G2Cdb::Gene report

Gene id
Gene symbol
Sdcbp (MGI)
Mus musculus
syndecan binding protein
G00006689 (Homo sapiens)

Databases (3)

ENSMUSG00000028249 (Ensembl mouse gene)
53378 (Entrez Gene)
Marker Symbol
MGI:1337026 (MGI)

Synonyms (5)

  • MDA-9
  • Sycl
  • syndecan interacting protein
  • syntenin
  • syntenin-1

Literature (19)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation.

    Valerius MT and McMahon AP

    Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.

    The mature nephron forms from a simple epithelial vesicle into an elaborate structure with distinct regions of specialized physiological function. The molecular components driving the process of nephron development are not well understood. To identify genes that may be informative in this process we conducted a transcriptional profiling screen using Wnt4 mutant kidneys. In Wnt4-/- homozygous mice, condensates and pretubular aggregates are induced, however, epithelial renal vesicles fail to form and subsequent tubulogenesis is blocked. A transcriptional profile comparison between wildtype and Wnt4-/- mutant kidneys at E14.5 was performed using Affymetrix oligonucleotide microarrays to identify nephron-expressed genes. This approach identified 236 genes with expression levels >1.8-fold higher in wildtype versus mutant kidneys, amongst these were a number of known nephron component markers confirming the validity of the screen. These results were further detailed by wholemount in situ hybridization (WISH) of E15.5 urogenital systems (UGS). We annotated the spatial expression pattern of these genes into eight categories of expression. Genes expressed in renal vesicle and their derivatives, structures absent in the mutant, accounted for the largest number of the observed expression patterns. A number of additional genes in areas not directly overlapping the Wnt4 expression domain were also identified including the cap mesenchyme, the collecting duct, and the cortical interstitium. This study provides a useful compendium of molecular markers for the study of nephrogenesis.

    Funded by: NIDDK NIH HHS: DK054364, DK070181, F32 DK060319, F32 DK060319-01, F32DK060319, R01 DK054364, R01 DK054364-10, R37 DK054364, U01 DK070181, U01 DK070181-04

    Gene expression patterns : GEP 2008;8;5;297-306

  • Interaction of syntenin-1 and the NG2 proteoglycan in migratory oligodendrocyte precursor cells.

    Chatterjee N, Stegmüller J, Schätzle P, Karram K, Koroll M, Werner HB, Nave KA and Trotter J

    Molecular Cell Biology, Department of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany.

    Migration of oligodendrocyte precursors along axons is a necessary prerequisite for myelination, but little is known about underlying mechanisms. NG2 is a large membrane proteoglycan implicated in oligodendrocyte migration. Here we show that a PDZ domain protein termed syntenin-1 interacts with NG2 and that syntenin-1 is necessary for normal rates of migration. The association of syntenin-1 with NG2, identified in a yeast two-hybrid screen, was confirmed by colocalization of both proteins within processes of oligodendroglial precursor cells and by coimmunoprecipitation from cell extracts. Syntenin-1 also colocalizes with NG2 in "co-capping" assays, demonstrating a lateral association of both proteins in live oligodendrocytes. RNA interference-mediated down-regulation of syntenin-1 in glial cells results in a significant reduction of migration in vitro, as does the presence of polyclonal antibody against NG2. Thus syntenin plays a role in the migration of oligodendroglial precursors, and we suggest that NG2-syntenin-1 interactions contribute to this.

    The Journal of biological chemistry 2008;283;13;8310-7

  • BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.

    Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C, Norland SM, Rice DS, Dosooye N, Shakya S, Mehta P and Curran T

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States.

    Funded by: NINDS NIH HHS: 5R37NS036558, N01-NS-0-2331, R37 NS036558

    PLoS biology 2006;4;4;e86

  • The lymphocyte receptor CD6 interacts with syntenin-1, a scaffolding protein containing PDZ domains.

    Gimferrer I, Ibáñez A, Farnós M, Sarrias MR, Fenutría R, Roselló S, Zimmermann P, David G, Vives J, Serra-Pagès C and Lozano F

    Servei d'Immunologia, Hospital Clínic Universitari, Institut di Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.

