G2Cdb::Gene report

Gene id
Gene symbol
Klc1 (MGI)
Mus musculus
kinesin light chain 1
G00006236 (Homo sapiens)

Databases (3)

ENSMUSG00000021288 (Ensembl mouse gene)
16593 (Entrez Gene)
Marker Symbol
MGI:107978 (MGI)

Synonyms (1)

  • Kns2

Literature (40)

Pubmed - other

  • Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles.

    Encalada SE, Szpankowski L, Xia CH and Goldstein LS

    Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, 92093, USA. sencalada@ucsd.edu

    Kinesin and dynein are opposite-polarity microtubule motors that drive the tightly regulated transport of a variety of cargoes. Both motors can bind to cargo, but their overall composition on axonal vesicles and whether this composition directly modulates transport activity are unknown. Here we characterize the intracellular transport and steady-state motor subunit composition of mammalian prion protein (PrP(C)) vesicles. We identify Kinesin-1 and cytoplasmic dynein as major PrP(C) vesicle motor complexes and show that their activities are tightly coupled. Regulation of normal retrograde transport by Kinesin-1 is independent of dynein-vesicle attachment and requires the vesicle association of a complete Kinesin-1 heavy and light chain holoenzyme. Furthermore, motor subunits remain stably associated with stationary as well as with moving vesicles. Our data suggest a coordination model wherein PrP(C) vesicles maintain a stable population of associated motors whose activity is modulated by regulatory factors instead of by structural changes to motor-cargo associations.

    Funded by: NIA NIH HHS: AG000216, AG032180, R01 AG032180, R01 AG032180-01, R01 AG032180-02, R01 AG032180-03, R01 AG032180-04, R01 AG032180-05, T32 AG000216; NIGMS NIH HHS: T32 GM008806; NINDS NIH HHS: P30 NS047101

    Cell 2011;144;4;551-65

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies.

    Falzone TL, Gunawardena S, McCleary D, Reis GF and Goldstein LS

    Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

    Neurodegeneration induced by abnormal hyperphosphorylation and aggregation of the microtubule-associated protein tau defines neurodegenerative tauopathies. Destabilization of microtubules by loss of tau function and filament formation by toxic gain of function are two mechanisms suggested for how abnormal tau triggers neuronal loss. Recent experiments in kinesin-1 deficient mice suggested that axonal transport defects can initiate biochemical changes that induce activation of axonal stress kinase pathways leading to abnormal tau hyperphosphorylation. Here we show using Drosophila and mouse models of tauopathies that reductions in axonal transport can exacerbate human tau protein hyperphosphorylation, formation of insoluble aggregates and tau-dependent neurodegeneration. Together with previous work, our results suggest that non-lethal reductions in axonal transport, and perhaps other types of minor axonal stress, are sufficient to induce and/or accelerate abnormal tau behavior characteristic of Alzheimer's disease and other neurodegenerative tauopathies.

    Funded by: Howard Hughes Medical Institute; NIA NIH HHS: AG032180; NIGMS NIH HHS: GM35252

    Human molecular genetics 2010;19;22;4399-408

  • mNUDC is required for plus-end-directed transport of cytoplasmic dynein and dynactins by kinesin-1.

    Yamada M, Toba S, Takitoh T, Yoshida Y, Mori D, Nakamura T, Iwane AH, Yanagida T, Imai H, Yu-Lee LY, Schroer T, Wynshaw-Boris A and Hirotsune S

    Department of Genetic Disease Research, Graduate School of Medicine, Osaka City University, Osaka, Japan.

    Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein-LIS1-microtubule complex in a kinesin-1-dependent manner. However, the underlying mechanism by which a cytoplasmic dynein-LIS1-microtubule complex binds kinesin-1 is unknown. Here, we report that mNUDC (mammalian NUDC) interacts with kinesin-1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin-1. mNUDC is also required for anterograde transport of a dynactin-containing complex. Inhibition of mNUDC severely suppressed anterograde transport of distinct cytoplasmic dynein and dynactin complexes, whereas motility of kinesin-1 remained intact. Reconstruction experiments clearly demonstrated that mNUDC mediates the interaction of the dynein or dynactin complex with kinesin-1 and supports their transport by kinesin-1. Our findings have uncovered an essential role of mNUDC for anterograde transport of dynein and dynactin by kinesin-1.

    Funded by: NICHD NIH HHS: HD47380, R01 HD047380; NINDS NIH HHS: NS41030, R01 NS041030

    The EMBO journal 2010;29;3;517-31

  • Dynein and kinesin regulate stress-granule and P-body dynamics.

    Loschi M, Leishman CC, Berardone N and Boccaccio GL

    Instituto Leloir, Avenida Patricias Argentinas 435, C1405BWE-Buenos Aires, Argentina.

