G2Cdb::Gene report

Gene id
G00003646
Gene symbol
Rogdi (MGI)
Species
Mus musculus
Description
rogdi homolog (Drosophila)
Orthologue
G00006636 (Homo sapiens)

Databases (3)

Gene
ENSMUSG00000022540 (Ensembl mouse gene)
66049 (Entrez Gene)
Marker Symbol
MGI:1913299 (MGI)

Synonyms (1)

  • Lzf

Literature (9)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst.

    Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND and Robson P

    Department of Biological Sciences, National University of Singapore, Singapore 117543.

    Three distinct cell types are present within the 64-cell stage mouse blastocyst. We have investigated cellular development up to this stage using single-cell expression analysis of more than 500 cells. The 48 genes analyzed were selected in part based on a whole-embryo analysis of more than 800 transcription factors. We show that in the morula, blastomeres coexpress transcription factors specific to different lineages, but by the 64-cell stage three cell types can be clearly distinguished according to their quantitative expression profiles. We identify Id2 and Sox2 as the earliest markers of outer and inner cells, respectively. This is followed by an inverse correlation in expression for the receptor-ligand pair Fgfr2/Fgf4 in the early inner cell mass. Position and signaling events appear to precede the maturation of the transcriptional program. These results illustrate the power of single-cell expression analysis to provide insight into developmental mechanisms. The technique should be widely applicable to other biological systems.

    Developmental cell 2010;18;4;675-85

  • BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.

    Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C, Norland SM, Rice DS, Dosooye N, Shakya S, Mehta P and Curran T

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States.

    Funded by: NINDS NIH HHS: 5R37NS036558, N01-NS-0-2331, R37 NS036558

    PLoS biology 2006;4;4;e86

  • Mouse brain organization revealed through direct genome-scale TF expression analysis.

    Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk DI, Tsung EF, Cai Z, Alberta JA, Cheng LP, Liu Y, Stenman JM, Valerius MT, Billings N, Kim HA, Greenberg ME, McMahon AP, Rowitch DH, Stiles CD and Ma Q

    Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

    In the developing brain, transcription factors (TFs) direct the formation of a diverse array of neurons and glia. We identifed 1445 putative TFs in the mouse genome. We used in situ hybridization to map the expression of over 1000 of these TFs and TF-coregulator genes in the brains of developing mice. We found that 349 of these genes showed restricted expression patterns that were adequate to describe the anatomical organization of the brain. We provide a comprehensive inventory of murine TFs and their expression patterns in a searchable brain atlas database.

    Science (New York, N.Y.) 2004;306;5705;2255-7

  • A neurogenomics approach to gene expression analysis in the developing brain.

    Jensen P, Magdaleno S, Lehman KM, Rice DS, Lavallie ER, Collins-Racie L, McCoy JM and Curran T

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.

    Secreted and transmembrane proteins provide critical functions in the signaling networks essential for neurogenesis. We used a genetic signal sequence gene trap approach to isolate 189 genes expressed during development in e16.5 whole head, e16.5 hippocampus and e14.5 cerebellum. Gene ontology programs were used to classify the genes into respective biological processes. Four major classes of biological processes known to be important during development were identified: cell communication, cell physiology processes, metabolism and morphogenesis. We used in situ hybridization to determine the temporal and spatial patterns of gene expression in the developing brain using this set of probes. The results demonstrate that gene expression patterns can highlight potential gene functions in specific brain regions. We propose that combining bioinformatics with the gene expression pattern is an effective strategy to identify genes that may play critical roles during brain development.

    Funded by: NINDS NIH HHS: R37 NS36558

    Brain research. Molecular brain research 2004;132;2;116-27

  • The mouse mahoganoid coat color mutation disrupts a novel C3HC4 RING domain protein.

    Phan LK, Lin F, LeDuc CA, Chung WK and Leibel RL

    Division of Molecular Genetics, Department of Pediatrics, Institute of Human Nutrition, Columbia University, New York, New York, USA.