    CD6 is a type I membrane glycoprotein expressed on thymocytes, mature T and B1a lymphocytes, and CNS cells. CD6 binds to activated leukocyte cell adhesion molecule (CD166), and is considered as a costimulatory molecule involved in lymphocyte activation and thymocyte development. Accordingly, CD6 partially associates with the TCR/CD3 complex and colocalizes with it at the center of the mature immunological synapse (IS) on T lymphocytes. However, the signaling pathway used by CD6 is still mostly unknown. The yeast two-hybrid system has allowed us the identification of syntenin-1 as an interacting protein with the cytoplasmic tail of CD6. Syntenin-1 is a PDZ (postsynaptic density protein-95, postsynaptic discs large, and zona occludens-1) domain-containing protein, which functions as an adaptor protein able to bind cytoskeletal proteins and signal transduction effectors. Mutational analyses showed that certain amino acids of the most C-terminal sequence of CD6 (-YDDISAA) and the two postsynaptic density protein-95, postsynaptic discs large, and zona occludens-1 domains of syntenin-1 are relevant to the interaction. Further confirmation of the CD6-syntenin-1 interaction was obtained from pull-down and co-immunoprecipitation assays in mammalian cells. Image analyses also showed that syntenin-1 accumulates at CD6 caps and at the IS. Therefore, we propose that syntenin-1 may function as a scaffolding protein coupling CD6 and most likely other lymphocyte receptors to cytoskeleton and/or signaling effectors during IS maturation.

    Journal of immunology (Baltimore, Md. : 1950) 2005;175;3;1406-14

  • Characterization of an exchangeable gene trap using pU-17 carrying a stop codon-beta geo cassette.

    Taniwaki T, Haruna K, Nakamura H, Sekimoto T, Oike Y, Imaizumi T, Saito F, Muta M, Soejima Y, Utoh A, Nakagata N, Araki M, Yamamura K and Araki K

    Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan.

    We have developed a new exchangeable gene trap vector, pU-17, carrying the intron-lox71-splicing acceptor (SA)-beta geo-loxP-pA-lox2272-pSP73-lox511. The SA contains three stop codons in-frame with the ATG of beta galactosidase/neomycin-resistance fusion gene (beta geo) that can function in promoter trapping. We found that the trap vector was highly selective for integrations in the introns adjacent to the exon containing the start codon. Furthermore, by using the Cre-mutant lox system, we successfully replaced the beta geo gene with the enhanced green fluorescent protein (EGFP) gene, established mouse lines with the replaced clones, removed the selection marker gene by mating with Flp-deleter mice, and confirmed that the replaced EGFP gene was expressed in the same pattern as the beta geo gene. Thus, using this pU-17 trap vector, we can initially carry out random mutagenesis, and then convert it to a gain-of-function mutation by replacing the beta geo gene with any gene of interest to be expressed under the control of the trapped promoter through Cre-mediated recombination.

    Development, growth & differentiation 2005;47;3;163-72

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Role of Unc51.1 and its binding partners in CNS axon outgrowth.

    Tomoda T, Kim JH, Zhan C and Hatten ME

    Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10021-6399, USA.

    Previous studies showed that the serine/threonine kinase Unc51.1 is one of the earliest genes in neuronal differentiation and is required for granule cell axon formation. To examine the mechanism of Unc51.1 regulation of axon extension, we have identified two direct binding partners. The first, SynGAP, a negative regulator of Ras, is expressed within axons and growth cones of developing granule cells. Overexpression of SynGAP blocks neurite outgrowth by a mechanism that involves Ras-like GTPase cascade. The second binding partner is a PDZ domain-containing scaffolding protein, Syntenin, that binds Rab5 GTPase, the activity of which is attenuated by SynGAP. Thus, our results demonstrate that the Unc51.1-containing protein complex governs axon formation via Ras-like GTPase signaling and through regulation of the Rab5-mediated endocytic pathways within developing axons.

    Funded by: NINDS NIH HHS: NS39991, R01 NS039991

    Genes & development 2004;18;5;541-58

  • Targeting a complex transcriptome: the construction of the mouse full-length cDNA encyclopedia.

    Carninci P, Waki K, Shiraki T, Konno H, Shibata K, Itoh M, Aizawa K, Arakawa T, Ishii Y, Sasaki D, Bono H, Kondo S, Sugahara Y, Saito R, Osato N, Fukuda S, Sato K, Watahiki A, Hirozane-Kishikawa T, Nakamura M, Shibata Y, Yasunishi A, Kikuchi N, Yoshiki A, Kusakabe M, Gustincich S, Beisel K, Pavan W, Aidinis V, Nakagawara A, Held WA, Iwata H, Kono T, Nakauchi H, Lyons P, Wells C, Hume DA, Fagiolini M, Hensch TK, Brinkmeier M, Camper S, Hirota J, Mombaerts P, Muramatsu M, Okazaki Y, Kawai J and Hayashizaki Y

    Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.