    Stress granules (SGs) and P-bodies (PBs) are related cytoplasmic structures harboring silenced mRNAs. SGs assemble transiently upon cellular stress, whereas PBs are constitutive and are further induced by stress. Both foci are highly dynamic, with messenger ribonucleoproteins (mRNPs) and proteins rapidly shuttling in and out. Here, we show that impairment of retrograde transport by knockdown of mammalian dynein heavy chain 1 (DHC1) or bicaudal D1 (BicD1) inhibits SG formation and PB growth upon stress, without affecting protein-synthesis blockage. Conversely, impairment of anterograde transport by knockdown of kinesin-1 heavy chain (KIF5B) or kinesin light chain 1 (KLC1) delayed SG dissolution. Strikingly, SG dissolution is not required to restore translation. Simultaneous knockdown of dynein and kinesin reverted the effect of single knockdowns on both SGs and PBs, suggesting that a balance between opposing movements driven by these molecular motors governs foci formation and dissolution. Finally, we found that regulation of SG dynamics by dynein and kinesin is conserved in Drosophila.

    Funded by: FIC NIH HHS: 1R03 TW 006037-01A1

    Journal of cell science 2009;122;Pt 21;3973-82

  • Control of insulin granule dynamics by AMPK dependent KLC1 phosphorylation.

    McDonald A, Fogarty S, Leclerc I, Hill EV, Hardie DG and Rutter GA

    Department of Cell Biology, Division of Medicine, Imperial College London, London, UK.

    The movement of insulin granules along microtubules, driven by kinesin-1/Kif5B, is essential for glucose-stimulated insulin secretion from pancreatic β-cells.  5΄AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine kinase, which is activated in β-cells at low glucose concentrations, but inhibited as glucose levels increase.  AMPK activation blocks glucose-stimulated recruitment of secretory granules to the cell surface and insulin secretion, suggesting motor proteins may be targets for this kinase. Whilst both kinesin-1/Kif5B and kinesin light chain-1 (KLC1) contain consensus AMPK phosphorylation sites only a peptide corresponding to Ser520 in mouse KLC1 and purified recombinant GST-KLC1 were phosphorylated by purified AMPK in vitro.  To test the hypothesis that phosphorylation at this site may modulate kinesin-1-mediated granule movement, we developed a novel approach to study the dynamics of the granules within a cell in three-dimensions using Nokigawa spinning disc confocal microscopy.  This cell-wide approach revealed that the number of longer excursions (>10 µm) increased significantly in response to elevated glucose concentration (30 vs 3 mM) in control MIN6 cells.  However, similar changes were seen in cells over-expressing wild-type KLC1, phosphomimetic (S517/520D) or non-phosphorylatable (S517/520A) mutants of KLC1.  Moreover, no evidence for a change in the phosphorylation state of KLC1 at Ser520 after AMPK activation was obtained using an anti-phospho Ser520-specific antibody. Thus, changes in the phosphorylation state of KLC1 at Ser517/520 are unlikely to affect motor function.  In conclusion, we describe a new three-dimensional cell wide approach for the analysis of secretory granule dynamics in living β-cells.

    Funded by: Medical Research Council: G0401641; PHS HHS: R0I DKO71962-01; Wellcome Trust: 067081/Z/02/Z, 081958/Z/07/Z

    Islets 2009;1;3;198-209

  • Single molecule imaging reveals differences in microtubule track selection between Kinesin motors.

    Cai D, McEwen DP, Martens JR, Meyhofer E and Verhey KJ

    Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.

    Cells generate diverse microtubule populations by polymerization of a common alpha/beta-tubulin building block. How microtubule associated proteins translate microtubule heterogeneity into specific cellular functions is not clear. We evaluated the ability of kinesin motors involved in vesicle transport to read microtubule heterogeneity by using single molecule imaging in live cells. We show that individual Kinesin-1 motors move preferentially on a subset of microtubules in COS cells, identified as the stable microtubules marked by post-translational modifications. In contrast, individual Kinesin-2 (KIF17) and Kinesin-3 (KIF1A) motors do not select subsets of microtubules. Surprisingly, KIF17 and KIF1A motors that overtake the plus ends of growing microtubules do not fall off but rather track with the growing tip. Selection of microtubule tracks restricts Kinesin-1 transport of VSVG vesicles to stable microtubules in COS cells whereas KIF17 transport of Kv1.5 vesicles is not restricted to specific microtubules in HL-1 myocytes. These results indicate that kinesin families can be distinguished by their ability to recognize microtubule heterogeneity. Furthermore, this property enables kinesin motors to segregate membrane trafficking events between stable and dynamic microtubule populations.

    Funded by: NHLBI NIH HHS: HL0270973; NIDCD NIH HHS: T32 DC000011; NIGMS NIH HHS: GM070862, GM076476, GM083254, R01 GM070862, R01 GM076476, R01 GM083254, R01 GM083254-03

    PLoS biology 2009;7;10;e1000216

  • Regulation of kinesin light chain 1 level correlates with the development of morphine reward in the mouse brain.

