G2Cdb::Gene report

Gene id
Gene symbol
Ric8 (MGI)
Mus musculus
resistance to inhibitors of cholinesterase 8 homolog (C. elegans)
G00006630 (Homo sapiens)

Databases (3)

ENSMUSG00000025485 (Ensembl mouse gene)
101489 (Entrez Gene)
Marker Symbol
MGI:2141866 (MGI)

Synonyms (2)

  • RIC-8
  • synembryn

Literature (12)

Pubmed - other

  • Activation of the regulator of G protein signaling 14-Gαi1-GDP signaling complex is regulated by resistance to inhibitors of cholinesterase-8A.

    Vellano CP, Shu FJ, Ramineni S, Yates CK, Tall GG and Hepler JR

    Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States.

    RGS14 is a brain scaffolding protein that integrates G protein and MAP kinase signaling pathways. Like other RGS proteins, RGS14 is a GTPase activating protein (GAP) that terminates Gαi/o signaling. Unlike other RGS proteins, RGS14 also contains a G protein regulatory (also known as GoLoco) domain that binds Gαi1/3-GDP in cells and in vitro. Here we report that Ric-8A, a nonreceptor guanine nucleotide exchange factor (GEF), functionally interacts with the RGS14-Gαi1-GDP signaling complex to regulate its activation state. RGS14 and Ric-8A are recruited from the cytosol to the plasma membrane in the presence of coexpressed Gαi1 in cells, suggesting formation of a functional protein complex with Gαi1. Consistent with this idea, Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex in cells and in vitro using purified proteins. Purified Ric-8A stimulates dissociation of the RGS14-Gαi1-GDP complex to form a stable Ric-8A-Gαi complex in the absence of GTP. In the presence of an activating nucleotide, Ric-8A interacts with the RGS14-Gαi1-GDP complex to stimulate both the steady-state GTPase activity of Gαi1 and binding of GTP to Gαi1. However, sufficiently high concentrations of RGS14 competitively reverse these stimulatory effects of Ric-8A on Gαi1 nucleotide binding and GTPase activity. This observation correlates with findings that show RGS14 and Ric-8A share an overlapping binding region within the last 11 amino acids of Gαi1. As further evidence that these proteins are functionally linked, native RGS14 and Ric-8A coexist within the same hippocampal neurons. These findings demonstrate that RGS14 is a newly appreciated integrator of unconventional Ric-8A and Gαi1 signaling.

    Funded by: NIGMS NIH HHS: GM088242, R01 GM088242, R01 GM088242-02, T32 GM008602; NINDS NIH HHS: P30 NS055077, P30NS055077, R01 NS037112, R01 NS037112-10A2, R01 NS037112-11, R01 NS049195, R01 NS049195-05, R01NS037112, R01NS049195, R56 NS037112, R56 NS037112-10A1

    Biochemistry 2011;50;5;752-62

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Nucleotide exchange factor RIC-8 is indispensable in mammalian early development.

    Tõnissoo T, Lulla S, Meier R, Saare M, Ruisu K, Pooga M and Karis A

    Department of Developmental Biology, University of Tartu, Tartu, Estonia. jokker@ut.ee

    The guanine nucleotide exchange factor RIC-8 is a conserved protein essential for the asymmetric division in the early embryogenesis in different organisms. The function of RIC-8 in mammalian development is not characterized so far. In this study we map the expression of RIC-8 during the early development of mouse. To elucidate the RIC-8 function we used Ric-8(-/-) mutant embryos. The Ric-8(-/-) embryos reach the gastrulation stage but do not develop further and die at E6.5-E8.5. We characterized the Ric-8(-/-) embryonic phenotype by morphological and marker gene analyses. The gastrulation is initiated in Ric-8(-/-) embryos but their growth is retarded, epiblast and mesoderm disorganized. Additionally, the basement membrane is defective, amnion folding and the formation of allantois are interfered, also the cavitation. Furthermore, the orientation of the Ric-8(-/-) embryo in the uterus was abnormal. Our study reveals that the activity of RIC-8 protein is irreplaceable for the correct gastrulation of mouse embryo.