    We report the construction of the mouse full-length cDNA encyclopedia,the most extensive view of a complex transcriptome,on the basis of preparing and sequencing 246 libraries. Before cloning,cDNAs were enriched in full-length by Cap-Trapper,and in most cases,aggressively subtracted/normalized. We have produced 1,442,236 successful 3'-end sequences clustered into 171,144 groups, from which 60,770 clones were fully sequenced cDNAs annotated in the FANTOM-2 annotation. We have also produced 547,149 5' end reads,which clustered into 124,258 groups. Altogether, these cDNAs were further grouped in 70,000 transcriptional units (TU),which represent the best coverage of a transcriptome so far. By monitoring the extent of normalization/subtraction, we define the tentative equivalent coverage (TEC),which was estimated to be equivalent to >12,000,000 ESTs derived from standard libraries. High coverage explains discrepancies between the very large numbers of clusters (and TUs) of this project,which also include non-protein-coding RNAs,and the lower gene number estimation of genome annotations. Altogether,5'-end clusters identify regions that are potential promoters for 8637 known genes and 5'-end clusters suggest the presence of almost 63,000 transcriptional starting points. An estimate of the frequency of polyadenylation signals suggests that at least half of the singletons in the EST set represent real mRNAs. Clones accounting for about half of the predicted TUs await further sequencing. The continued high-discovery rate suggests that the task of transcriptome discovery is not yet complete.

    Genome research 2003;13;6B;1273-89

  • Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines.

    Koo TH, Lee JJ, Kim EM, Kim KW, Kim HD and Lee JH

    Anti-Cancer Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yuseong, Daejeon 305-600, Korea.

    Two human breast cancer cell lines of differing invasive and metastatic potential, MDA-MB-435 and MCF7, were examined using subtractive suppression hybridization in a search for any genes associated with metastasis. Of the 17 cDNAs identified as being differentially expressed genes, it was determined that syntenin was overexpressed in metastatic MDA-MB-435 cells. Expression analysis showed that the expression level of syntenin was well correlated with invasive and metastatic potential in various human breast and gastric cancer cell lines. Moreover, gastric tumor tissues exhibited a much higher syntenin mRNA expression than their normal counterparts. Syntenin-transfected MCF7 cells migrated more actively, and showed an increased invasion rate relative to vector-transfectants or parental MCF7 in vitro, without evidencing any effect on the adhesion to fibronectin, type I collagen and laminin. Similarly, the forced expression of syntenin to human gastric cancer cell line Az521 increased its migratory and invasive potential in vitro. Syntenin-expressing MCF7 cells were associated with the appearance of numerous cell surface extensions and with pseudopodia formation on collagen I, suggesting that syntenin may be involved in the signaling cascade to actin-reorganization. Mutation study suggested that PDZ2 domain of syntenin could be an essential role in its stimulatory effect on the cell migration. This is the first demonstration that syntenin, a PDZ motif-containing protein, can be overexpressed during the metastatic progression of human breast and gastric cancer cells and that it can function as a metastasis-inducing gene.

    Oncogene 2002;21;26;4080-8

  • Cytokine-specific transcriptional regulation through an IL-5Ralpha interacting protein.

    Geijsen N, Uings IJ, Pals C, Armstrong J, McKinnon M, Raaijmakers JA, Lammers JW, Koenderman L and Coffer PJ

    Department of Pulmonary Diseases, Heart Lung Center Utrecht, University Medical Center, G03.550, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.

    Cytokine receptors consist of multiple subunits, which are often shared between different receptors, resulting in the functional redundancy sometimes observed between cytokines. The interleukin 5 (IL-5) receptor consists of an IL-5-specific alpha-subunit (IL-5Ralpha) and a signal-transducing beta-subunit (betac) shared with the IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors. In this study, we sought to find a role for the cytoplasmic domain of IL-5Ralpha. We show that syntenin, a protein containing PSD-95/Discs large/zO-1 (PDZ) domains, associates with the cytoplasmic tail of the IL-5Ralpha. Syntenin was found to directly associate with the transcription factor Sox4. Association of syntenin with IL-5Ralpha was required for IL-5-mediated activation of Sox4. These studies identify a mechanism of transcriptional activation by cytokine-specific receptor subunits.