    Bilecki W, Wawrzczak-Bargiela A and Przewłocki R

    Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland. bilecki@if-pan.krakow.pl

    Persistent changes that take place during the development of opioid addiction are thought to be due to reorganization of synaptic connections in relevant brain circuits. This neuronal plasticity requires trafficking of signaling molecules that are controlled by kinesins. In neurons, kinesin light chain 1 (KLC1) acts as the primary regulator of kinesin action. We observed that KLC1 was enriched in sub-cortical regions of the brain in C57Bl/6J mice. KLC1 expression was especially enriched in the striatum, hippocampus and amygdala, which are known to be involved in opioid addiction. Our study revealed that conditioning of C57Bl/6J mice with morphine elevated KLC1 levels in the amygdala, frontal cortex and hippocampus, but not in the striatum. Further study revealed that alterations in KLC1 protein levels in the studied brain regions correlated with the expression of morphine-induced conditioned place preference. In the cortex, hippocampus and amygdala, KLC1 co-localized with calcium/calmodulin-dependent protein kinase II (CaMKII), suggesting that KLC1 was present in the cell bodies and dendrites of pyramidal neurons. Our findings indicate that KLC1, a molecule involved in dendritic and axonal transport in the brain, is affected during chronic morphine treatment and may be involved in the development of opioid addiction.

    The European journal of neuroscience 2009;30;6;1101-10

  • Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects.

    Falzone TL, Stokin GB, Lillo C, Rodrigues EM, Westerman EL, Williams DS and Goldstein LS

    Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA.

    Many neurodegenerative diseases exhibit axonal pathology, transport defects, and aberrant phosphorylation and aggregation of the microtubule binding protein tau. While mutant tau protein in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP17) causes aberrant microtubule binding and assembly of tau into filaments, the pathways leading to tau-mediated neurotoxicity in Alzheimer's disease and other neurodegenerative disorders in which tau protein is not genetically modified remain unknown. To test the hypothesis that axonal transport defects alone can cause pathological abnormalities in tau protein and neurodegeneration in the absence of mutant tau or amyloid beta deposits, we induced transport defects by deletion of the kinesin light chain 1 (KLC1) subunit of the anterograde motor kinesin-1. We found that upon aging, early selective axonal transport defects in mice lacking the KLC1 protein (KLC1-/-) led to axonopathies with cytoskeletal disorganization and abnormal cargo accumulation. In addition, increased c-jun N-terminal stress kinase activation colocalized with aberrant tau in dystrophic axons. Surprisingly, swollen dystrophic axons exhibited abnormal tau hyperphosphorylation and accumulation. Thus, directly interfering with axonal transport is sufficient to activate stress kinase pathways initiating a biochemical cascade that drives normal tau protein into a pathological state found in a variety of neurodegenerative disorders including Alzheimer's disease.

    Funded by: Howard Hughes Medical Institute; NEI NIH HHS: EY07042, R01 EY007042, R01 EY007042-13, R01 EY007042-14, R01 EY007042-15, R01 EY007042-16, R01 EY007042-17, R01 EY007042-18, R01 EY007042-19, R01 EY007042-19S1, R01 EY007042-20, R01 EY007042-21, R01 EY007042-22; NIGMS NIH HHS: GM35252, R01 GM035252, R01 GM035252-16, R01 GM035252-16S1, R01 GM035252-17, R01 GM035252-18, R01 GM035252-19, R01 GM035252-20, R01 GM035252-20S1, R01 GM035252-21, R01 GM035252-21S1, R01 GM035252-21S2, R01 GM035252-22, R01 GM035252-22S1, R01 GM035252-23, R01 GM035252-23S1

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2009;29;18;5758-67

  • Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta.

    Pigino G, Morfini G, Atagi Y, Deshpande A, Yu C, Jungbauer L, LaDu M, Busciglio J and Brady S

    Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, USA.

    The pathological mechanism by which Abeta causes neuronal dysfunction and death remains largely unknown. Deficiencies in fast axonal transport (FAT) were suggested to play a crucial role in neuronal dysfunction and loss for a diverse set of dying back neuropathologies including Alzheimer's disease (AD), but the molecular basis for pathological changes in FAT were undetermined. Recent findings indicate that soluble intracellular oligomeric Abeta (oAbeta) species may play a critical role in AD pathology. Real-time analysis of vesicle mobility in isolated axoplasms perfused with oAbeta showed bidirectional axonal transport inhibition as a consequence of endogenous casein kinase 2 (CK2) activation. Conversely, neither unaggregated amyloid beta nor fibrillar amyloid beta affected FAT. Inhibition of FAT by oAbeta was prevented by two specific pharmacological inhibitors of CK2, as well as by competition with a CK2 substrate peptide. Furthermore, perfusion of axoplasms with active CK2 mimics the inhibitory effects of oAbeta on FAT. Both oAbeta and CK2 treatment of axoplasm led to increased phosphorylation of kinesin-1 light chains and subsequent release of kinesin from its cargoes. Therefore pharmacological modulation of CK2 activity may represent a promising target for therapeutic intervention in AD.