    The mouse coat color mutant mahoganoid (md) darkens coat color and decreases the obesity of A(y) mice that ectopically overexpress agouti-signaling protein. The phenotypic effects of md are similar to those of the recently identified coat color mutant mahogany (Atrn(mg)). We report the positional cloning of mahoganoid, encoding a novel 494-amino acid protein containing a C3HC4 RING (really interesting new gene) domain that may function as an E3 ubiquitin ligase. The mutations in the mahoganoid allelic series (md, md(2J), md(5J)) are all due to large retroviral insertions. In md and md(2J), the result is minimal expression of the normal size transcripts in all tissues examined. Unlike Atrn(mg/)Atrn(mg) animals, we observe no evidence of neurological deficit or neuropathology in md/md mice. Body weight and body mass index (a surrogate for adiposity) measurements of B6.C3H-md-A md/+ and md/md animals on 9% and 45% kcal fat diets indicate that mahoganoid does not suppress body weight in B6.C3H animals in a gene dose-dependent fashion. Mahoganoid effects on energy homeostasis are, therefore, most evident in the circumstances of epistasis to hypothalamic overexpression of ASP in A(y) and possible other obesity-causing mutations.

    Funded by: NIDDK NIH HHS: DK-26687, DK-52431, P30 DK026687, R01 DK052431

    The Journal of clinical investigation 2002;110;10;1449-59

  • Genetic approach and phenotype-based complementation screening for identification of stroma cell-derived proteins involved in cell proliferation.

    Tulin EE, Onoda N, Hasegawa M, Nosaka T, Nomura H and Kitamura T

    Chugai Research Institute for Molecular Medicine, Inc., 153-2 Nagai, Niihari, Ibaraki, 300-4101, Japan. tulin@cimmed.com

    The functional capacities of stromal cell lines to support stem cell activity are heterogeneous and the mechanism of how they support bone marrow cultures remains unclear. Recently, we reported a strategy of functional analysis in which a genetic approach is combined with phenotype-based complementation screening to search for a novel secreted growth factor from mouse bone marrow stroma called ShIF that supported proliferation of bone marrow cells. To investigate the role of stromal cells in hemopoiesis, we extended this strategy to search for stroma-derived proteins that induce cell proliferation by establishing stroma-dependent Ba/F3 mutants of three stroma cell lines from two mouse tissues. Seven stroma-dependent Ba/F3 mutants were used as responder cells to identify cDNAs from stroma cell lines whose products supported proliferation not only to the mutant cells but also to hemopoietic progenitor cells in vitro.

    Experimental cell research 2002;272;1;23-31

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development.

    Ko MS, Kitchen JR, Wang X, Threat TA, Wang X, Hasegawa A, Sun T, Grahovac MJ, Kargul GJ, Lim MK, Cui Y, Sano Y, Tanaka T, Liang Y, Mason S, Paonessa PD, Sauls AD, DePalma GE, Sharara R, Rowe LB, Eppig J, Morrell C and Doi H

    ERATO Doi Bioasymmetry Project, JST, Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA. kom@grc.nia.nih.gov

    Little is known about gene action in the preimplantation events that initiate mammalian development. Based on cDNA collections made from each stage from egg to blastocyst, 25438 3'-ESTs were derived, and represent 9718 genes, half of them novel. Thus, a considerable fraction of mammalian genes is dedicated to embryonic expression. This study reveals profound changes in gene expression that include the transient induction of transcripts at each stage. These results raise the possibility that development is driven by the action of a series of stage-specific expressed genes. The new genes, 798 of them placed on the mouse genetic map, provide entry points for analyses of human and mouse developmental disorders.

    Funded by: NICHD NIH HHS: R01HD32243

    Development (Cambridge, England) 2000;127;8;1737-49

Gene lists (3)

Gene List Source Species Name Description Gene count
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.