    Developmental dynamics : an official publication of the American Association of Anatomists 2010;239;12;3404-15

  • Regulation of type V adenylate cyclase by Ric8a, a guanine nucleotide exchange factor.

    Wang SC, Lai HL, Chiu YT, Ou R, Huang CL and Chern Y

    Institute of Life Sciences, National Defence Medical Center, Taipei 104, Taiwan.

    In the present study, we demonstrate that AC5 (type V adenylate cyclase) interacts with Ric8a through directly interacting at its N-terminus. Ric8a was shown to be a GEF (guanine nucleotide exchange factor) for several alpha subunits of heterotrimeric GTP binding proteins (Galpha proteins) in vitro. Selective Galpha targets of Ric8a have not yet been revealed in vivo. An interaction between AC5 and Ric8a was verified by pull-down assays, co-immunoprecipitation analyses, and co-localization in the brain. Expression of Ric8a selectively suppressed AC5 activity. Treating cells with pertussis toxin or expressing a dominant negative Galphai mutant abolished the suppressive effect of Ric8a, suggesting that interaction between the N-terminus of AC5 and a GEF (Ric8a) provides a novel pathway to fine-tune AC5 activity via a Galphai-mediated pathway.

    The Biochemical journal 2007;406;3;383-8

  • Global gene expression analysis in fetal mouse ovaries with and without meiosis and comparison of selected genes with meiosis in the testis.

    Olesen C, Nyeng P, Kalisz M, Jensen TH, Møller M, Tommerup N and Byskov AG

    Laboratory of Reproductive Biology, Center for Children, Women and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark. c-olesen@mail.tele.dk

    In order to identify novel genes involved in early meiosis and early ovarian development in the mouse, we used microarray technology to compare transcriptional activity in ovaries without meiotic germ cells at embryonic age 11.5 (E11.5) and E13.5 ovaries with meiosis. Overall, 182 genes were differentially expressed; 134 were known genes and 48 were functionally uncharacterized. A comparison of our data with the literature associated, for the first time, at least eight of the known genes with female meiosis/germ cell differentiation (Aldh1a1, C2pa, Tex12, Stk31, Lig3, Id4, Recql, Piwil2). These genes had previously only been described in spermatogenesis. The microarray also detected an abundance of vesicle-related genes of which four were upregulated (Syngr2, Stxbp1, Ric-8, SytIX) and one (Myo1c) was downregulated in E13.5 ovaries. Detailed analysis showed that the temporal expression of SytIX also coincided with the first meiotic wave in the pubertal testis. This is the first time that SytIX has been reported in non-neuronal tissue. Finally, we examined the expression of one of the uncharacterized genes and found it to be gonad-specific in adulthood. We named this novel transcript "Gonad-expressed transcript 1" (Get-1). In situ hybridization showed that Get-1 was expressed in meiotic germ cells in both fetal ovaries and mature testis. Get-1 is therefore a novel gene in both male and female meiosis.

    Cell and tissue research 2007;328;1;207-21

  • Ric-8A potentiates Gq-mediated signal transduction by acting downstream of G protein-coupled receptor in intact cells.

    Nishimura A, Okamoto M, Sugawara Y, Mizuno N, Yamauchi J and Itoh H

    Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.

    RIC-8 was originally found by genetic studies on C. elegans mutants that were resistant to inhibitors of acetylcholinesterase and reported to act in vitro as a guanine nucleotide exchange factor for G protein alpha subunits. However, the physiological role of a mammalian homolog Ric-8A on G protein-coupled receptor signaling in intact cells is largely unknown. We isolated Ric-8A using a yeast two-hybrid system with Galphaq and examined the role of Ric-8A on Gq-mediated signaling. The small interfering RNA of Ric-8A diminished the Gq-coupled receptor-mediated ERK activation and intracellular calcium mobilization in 293T cells. Ric-8A was translocated to the cell membrane in response to the Gq-coupled receptor stimulation. The expression of the myristoylation sequence-conjugated Ric-8A mutant was located in the membranes and shown to enhance the Gq-coupled receptor-mediated ERK activation. Moreover, this enhancement on ERK activation and the guanine nucleotide exchange activity of Ric-8A for Galphaq were inhibited by Gq selective inhibitor YM-254890. These results suggested that Ric-8A potentiates Gq-mediated signal transduction by acting as a novel-type regulator in intact cells.