    Funded by: NIA NIH HHS: P01 AG030128, P01 AG030128-01A2; NINDS NIH HHS: NS23320, NS41170, NS43408, R01 NS023320, R01 NS023868, R01 NS023868-22, R01 NS023868-22S2, R01 NS041170, R01 NS043408

    Proceedings of the National Academy of Sciences of the United States of America 2009;106;14;5907-12

  • Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization.

    Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL and Burke B

    Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA. kroux@ufl.edu

    Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.

    Proceedings of the National Academy of Sciences of the United States of America 2009;106;7;2194-9

  • Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death.

    Wang X, Nadarajah B, Robinson AC, McColl BW, Jin JW, Dajas-Bailador F, Boot-Handford RP and Tournier C

    Faculty of Life Sciences, Wellcome Trust Center for Cell-Matrix Research, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.

    The c-Jun NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase (MAPK) involved in the regulation of various physiological processes. Its activity is increased upon phosphorylation by the MAPK kinases MKK4 and MKK7. The early embryonic death of mice lacking an mkk4 or mkk7 gene has provided genetic evidence that MKK4 and MKK7 have nonredundant functions in vivo. To elucidate the physiological role of MKK4, we generated a novel mouse model in which the mkk4 gene could be specifically deleted in the brain. At birth, the mutant mice were indistinguishable from their control littermates, but they stopped growing a few days later and died prematurely, displaying severe neurological defects. Decreased JNK activity in the absence of MKK4 correlated with impaired phosphorylation of a subset of physiologically relevant JNK substrates and with altered gene expression. These defects resulted in the misalignment of the Purkinje cells in the cerebellum and delayed radial migration in the cerebral cortex. Together, our data demonstrate for the first time that MKK4 is an essential activator of JNK required for the normal development of the brain.

    Funded by: Biotechnology and Biological Sciences Research Council: BBS/B/0224X; Medical Research Council: G0001285

    Molecular and cellular biology 2007;27;22;7935-46

  • EUCOMM--the European conditional mouse mutagenesis program.

    Friedel RH, Seisenberger C, Kaloff C and Wurst W

    GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.

    Functional analysis of the mammalian genome is an enormous challenge for biomedical scientists. To facilitate this endeavour, the European Conditional Mouse Mutagenesis Program (EUCOMM) aims at generating up to 12 000 mutations by gene trapping and up to 8000 mutations by gene targeting in mouse embryonic stem (ES) cells. These mutations can be rendered into conditional alleles, allowing Cre recombinase-mediated disruption of gene function in a time- and tissue-specific manner. Furthermore, the EUCOMM program will generate up to 320 mouse lines from the EUCOMM resource and up to 20 new Cre driver mouse lines. The EUCOMM resource of vectors, mutant ES cell lines and mutant mice will be openly available to the scientific community. EUCOMM will be one of the cornerstones of an international effort to create a global mouse mutant resource.

    Briefings in functional genomics & proteomics 2007;6;3;180-5

  • Marlin-1 and conventional kinesin link GABAB receptors to the cytoskeleton and regulate receptor transport.

    Vidal RL, Ramírez OA, Sandoval L, Koenig-Robert R, Härtel S and Couve A

    Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile Independencia 1027, Santiago, Chile.

    The cytoskeleton and cytoskeletal motors play a fundamental role in neurotransmitter receptor trafficking, but proteins that link GABA(B) receptors (GABA(B)Rs) to the cytoskeleton have not been described. We recently identified Marlin-1, a protein that interacts with GABA(B)R1. Here, we explore the association of GABA(B)Rs and Marlin-1 to the cytoskeleton using a combination of biochemistry, microscopy and live cell imaging. Our results indicate that Marlin-1 is associated to microtubules and the molecular motor kinesin-I. We demonstrate that a fraction of Marlin-1 is mobile in dendrites of cultured hippocampal neurons and that mobility is microtubule-dependent. We also show that GABA(B)Rs interact robustly with kinesin-I and that intracellular membranes containing GABA(B)Rs are sensitive to treatments that disrupt a protein complex containing Marlin-1, kinesin-I and tubulin. Finally, we report that a kinesin-I mutant severely impairs receptor transport. We conclude that Marlin-1 and kinesin-1 link GABA(B)Rs to the tubulin cytoskeleton in neurons.

    Molecular and cellular neurosciences 2007;35;3;501-12

  • The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport.

    Araki Y, Kawano T, Taru H, Saito Y, Wada S, Miyamoto K, Kobayashi H, Ishikawa HO, Ohsugi Y, Yamamoto T, Matsuno K, Kinjo M and Suzuki T

    Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.

    Alcadeinalpha (Alcalpha) is an evolutionarily conserved type I membrane protein expressed in neurons. We show here that Alcalpha strongly associates with kinesin light chain (K(D) approximately 4-8x10(-9) M) through a novel tryptophan- and aspartic acid-containing sequence. Alcalpha can induce kinesin-1 association with vesicles and functions as a novel cargo in axonal anterograde transport. JNK-interacting protein 1 (JIP1), an adaptor protein for kinesin-1, perturbs the transport of Alcalpha, and the kinesin-1 motor complex dissociates from Alcalpha-containing vesicles in a JIP1 concentration-dependent manner. Alcalpha-containing vesicles were transported with a velocity different from that of amyloid beta-protein precursor (APP)-containing vesicles, which are transported by the same kinesin-1 motor. Alcalpha- and APP-containing vesicles comprised mostly separate populations in axons in vivo. Interactions of Alcalpha with kinesin-1 blocked transport of APP-containing vesicles and increased beta-amyloid generation. Inappropriate interactions of Alc- and APP-containing vesicles with kinesin-1 may promote aberrant APP metabolism in Alzheimer's disease.

