present in the mouse and rat ACC-alpha genes, however, the coding region of E5A is not conserved, and E5A transcripts are not detected in tissues. Thus E5A must have been present in a common ancestor of rodents, primates, and ruminants, and has become nonfunctional in the former. A minor human PIII-derived mRNA containing an additional 111-bp sequence encoded by a downstream exon, E5B, was also detected. E5B encodes an in-frame stop-codon such that the E5A open-reading frame is terminated, however, ACC-alpha translation may be re-initiated from a downstream AUG in E6, potentially generating an isozyme lacking the N-terminal phosphorylation sites. Transcription of human ACC-alpha from at least three promoters and the potential to generate ACC-alpha isozymes with differential susceptibilities to phosphorylation indicate that the regulation of fatty acid synthesis in human tissues is likely to be complex.

    Biochimica et biophysica acta 2003;1634;3;97-106

  • Human acetyl-CoA carboxylase 1 gene: presence of three promoters and heterogeneity at the 5'-untranslated mRNA region.

    Mao J, Chirala SS and Wakil SJ

    Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030.

    Acetyl-CoA carboxylase 1 (ACC1) catalyzes the formation of malonyl-CoA, the C2 donor for de novo synthesis of long-chain fatty acids. We have identified 64 exons, including 7 alternatively spliced minor exons (1A, 1B, 1C, 3, 5A', 5A, and 5B) in human ACC1 gene ( approximately 330 kb). The gene is regulated by three promoters (PI, PII, and PIII), which are located upstream of exons 1, 2, and 5A, respectively. PI is a constitutive promoter and has no homology with the PI sequences of other mammalian ACC1. PII is regulated by various hormones. PIII is expressed in a tissue-specific manner. The presence of several alternatively spliced exons does not alter the translation of the 265-kDa ACC1 protein starting from an ATG present in exon 5. Translation of PIII transcripts from exon 5A generates a 259-kDa isoform in which the N-terminal 75 aa of 265-kDa ACC1 are replaced with a new sequence of 17 aa. Interestingly, the inclusion of exon 5B between 5A and 6 in PIII transcripts would yield a third 257-kDa isoform, which is translated from an ATG in exon 6. However, the presence of exon 5B in PI and PII transcripts leads to an in-frame stop codon that results in an ACC1-related 77-aa peptide. The presence of alternatively spliced exons and three isoforms of ACC1 could contribute to overall ACC1 activity either by influencing the mRNA stability and translational efficiency or by increasing the stability and specific activity of the ACC1 protein, respectively.

    Funded by: NIGMS NIH HHS: GM-63115, R01 GM063115

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;13;7515-20

  • BRCA1 interacts with acetyl-CoA carboxylase through its tandem of BRCT domains.

    Magnard C, Bachelier R, Vincent A, Jaquinod M, Kieffer S, Lenoir GM and Venezia ND

    Laboratoire de Génétique, CNRS UMR 5641, Université Claude Bernard Lyon I, Faculté de Médecine Rockefeller, 8 Avenue Rockefeller, 69373 Lyon cedex 08, France.

    Germ-line alterations in BRCA1 are associated with an increased susceptibility to breast and ovarian cancer. BRCA1 is a 220-kDa protein that contains a tandem of two BRCA1 C-Terminal (BRCT) domains. Among missense and nonsense BRCA1 mutations responsible for family breast cancer, some are located into the BRCT tandem of BRCA1 coding sequence. In an attempt to understand how BRCT is critical for BRCA1 function, we search for partners of this BRCT tandem of BRCA1. Using a glutathione-S-transferase (GST) pull-down assay with murine cells, we isolated only one major BRCA1-interacting protein, further identified as Acetyl Coenzyme A (CoA) Carboxylase alpha (ACCA). We showed that this interaction is conserved through murine and human species. We also delineated the minimum interacting region as being the whole tandem of BRCT domains. We demonstrated that BRCA1 interacts in vitro and in vivo with ACCA. This interaction is completely abolished by five distinct germline BRCA1 deleterious mutations affecting the BRCT tandem of BRCA1. Interestingly, ACCA originally known as a rate-limiting enzyme for fatty acids biosynthesis, has been recently shown to be over-expressed in breast cancers and considered as a potential target for anti-neoplastic therapy. Furthermore, our observation is making a bridge between the genetic factors involved in susceptibility to breast and ovarian cancers, and environmental factors such as nutrition considered as key elements in the etiology of those cancers.