    Science (New York, N.Y.) 2001;293;5532;1136-8

  • The neural cell recognition molecule neurofascin interacts with syntenin-1 but not with syntenin-2, both of which reveal self-associating activity.

    Koroll M, Rathjen FG and Volkmer H

    Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, Berlin D-13092, Germany.

    Neurofascin belongs to the L1 subgroup of the immunoglobulin superfamily of cell adhesion molecules and is implicated in axonal growth and fasciculation. We used yeast two-hybrid screening to identify proteins that interact with neurofascin intracellularly and therefore might link it to trafficking, spatial targeting, or signaling pathways. Here, we demonstrate that rat syntenin-1, previously published as syntenin, mda-9, or TACIP18 in human, is a neurofascin-binding protein that exhibits a wide-spread tissue expression pattern with a relative maximum in brain. Syntenin-1 was found not to interact with other vertebrate members of the L1 subgroup such as L1 itself or NrCAM. We confirmed the specificity of the neurofascin-syntenin-1 interaction by ligand-overlay assay, surface plasmon resonance analysis, and colocalization of both proteins in heterologous cells. The COOH terminus of neurofascin was mapped to interact with the second PDZ domain of syntenin-1. Furthermore, we isolated syntenin-2 that may be expressed in two isoforms. Despite their high sequence similarity to syntenin-1, syntenin-2alpha, which interacts with neurexin I, and syntenin-2beta do not bind to neurofascin or several other transmembrane proteins that are binding partners of syntenin-1. Finally, we report that syntenin-1 and -2 both form homodimers and can interact with each other.

    The Journal of biological chemistry 2001;276;14;10646-54

  • Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments.

    Zimmermann P, Tomatis D, Rosas M, Grootjans J, Leenaerts I, Degeest G, Reekmans G, Coomans C and David G

    Laboratory for Glycobiology and Developmental Genetics, Center for Human Genetics, University of Leuven, Leuven, B-3000 Belgium.

    Syntenin is a PDZ protein that binds the cytoplasmic C-terminal FYA motif of the syndecans. Syntenin is widely expressed. In cell fractionation experiments, syntenin partitions between the cytosol and microsomes. Immunofluorescence microscopy localizes endogenous and epitope-tagged syntenin to cell adhesion sites, microfilaments, and the nucleus. Syntenin is composed of at least three domains. Both PDZ domains of syntenin are necessary to target reporter tags to the plasma membrane. The addition of a segment of 10 amino acids from the N-terminal domain of syntenin to these PDZ domains increases the localization of the tags to stress fibers and induces the formation of long, branching plasma membrane extensions. The addition of the complete N-terminal region, in contrast, reduces the localization of the tags to plasma membrane/adhesion sites and stress fibers, and reduces the morphotypical effects. Recombinant domains of syntenin with the highest plasma membrane localization display the lowest nuclear localization. Syndecan-1, E-cadherin, beta-catenin, and alpha-catenin colocalize with syntenin at cell-cell contacts in epithelial cells, and coimmunoprecipitate with syntenin from extracts of these cells. These results suggest a role for syntenin in the composition of adherens junctions and the regulation of plasma membrane dynamics, and imply a potential role for syntenin in nuclear processes.

    Molecular biology of the cell 2001;12;2;339-50

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • Exchangeable gene trap using the Cre/mutated lox system.

    Araki K, Imaizumi T, Sekimoto T, Yoshinobu K, Yoshimuta J, Akizuki M, Miura K, Araki M and Yamamura K

    Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Japan. yamamura@gpo.kumamoto-u.ac.jp

    The gene trap technique is a powerful approach for characterizing and mutating genes involved in mouse development. However, one shortcoming of gene trapping is the relative inability to induce subtle mutations. This problem can be overcome by introducing a knock-in system into the gene trap strategy. Here, we have constructed a new gene trap vector, pU-Hachi, employing the Cre-mutated lox system (Araki et al., 1997), in which a pair of mutant lox, lox71 and lox66, was used to promote targeted integrative reaction by Cre recombinase. The pU-Hachi carries splicing acceptor (SA)-lox71-internal ribosomal entry site (IRES)-beta-geo-pA-loxP-pA-pUC. By using this vector, we can carry out random insertional mutagenesis as the first step, and then we can replace the beta-geo gene with any gene of interest through Cre-mediated integration. We have isolated 109 trap clones electroporated with pU-Hachi, and analyzed their integration patterns by Southern blotting to select those carrying a single copy of the trap vector. By use of some of these clones, we have succeeded in exchanging the reporter gene at high efficiency, ranging between 20-80%. This integration system is also quite useful for plasmid rescue to recover flanking genomic sequences, because a plasmid vector sequence can be introduced even when the pUC sequence of the trap vector is lost through integration into the genome. Thus, this method, termed exchangeable gene trapping, has many advantages as the trapped clones can be utilized to express genes with any type of mutation.