    The EMBO journal 2007;26;6;1475-86

  • Calsyntenin-1 docks vesicular cargo to kinesin-1.

    Konecna A, Frischknecht R, Kinter J, Ludwig A, Steuble M, Meskenaite V, Indermühle M, Engel M, Cen C, Mateos JM, Streit P and Sonderegger P

    Department of Biochemistry and Brain Research Institute, University of Zurich, CH-8057 Zürich, Switzerland.

    We identified a direct interaction between the neuronal transmembrane protein calsyntenin-1 and the light chain of Kinesin-1 (KLC1). GST pulldowns demonstrated that two highly conserved segments in the cytoplasmic domain of calsyntenin-1 mediate binding to the tetratricopeptide repeats of KLC1. A complex containing calsyntenin-1 and the Kinesin-1 motor was isolated from developing mouse brain and immunoelectron microscopy located calsyntenin-1 in association with tubulovesicular organelles in axonal fiber tracts. In primary neuronal cultures, calsyntenin-1-containing organelles were aligned along microtubules and partially colocalized with Kinesin-1. Using live imaging, we showed that these organelles are transported along axons with a velocity and processivity typical for fast axonal transport. Point mutations in the two kinesin-binding segments of calsyntenin-1 significantly reduced binding to KLC1 in vitro, and vesicles bearing mutated calsyntenin-1 exhibited a markedly altered anterograde axonal transport. In summary, our results indicate that calsyntenin-1 links a certain type of vesicular and tubulovesicular organelles to the Kinesin-1 motor.

    Molecular biology of the cell 2006;17;8;3651-63

  • BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.

    Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C, Norland SM, Rice DS, Dosooye N, Shakya S, Mehta P and Curran T

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States.

    Funded by: NINDS NIH HHS: 5R37NS036558, N01-NS-0-2331, R37 NS036558

    PLoS biology 2006;4;4;e86

  • Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1.

    Muresan Z and Muresan V

    Department of Physiology and Biophysics, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. zoia.muresan@case.edu

    The transmembrane protein amyloid-beta precursor protein (APP) and the vesicle-associated protein c-Jun NH(2)-terminal kinase-interacting protein-1 (JIP-1) are transported into axons by kinesin-1. Both proteins may bind to kinesin-1 directly and can be transported separately. Because JIP-1 and APP can interact, kinesin-1 may recruit them as a complex, enabling their cotransport. In this study, we tested whether APP and JIP-1 are transported together or separately on different vesicles. We found that, within the cellular context, JIP-1 preferentially interacts with Thr(668)-phosphorylated APP (pAPP), compared with nonphosphorylated APP. In neurons, JIP-1 colocalizes with vesicles containing pAPP and is excluded from those containing nonphosphorylated APP. The accumulation of JIP-1 and pAPP in neurites requires kinesin-1, and the expression of a phosphomimetic APP mutant increases JIP-1 transport. Down-regulation of JIP-1 by small interfering RNA specifically impairs transport of pAPP, with no effect on the trafficking of nonphosphorylated APP. These results indicate that the phosphorylation of APP regulates the formation of a pAPP-JIP-1 complex that accumulates in neurites independent of nonphosphorylated APP.

    Funded by: NIA NIH HHS: AG08012, P50 AG008012; NIGMS NIH HHS: 5R01GM068596-02, R01 GM068596

    The Journal of cell biology 2005;171;4;615-25

  • The ciliary rootlet interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos.

    Yang J and Li T

    The Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA. jun_yang@meei.harvard.edu

    The ciliary rootlet is a large striated fibrous network originating from basal bodies in ciliated cells. To explore its postulated role in intracellular transport, we investigated the interaction between kinesin light chains (KLCs) and rootletin, the structural component of ciliary rootlets. We show here that KLCs directly interact with rootletin and are located along ciliary rootlets. Their interactions are mediated by the heptad repeats of KLCs. Further studies found that these interactions tethered kinesin heavy chains along ciliary rootlets. However, the ciliary rootlet-bound kinesin-1 did not recruit microtubules or move along ciliary rootlets. Additionally, amyloid precursor protein (APP; a kinesin-1 vesicular cargo receptor) and presenilin 1 (a presumed cargo of APP/kinesin-1) were found to be enriched along the rootletin fibers, suggesting that the interaction between ciliary rootlets and kinesin-1 recruits APP and presenilin 1 along ciliary rootlets. These findings indicate that ciliary rootlets may provide a scaffold for kinesin-1 vesicular cargos and, thus, play a role in the intracellular transport in ciliated cells.