    Genes to cells : devoted to molecular & cellular mechanisms 2006;11;5;487-98

  • Heterozygous mice with Ric-8 mutation exhibit impaired spatial memory and decreased anxiety.

    Tõnissoo T, Kõks S, Meier R, Raud S, Plaas M, Vasar E and Karis A

    Department of Integrative Zoology, University of Tartu, 46 Vanemuise St., Tartu 51014, Estonia.

    Ric-8 is a guanine nucleotide exchange factor for a subset of Galpha proteins and it is required to maintain Galpha(q) and the Galpha(s) pathways in functional state. In adult mice Ric-8 is expressed in regions involved in the regulation of behavior (neocortex, cingulate cortex and hippocampus). As Ric-8 is shown to regulate neuronal transmitter release, the aim of present study was to perform behavioral analysis of ric-8 mutant. Homozygous (-/-) ric-8 mutant mice are not viable and die in early embryonic development, therefore for behavioral analysis heterozygous (+/-) ric-8 mutant mice were used. We found decreased anxiety of ric-8 heterozygous mice in light-dark compartment test where mutant mice significantly avoided the light compartment. In spatial learning paradigm (Morris water maze) the performance of ric-8 (+/-) mice was impaired. Namely, in the reversal test, ric-8 (+/-) mice exhibited significant delay to find the hidden platform compared to wild-type (wt) littermates. We did not find differences in the behavioral tests reflecting the motor abilities of mice (motor activity, rota-rod). Therefore, described alterations seem to be specific for anxiety and spatial learning. Based on these results we can conclude the importance of ric-8 in the regulation of memory and emotional behavior.

    Behavioural brain research 2006;167;1;42-8

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Expression of ric-8 (synembryn) gene in the nervous system of developing and adult mouse.

    Tõnissoo T, Meier R, Talts K, Plaas M and Karis A

    Department of Integrative Zoology, University of Tartu, 46 Vanemuise St, 51014, Tartu, Estonia.

    Recent biochemical studies revealed that ric-8A encodes a guanine nucleotide exchange factor for a subset of Galpha proteins. Ric-8 is a key component of a signaling network in C. elegans that regulates neurotransmitter secretion and also plays a role in centrosome-mediated events during early embryogenesis. Here we show that during the early development in mice (E9.5-E12.0) ric-8 (synembryn) is expressed in the developing nervous system such as the cranial ganglia, neural tube, sympathetic chain and dorsal root ganglia. Ric-8 is also found in the lens, vomeronasal organ, and endolymphatic sac. In adult brain, it is expressed in the neocortex, hippocampus, and cerebellum as well as in the pineal gland and ependymal layer.

    Gene expression patterns : GEP 2003;3;5;591-4

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • RIC-8 (Synembryn): a novel conserved protein that is required for G(q)alpha signaling in the C. elegans nervous system.

    Miller KG, Emerson MD, McManus JR and Rand JB

    Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA.

    Recent studies describe a network of signaling proteins centered around G(o)alpha and G(q)alpha that regulates neurotransmitter secretion in C. elegans by controlling the production and consumption of diacylglycerol (DAG). We sought other components of the Goalpha-G(q)alpha signaling network by screening for aldicarb-resistant mutants with phenotypes similar to egl-30 (G(q)alpha) mutants. In so doing, we identified ric-8, which encodes a novel protein named RIC-8 (synembryn). Through cDNA analysis, we show that RIC-8 is conserved in vertebrates. Through immunostaining, we show that RIC-8 is concentrated in the cytoplasm of neurons. Exogenous application of phorbol esters or loss of DGK-1 (diacylglycerol kinase) rescues ric-8 mutant phenotypes. A genetic analysis suggests that RIC-8 functions upstream of, or in conjunction with, EGL-30 (G(q)alpha).

    Funded by: NIGMS NIH HHS: R01 GM059642; NINDS NIH HHS: F32 NS009565, NS33187

    Neuron 2000;27;2;289-99

Gene lists (1)

Gene List Source Species Name Description Gene count
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.