    Oncogene 2002;21;44;6729-39

  • AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation.

    Chen ZP, McConell GK, Michell BJ, Snow RJ, Canny BJ and Kemp BE

    St. Vincent's Institute of Medical Research, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia.

    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing protein kinase responsible for coordinating metabolism and energy demand. In rodents, exercise accelerates fatty acid metabolism, enhances glucose uptake, and stimulates nitric oxide (NO) production in skeletal muscle. AMPK phosphorylates and inhibits acetyl-coenzyme A (CoA) carboxylase (ACC) and enhances GLUT-4 translocation. It has been reported that human skeletal muscle malonyl-CoA levels do not change in response to exercise, suggesting that other mechanisms besides inhibition of ACC may be operating to accelerate fatty acid oxidation. Here, we show that a 30-s bicycle sprint exercise increases the activity of the human skeletal muscle AMPK-alpha1 and -alpha2 isoforms approximately two- to threefold and the phosphorylation of ACC at Ser(79) (AMPK phosphorylation site) approximately 8.5-fold. Under these conditions, there is also an approximately 5.5-fold increase in phosphorylation of neuronal NO synthase-mu (nNOSmu;) at Ser(1451). These observations support the concept that inhibition of ACC is an important component in stimulating fatty acid oxidation in response to exercise and that there is coordinated regulation of nNOSmu to protect the muscle from ischemia/metabolic stress.

    American journal of physiology. Endocrinology and metabolism 2000;279;5;E1202-6

  • Shotgun sequencing of the human transcriptome with ORF expressed sequence tags.

    Dias Neto E, Correa RG, Verjovski-Almeida S, Briones MR, Nagai MA, da Silva W, Zago MA, Bordin S, Costa FF, Goldman GH, Carvalho AF, Matsukuma A, Baia GS, Simpson DH, Brunstein A, de Oliveira PS, Bucher P, Jongeneel CV, O'Hare MJ, Soares F, Brentani RR, Reis LF, de Souza SJ and Simpson AJ

    Ludwig Institute for Cancer Research, São Paulo 01509-010, Brazil.

    Theoretical considerations predict that amplification of expressed gene transcripts by reverse transcription-PCR using arbitrarily chosen primers will result in the preferential amplification of the central portion of the transcript. Systematic, high-throughput sequencing of such products would result in an expressed sequence tag (EST) database consisting of central, generally coding regions of expressed genes. Such a database would add significant value to existing public EST databases, which consist mostly of sequences derived from the extremities of cDNAs, and facilitate the construction of contigs of transcript sequences. We tested our predictions, creating a database of 10,000 sequences from human breast tumors. The data confirmed the central distribution of the sequences, the significant normalization of the sequence population, the frequent extension of contigs composed of existing human ESTs, and the identification of a series of potentially important homologues of known genes. This approach should make a significant contribution to the early identification of important human genes, the deciphering of the draft human genome sequence currently being compiled, and the shotgun sequencing of the human transcriptome.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;7;3491-6

  • The subcellular localization of acetyl-CoA carboxylase 2.

    Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G and Wakil SJ

    Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. swakil@bcm.tmc.edu

    Animals, including humans, express two isoforms of acetyl-CoA carboxylase (EC ), ACC1 (M(r) = 265 kDa) and ACC2 (M(r) = 280 kDa). The predicted amino acid sequence of ACC2 contains an additional 136 aa relative to ACC1, 114 of which constitute the unique N-terminal sequence of ACC2. The hydropathic profiles of the two ACC isoforms generally are comparable, except for the unique N-terminal sequence in ACC2. The sequence of amino acid residues 1-20 of ACC2 is highly hydrophobic, suggesting that it is a leader sequence that targets ACC2 for insertion into membranes. The subcellular localization of ACC2 in mammalian cells was determined by performing immunofluorescence microscopic analysis using affinity-purified anti-ACC2-specific antibodies and transient expression of the green fluorescent protein fused to the C terminus of the N-terminal sequences of ACC1 and ACC2. These analyses demonstrated that ACC1 is a cytosolic protein and that ACC2 was associated with the mitochondria, a finding that was confirmed further by the immunocolocalization of a known human mitochondria-specific protein and the carnitine palmitoyltransferase 1. Based on analyses of the fusion proteins of ACC-green fluorescent protein, we concluded that the N-terminal sequences of ACC2 are responsible for mitochondrial targeting of ACC2. The association of ACC2 with the mitochondria is consistent with the hypothesis that ACC2 is involved in the regulation of mitochondrial fatty acid oxidation through the inhibition of carnitine palmitoyltransferase 1 by its product malonyl-CoA.