    Cellular and molecular biology (Noisy-le-Grand, France) 1999;45;5;737-50

  • A role for a PDZ protein in the early secretory pathway for the targeting of proTGF-alpha to the cell surface.

    Fernández-Larrea J, Merlos-Suárez A, Ureña JM, Baselga J and Arribas J

    Laboratori de Recerca Oncològica, Hospital General Universitari Vall d'Hebron, Barcelona, Spain.

    In general, plasma membrane integral proteins, such as the membrane-anchored growth factor proTGF-alpha, are assumed to be transported to the cell surface via a nonregulated, constitutive pathway. proTGF-alpha C-terminal mutants are retained in an early secretory compartment. Here, using a two-hybrid screen, we identify two TACIPs (proTGF-alpha cytoplasmic domain-interacting proteins) that contain PDZ domains and do not interact with proTGF-alpha C-terminal mutants. The binding specificity of one of them, TACIP18 (previously identified and named Syntenin or mda-9), coincides with that of the component that possibly mediates the normal trafficking of proTGF-alpha. TACIP18 colocalizes and interacts specifically with immature, intracellular forms of proTGF-alpha. Therefore, it appears that the interaction of TACIP18 with proTGF-alpha in the early secretory pathway is necessary for the targeting of the latter to the cell surface.

    Molecular cell 1999;3;4;423-33

  • PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands.

    Torres R, Firestein BL, Dong H, Staudinger J, Olson EN, Huganir RL, Bredt DS, Gale NW and Yancopoulos GD

    Regeneron Pharmaceuticals, Tarrytown, New York 10591-6707, USA.

    Localizing cell surface receptors to specific subcellular positions can be critical for their proper functioning, as most notably demonstrated at neuronal synapses. PDZ proteins apparently play critical roles in such protein localizations. Receptor tyrosine kinases have not been previously shown to interact with PDZ proteins in vertebrates. We report that Eph receptors and their membrane-linked ligands all contain PDZ recognition motifs and can bind and be clustered by PDZ proteins. In addition, we find that Eph receptors and ligands colocalize with PDZ proteins at synapses. Thus, PDZ proteins may play critical roles in localizing vertebrate receptor tyrosine kinases and/or their ligands and may be particularly important for Eph function in guidance or patterning or at the synapse.

    Neuron 1998;21;6;1453-63

  • Syntenin, a PDZ protein that binds syndecan cytoplasmic domains.

    Grootjans JJ, Zimmermann P, Reekmans G, Smets A, Degeest G, Dürr J and David G

    Laboratory for Glycobiology and Developmental Genetics, Center for Human Genetics, University of Leuven, and Flanders Interuniversity Institute for Biotechnology, 3000 Leuven, Belgium.

    The syndecans are transmembrane proteoglycans that place structurally heterogeneous heparan sulfate chains at the cell surface and a highly conserved polypeptide in the cytoplasm. Their versatile heparan sulfate moieties support various processes of molecular recognition, signaling, and trafficking. Here we report the identification of a protein that binds to the cytoplasmic domains of the syndecans in yeast two-hybrid screens, surface plasmon resonance experiments, and ligand-overlay assays. This protein, syntenin, contains a tandem repeat of PDZ domains that reacts with the FYA C-terminal amino acid sequence of the syndecans. Recombinant enhanced green fluorescent protein (eGFP)-syntenin fusion proteins decorate the plasmamembrane and intracellular vesicles, where they colocalize and cosegregate with syndecans. Cells that overexpress eGFP-syntenin show numerous cell surface extensions, suggesting effects of syntenin on cytoskeleton-membrane organization. We propose that syntenin may function as an adaptor that couples syndecans to cytoskeletal proteins or cytosolic downstream signal-effectors.

    Proceedings of the National Academy of Sciences of the United States of America 1997;94;25;13683-8

Gene lists (2)

Gene List Source Species Name Description Gene count
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.