    Funded by: NEI NIH HHS: EY14104, EY14426, P30 EY014104, R01 EY014226

    Experimental cell research 2005;309;2;379-89

  • JLP associates with kinesin light chain 1 through a novel leucine zipper-like domain.

    Nguyen Q, Lee CM, Le A and Reddy EP

    Fels Institute for Cancer Research and Molecular Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA.

    Scaffolding proteins exist in eukaryotes to properly assemble signaling proteins into specific multimeric functional complexes. JLP is a novel leucine zipper protein belonging to a family of scaffolding proteins that assemble JNK signaling modules. JLP is a proline-rich protein that contains two leucine zipper domains and a highly conserved C-terminal domain. We have identified kinesin light chain 1 (KLC1) as a binding partner for the second leucine zipper domain of JLP using yeast two-hybrid screening. The interaction domain of KLC1 was mapped to its tetratripeptide repeat, which contains a novel leucine zipper-like domain that is crucial for the interaction with JLP. Mutations of Leu-280, Leu-287, Val-294, and Leu-301 within this domain of KLC1 disrupted its ability to associate with JLP. Immunofluorescence studies showed that JLP and KLC1 co-localized in the cytoplasm and that the localization of JLP was dependent on its second leucine zipper. Ectopic expression of a dominant negative form of KLC1 resulted in the mislocalization of endogenous JLP. Moreover, the association between JLP and KLC1 occurred in vivo and was important in the formation of ternary complex with JNK1. These results identify a novel protein-protein interaction between KLC1 and JLP that involves leucine zipper-like domains and support the role of motor proteins in the spatial regulation of signaling modules.

    Funded by: NCI NIH HHS: R24 CA88261

    The Journal of biological chemistry 2005;280;34;30185-91

  • Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways.

    Kelkar N, Standen CL and Davis RJ

    Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St., Worcester, MA 01605, USA.

    The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.

    Molecular and cellular biology 2005;25;7;2733-43

  • Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease.

    Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS and Goldstein LS

    Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093, USA.

    We identified axonal defects in mouse models of Alzheimer's disease that preceded known disease-related pathology by more than a year; we observed similar axonal defects in the early stages of Alzheimer's disease in humans. Axonal defects consisted of swellings that accumulated abnormal amounts of microtubule-associated and molecular motor proteins, organelles, and vesicles. Impairing axonal transport by reducing the dosage of a kinesin molecular motor protein enhanced the frequency of axonal defects and increased amyloid-beta peptide levels and amyloid deposition. Reductions in microtubule-dependent transport may stimulate proteolytic processing of beta-amyloid precursor protein, resulting in the development of senile plaques and Alzheimer's disease.

    Funded by: NEI NIH HHS: EY12598, EY13408, R01 EY007042, R01 EY007042-19, R01 EY013408, R01 EY013408-02; NIA NIH HHS: P50 AG05131

    Science (New York, N.Y.) 2005;307;5713;1282-8

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • Synapsin and synaptic vesicle protein expression during embryonic and post-natal lens fiber cell differentiation.

    Frederikse PH, Yun E, Kao HT, Zigler JS, Sun Q and Qazi AS

    Department of Pharmacology & Physiology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA. frederph@umdnj.edu

    Purpose: Reorganization of cytoskeleton and membrane biogenesis are dynamically coordinated during lens fiber cell differentiation and development to produce an organ with precise dimensions and optical properties. Cargo vesicle trafficking is fundamental to cell elongation and has also been implicated in degenerative disease mechanisms. Alzheimer precursor protein (AbetaPP) acts with kinesin, synapsin, and synaptic vesicle proteins to mediate cargo vesicle transport and membrane fusion in neurons. In our previous studies we demonstrated that AbetaPP is also a key element in lens fiber cell formation, and in early-onset cataract that occurs along with early-onset Alzheimer disease in Down syndrome. In the present study we examine lens expression and regulation of a complement of genes associated with cargo and synaptic vesicle transport in neurons.

    Methods: RT-PCR, immunoblot, and immunohistochemical methods were used to characterize expression of AbetaPP and kinesin associated motor proteins, synapsins, and synaptic vesicle proteins in mouse and rat embryonic, post-natal, and adult lenses. Phospho-specific anti-synapsin antibodies were used to determine the distributions of site-1 phosphorylated and dephosphorylated synapsin protein.

    Results: We demonstrate that a substantial complement of cargo and synaptic vesicle proteins involved in AbetaPP mediated vesicle transport are expressed in lenses along the anterior-posterior axis of fiber cells in embryonic and adult lenses, consistent with vesicles, actin filaments, and neuron-like arrangement of microtubules in lenses shown by others. We identify temporal regulation of synapsins I, II, and III during embryonic and post-natal lens development consistent with their roles in neurons. Regulation of vesicle cytoskeleton attachment, actin polymerization, and the capacity to stimulate cell differentiation by synapsins are governed in large part by phosphorylation at a conserved Ser9 residue (site-1). We demonstrate discrete distributions of Ser9 phospho- and dephospho-synapsins along the axial length of rapidly elongating embryonic lens fiber cells, and decreased levels of site-1 phosphorylated synapsins in adult lenses.