    Funded by: NCI NIH HHS: CA-41424, R01 CA041424; NHLBI NIH HHS: HL-52571, R01 HL052571; NIGMS NIH HHS: F32 GM019091, GM-19091

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;4;1444-9

  • Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms.

    Abu-Elheiga L, Jayakumar A, Baldini A, Chirala SS and Wakil SJ

    Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA.

    We have cloned and sequenced the cDNA coding for human HepG2 acetyl-CoA carboxylase (ACC; EC The sequence has an open reading frame of 7038 bp that encode 2346 amino acids (M(r), 264,737). The C-terminal 2.6-kb sequence is very different from that recently reported for human ACC (Ha, J., Daniel, S., Kong, I.-S., Park, C.-K., Tae, H.-J. & Kim, K.-H. [1994] Eur. J. Biochem. 219, 297-306). Northern blot analysis revealed that the ACC mRNA is approximately 10 kb in size and that its level varies among the tissues tested. Evidence is presented to show that the human ACC gene is 200-480 kbp in size and maps to chromosome 17q12. We also provide evidence for the presence of another ACC-like gene with similarly sized mRNA but tissue-specific expression different from that of the ACC gene reported herein. That this second ACC-like gene encodes the 280-kDa carboxylase is not ruled out.

    Funded by: NIGMS NIH HHS: GM-19091

    Proceedings of the National Academy of Sciences of the United States of America 1995;92;9;4011-5

  • Critical phosphorylation sites for acetyl-CoA carboxylase activity.

    Ha J, Daniel S, Broyles SS and Kim KH

    Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907.

    Acetyl-CoA carboxylase (ACC) is rapidly regulated by reversible phosphorylation; phosphorylation inactivates ACC, whereas dephosphorylation activates the enzyme. Among protein kinases only cAMP-dependent protein kinase and 5'-AMP-dependent protein kinase can inactivate ACC; cAMP-dependent protein kinase phosphorylates Ser-77 and -1200; 5'-AMP-dependent protein kinase phosphorylates Ser-79, -1200, and -1215. In this report, the construction and expression of ACC cDNA containing the entire coding region (7.2 kilobase pairs) is described. In order to identify the critical phosphorylation site(s) for each protein kinase, we introduced site-specific mutations at Ser-77, -79, -1200, and -1215 of ACC cDNA and a series of mutated ACCs containing various combinations of these four mutated sites was expressed. By examination of the various mutant ACCs, we provided evidence that the effect of cAMP-dependent protein kinase is entirely mediated by the phosphorylation of Ser-1200 and that Ser-79 is important for 5'-AMP-dependent protein kinase action in vitro.

    Funded by: NCI NIH HHS: CA 46882

    The Journal of biological chemistry 1994;269;35;22162-8

  • Isolation and characterization of a novel acetyl-CoA carboxylase kinase from rat liver.

    Mohamed AH, Huang WY, Huang W, Venkatachalam KV and Wakil SJ

    Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030.