    Conclusions: The present findings demonstrate several fundamental parallels between lens and neuron vesicle trafficking cell biology and development, and suggest that more extensive AbetaPP related vesicle trafficking disease mechanisms may be shared by lens and brain.

    Molecular vision 2004;10;794-804

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.

    Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H and Ruiz P

    Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.

    A major challenge of the postgenomic era is the functional characterization of every single gene within the mammalian genome. In an effort to address this challenge, we assembled a collection of mutations in mouse embryonic stem (ES) cells, which is the largest publicly accessible collection of such mutations to date. Using four different gene-trap vectors, we generated 5,142 sequences adjacent to the gene-trap integration sites (gene-trap sequence tags; http://genetrap.de) from >11,000 ES cell clones. Although most of the gene-trap vector insertions occurred randomly throughout the genome, we found both vector-independent and vector-specific integration "hot spots." Because >50% of the hot spots were vector-specific, we conclude that the most effective way to saturate the mouse genome with gene-trap insertions is by using a combination of gene-trap vectors. When a random sample of gene-trap integrations was passaged to the germ line, 59% (17 of 29) produced an observable phenotype in transgenic mice, a frequency similar to that achieved by conventional gene targeting. Thus, gene trapping allows a large-scale and cost-effective production of ES cell clones with mutations distributed throughout the genome, a resource likely to accelerate genome annotation and the in vivo modeling of human disease.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;17;9918-22

  • Morphogenesis of the telencephalic commissure requires scaffold protein JNK-interacting protein 3 (JIP3).

    Kelkar N, Delmotte MH, Weston CR, Barrett T, Sheppard BJ, Flavell RA and Davis RJ

    Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.

    The murine JNK-interacting protein 3 (JIP3) protein (also known as JSAP1) is expressed exclusively in neurons and has been identified as a scaffold protein for the c-Jun NH2-terminal kinase (JNK) signaling pathway and as an adapter protein for cargo transport by the microtubule motor protein kinesin. To investigate the physiological function of JIP3, we examined the effect of Jip3 gene disruption in mice. The Jip3-/- mice were unable to breathe and died shortly after birth. Microscopic analysis demonstrated that Jip3 gene disruption causes severe defects in the morphogenesis of the telencephalon. Jip3-/- mice lack the telencephalic commissure, a major connection between the left and right hemispheres of the brain. The central nervous system abnormalities of Jip3-/- mice may be accounted for in part by a reduction in signal transduction by RhoA and its effector ROCK.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;17;9843-8

  • Alternatively spliced products of the human kinesin light chain 1 (KNS2) gene.

    McCart AE, Mahony D and Rothnagel JA

    Department of Biochemistry and Molecular Biology, and Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia, 4072.

    Conventional kinesin is a microtubule-based molecular motor involved in the transport of membranous and non-membranous cargoes. The kinesin holoenzyme exists as a heterotetramer, consisting of two heavy chain and two light chain subunits. It is thought that one function of the light chains is to interact with the cargo. Alternative splicing of kinesin light chain pre-mRNA has been observed in lower organisms, although evidence for alternative splicing of the human gene has not been reported. We have identified 19 variants of the human KNS2 gene (KLC1) that are generated by alternative splicing of downstream exons, but calculate that KNS2 has the potential to produce 285 919 spliceforms. Corresponding spliceforms of the mouse KLC1 gene were also identified. The alternative exons are all located 3' of exon 12 and the novel spliceforms produce both alternative carboxy termini and alternative 3' untranslated regions. The observation of multiple light chain isoforms is consistent with their proposed role in specific cargo attachment.

    Traffic (Copenhagen, Denmark) 2003;4;8;576-80

  • Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport.

    Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST and Busciglio J

    Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.

    Several lines of evidence indicate that alterations in axonal transport play a critical role in Alzheimer's disease (AD) neuropathology, but the molecular mechanisms that control this process are not understood fully. Recent work indicates that presenilin 1 (PS1) interacts with glycogen synthase kinase 3beta (GSK3beta). In vivo, GSK3beta phosphorylates kinesin light chains (KLC) and causes the release of kinesin-I from membrane-bound organelles (MBOs), leading to a reduction in kinesin-I driven motility (Morfini et al., 2002b). To characterize a potential role for PS1 in the regulation of kinesin-based axonal transport, we used PS1-/- and PS1 knock-inM146V (KIM146V) mice and cultured cells. We show that relative levels of GSK3beta activity were increased in cells either in the presence of mutant PS1 or in the absence of PS1 (PS1-/-). Concomitant with increased GSK3beta activity, relative levels of KLC phosphorylation were increased, and the amount of kinesin-I bound to MBOs was reduced. Consistent with a deficit in kinesin-I-mediated fast axonal transport, densities of synaptophysin- and syntaxin-I-containing vesicles and mitochondria were reduced in neuritic processes of KIM146V hippocampal neurons. Similarly, we found reduced levels of PS1, amyloid precursor protein, and synaptophysin in sciatic nerves of KIM146V mice. Thus PS1 appears to modulate GSK3beta activity and the release of kinesin-I from MBOs at sites of vesicle delivery and membrane insertion. These findings suggest that mutations in PS1 may compromise neuronal function by affecting GSK-3 activity and kinesin-I-based motility.