    Acetyl-CoA carboxylase is regulated allosterically by citrate and covalently by a phosphorylation/dephosphorylation mechanism. We have isolated and purified from rat livers a novel kinase that phosphorylates and inactivates the carboxylase. This kinase is bound to the carboxylase and can be eluted in salt-rich solution. The native kinase exists as high molecular weight aggregates of a subunit that has a molecular weight of 40,000. The phosphorylation sites of the carboxylase were determined after tryptic and cyanogen bromide digestions of 32P-labeled carboxylase and separation of the peptides by various chromatographic procedures. Amino acid analyses of the phosphopeptides showed that the Ser77 and Ser1200 residues were the sites of phosphorylation. Treating the phosphorylated carboxylase with the Mn(2+)-dependent acetyl-CoA carboxylase phosphatase 2 removed the phosphate and reactivated the carboxylase. These results suggest that both this kinase and the acetyl-CoA carboxylase phosphatase 2 act at the same site(s) in the acetyl-CoA carboxylase molecule. Citrate dramatically inhibits the kinase-mediated phosphorylation of the carboxylase, suggesting that the allosteric modification and activation by citrate render the phosphorylation sites inaccessible to the kinase and therefore maintain high carboxylase activity. This observation indicates that there is a close interplay between the citrate effect on and phosphorylation of the carboxylase in regulating its activity.

    Funded by: NIGMS NIH HHS: GM-19091

    The Journal of biological chemistry 1994;269;9;6859-65

  • Cloning of human acetyl-CoA carboxylase cDNA.

    Ha J, Daniel S, Kong IS, Park CK, Tae HJ and Kim KH

    Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153.

    Acetyl-CoA carboxylase is the rate-limiting enzyme in the biogenesis of long-chain fatty acids. In order to understand the mechanisms that regulate human acetyl-CoA carboxylase at the gene level, and the relationship between its structure and function, cDNA clones for human acetyl-CoA carboxylase have been isolated and sequenced. Human acetyl-CoA-carboxylase cDNA contains 7020 nucleotides encoding a protein of 2340 amino acids with a calculated relative molecular mass of 264575. The human enzyme shows approximately 85% identity in nucleotide sequence with previously cloned rat acetyl-CoA carboxylase, and shows 90% identity in the amino acid sequence. Two human acetyl-CoA-carboxylase mRNA species, which differ in the 5' untranslated region with the same coding sequence, have been identified. The sequence analysis reveals that type I and type II acetyl-CoA-carboxylase mRNA contain 313- and 173-base-long 5' untranslated regions, respectively. The first 240 nucleotides in the 5' untranslated region of type I acetyl-CoA-carboxylase mRNA replace the first 100 nucleotides of the (G + C)-rich region of the 5' untranslated region of the type II mRNA. These two species of mRNAs are the only species of human ACC mRNA which have been detected compared to at least five species in rat tissues, and they are expressed in a tissue-specific manner.

    Funded by: NCI NIH HHS: CA46882

    European journal of biochemistry 1994;219;1-2;297-306

  • Analysis of sites phosphorylated on acetyl-CoA carboxylase in response to insulin in isolated adipocytes. Comparison with sites phosphorylated by casein kinase-2 and the calmodulin-dependent multiprotein kinase.

    Haystead TA, Campbell DG and Hardie DG

    Biochemistry Department, Dundee University, Scotland.

    We have examined the sites phosphorylated on acetyl-CoA carboxylase in response to insulin in isolated adipocytes. Two tryptic peptides derived from the enzyme become more radioactive after treatment of 32P-labelled cells with insulin. One of these (T4a) accounts for a large part of the total increase in phosphate observed after insulin treatment, and comigrates with the peptide containing the sites phosphorylated in vitro by casein kinase-2. The other may correspond to the 'I' site peptide originally described by Brownsey and Denton in 1982: labelling of this peptide is stimulated at least threefold by insulin treatment, but it is a minor phosphopeptide and, even after insulin treatment, accounts for only about 2.5% of the enzyme-bound phosphate (equivalent to less than 0.1 mol phosphate/mol 240-kDa subunit). Two other major tryptic phosphopeptides (T1 and T4b) labelled in adipocytes do not change significantly in response to insulin, and comigrate with peptides containing sites phosphorylated in vitro by cyclic-AMP-dependent protein kinase and calmodulin-dependent multiprotein kinase respectively. We have sequenced peptides T4a and T4b from acetyl-CoA carboxylase derived from control and insulin-treated adipocytes, and also after phosphorylation in vitro with casein kinase-2 and the calmodulin-dependent multiprotein kinase. The results show that T4a and T4b are forms of the same peptide containing phosphate groups on different serine residues: Phe-Ile-Ile-Gly-Ser4-Val-Ser5-Gln-Asp-Asn-Ser6-Glu-Asp -Glu-Ile-Ser-Asn-Leu-. Site 5 was phosphorylated by the calmodulin-dependent protein kinase and site 6 by casein kinase-2. Migration in the T4a position was exclusively associated with phosphorylation in site 6, irrespective of the presence of phosphate in sites 4 and 5. Sites 5 and 6 were partially phosphorylated in control adipocytes, and there were also small amounts of phosphate in site 4. On stimulation with insulin, phosphorylation appeared to occur primarily at site 6, thus accounting for the increase in 32P-labelling of T4a. We were unable to isolate sufficient quantities of the other insulin-sensitive peptide to determine its sequence. Our results are consistent with the idea that insulin activates either casein kinase-2, or a protein kinase which has the same specificity as casein kinase-2. The function of this modification is not clear, since phosphorylation by casein kinase-2 has no direct effect on acetyl-CoA carboxylase activity.

    European journal of biochemistry 1988;175;2;347-54

  • Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase.

    Munday MR, Campbell DG, Carling D and Hardie DG

    MRC Protein Phosphorylation Group, Biochemistry Department, University of Dundee, Tayside, Scotland.

    We have examined the sites phosphorylated on acetyl-CoA carboxylase by three protein kinases which have been shown to inactivate the enzyme, i.e. cyclic-AMP-dependent protein kinase, acetyl-CoA carboxylase kinase-2 (ACK2, purified from rat mammary gland) and the AMP-activated protein kinase (formerly called acetyl-CoA carboxylase kinase-3, purified from rat liver). Each protein kinase phosphorylates two out of three sites (termed 1-3) which have been established by amino acid sequencing. The two sites phosphorylated by each kinase can be recovered on separate peptides, TC1 and TC2, derived by combined digestion of the native enzyme by trypsin and chymotrypsin: TC1 = Ser-2Ser(P)-Met-3Ser(P)-Gly-Leu; TC2 = Arg-Met-1Ser(P)-Phe- Cyclic-AMP-dependent protein kinase phosphorylates sites 1 and 2 exclusively, whereas the AMP-activated protein kinase phosphorylates sites 1 and 3, plus at least one other minor site. ACK2 phosphorylates site 1 and, more slowly, an unidentified site(s) within TC1. We have also established the structures of the single major phosphopeptides (T1 and C1 respectively) which are recovered by HPLC after acetyl-CoA carboxylase phosphorylated by cyclic-AMP-dependent protein kinase is digested with trypsin or chymotrypsin alone. T1 is related to TC1, and has the structure: Ser-Ser(P)-Met-Ser-Gly-Leu-His-Leu-Val-Lys. C1 is identical with TC2. We have carried out studies on the correlation of the activity of acetyl-CoA carboxylase with the occupancy of sites 1, 2 and 3 during phosphorylation by each of the three protein kinases. The results suggest that phosphorylation of site 3 is primarily responsible for the large decrease in Vmax produced by the AMP-activated protein kinase, while phosphorylation of site 1 may be primarily responsible for the increase in A0.5 for citrate and more modest depression of Vmax produced by cyclic-AMP-dependent protein kinase and ACK2. Our results emphasize that amino acid sequence information is essential in the unequivocal interpretation of data from phosphopeptide mapping experiments and allow a more complete interpretation of previous data on phosphorylation of acetyl-CoA carboxylase in intact cells. They also open the way to experiments which could establish the physiological roles of these protein kinases in the control of fatty acid synthesis.

    European journal of biochemistry 1988;175;2;331-8

  • Localization of the gene for acetyl-CoA carboxylase to human chromosome 17.

    Milatovich A, Plattner R, Heerema NA, Palmer CG, Lopez-Casillas F and Kim KH

    Department of Medical Genetics, Indiana University School of Medicine, Indianapolis 46223.

    In situ hybridization was used to localize a cDNA probe of the acetyl-CoA carboxylase gene to human metaphase chromosomes. A significant proportion of the grains were situated over chromosome band 17q21. In situ hybridization to a t(6;17)(p25;q21.33) confirmed the location of the gene proximal to 17q21.33.

    Cytogenetics and cell genetics 1988;48;3;190-2

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.