    Funded by: NICHD NIH HHS: HD38466; NINDS NIH HHS: R01 NS023868

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2003;23;11;4499-508

  • BayGenomics: a resource of insertional mutations in mouse embryonic stem cells.

    Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, Meng EC, Lee RE, Yee A, L'Italien L, Chuang PT, Young SG, Skarnes WC, Babbitt PC and Ferrin TE

    Department of Pharmaceutical Chemistry, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.

    The BayGenomics gene-trap resource (http://baygenomics.ucsf.edu) provides researchers with access to thousands of mouse embryonic stem (ES) cell lines harboring characterized insertional mutations in both known and novel genes. Each cell line contains an insertional mutation in a specific gene. The identity of the gene that has been interrupted can be determined from a DNA sequence tag. Approximately 75% of our cell lines contain insertional mutations in known mouse genes or genes that share strong sequence similarities with genes that have been identified in other organisms. These cell lines readily transmit the mutation to the germline of mice and many mutant lines of mice have already been generated from this resource. BayGenomics provides facile access to our entire database, including sequence tags for each mutant ES cell line, through the World Wide Web. Investigators can browse our resource, search for specific entries, download any portion of our database and BLAST sequences of interest against our entire set of cell line sequence tags. They can then obtain the mutant ES cell line for the purpose of generating knockout mice.

    Funded by: NCRR NIH HHS: P41 RR001081, P41 RR01081; NHLBI NIH HHS: U01 HL066621, U01 HL66621

    Nucleic acids research 2003;31;1;278-81

  • An integrated genetic, radiation hybrid, physical and transcription map of a region of distal mouse chromosome 12, including an imprinted locus and the 'Legs at odd angles' (Loa) mutation.

    Witherden AS, Hafezparast M, Nicholson SJ, Ahmad-Annuar A, Bermingham N, Arac D, Rankin J, Iravani M, Ball S, Peters J, Martin JE, Huntley D, Hummerich H, Sergot M and Fisher EM

    Department of Neurogenetics, Imperial College, W2 1PG, London, UK.

    A variety of loci with interesting patterns of regulation such as imprinted expression, and critical functions such as involvement in tumour necrosis factor pathways, map to a distal portion of mouse chromosome 12. This region also contains disease related loci including the 'Legs at odd angles' mutation (Loa) that we are pursuing in a positional cloning project. To further define the region and prepare for comparative sequencing projects, we have produced genetic, radiation hybrid, physical and transcript maps of the region, with probes providing anchors between the maps. We show a summary of 95 markers and 91 genomic clones that has enabled us to identify 18 transcripts including new genes and candidates for Loa which will help in future studies of gene context and regulation.

    Gene 2002;283;1-2;71-82

  • Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP.

    Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA and Goldstein LS

    Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0683, USA.

    Proteolytic processing of amyloid precursor protein (APP) generates amyloid-beta peptide and has been implicated in the pathogenesis of Alzheimer's disease. However, the normal function of APP, whether this function is related to the proteolytic processing of APP, and where this processing takes place in neurons in vivo remain unknown. We have previously shown that the axonal transport of APP in neurons is mediated by the direct binding of APP to the kinesin light chain subunit of kinesin-I, a microtubule motor protein. Here we identify an axonal membrane compartment that contains APP, beta-secretase and presenilin-1. The fast anterograde axonal transport of this compartment is mediated by APP and kinesin-I. Proteolytic processing of APP can occur in the compartment in vitro and in vivo in axons. This proteolysis generates amyloid-beta and a carboxy-terminal fragment of APP, and liberates kinesin-I from the membrane. These results suggest that APP functions as a kinesin-I membrane receptor, mediating the axonal transport of beta-secretase and presenilin-1, and that processing of APP to amyloid-beta by secretases can occur in an axonal membrane compartment transported by kinesin-I.

    Nature 2001;414;6864;643-8

  • Kinesin light-chain KLC3 expression in testis is restricted to spermatids.

    Junco A, Bhullar B, Tarnasky HA and van der Hoorn FA

    Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1.

    Kinesins are tetrameric motor molecules, consisting of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) that are involved in transport of cargo along microtubules. The function of the light chain may be in cargo binding and regulation of kinesin activity. In the mouse, two KLC genes, KLC1 and KLC2, had been identified. KLC1 plays a role in neuronal transport, and KLC2 appears to be more widely expressed. We report the cloning from a testicular cDNA expression library of a mammalian light chain, KLC3. The KLC3 gene is located in close proximity to the ERCC2 gene. KLC3 can be classified as a genuine light chain: it interacts in vitro with the KHC, the interaction is mediated by a conserved heptad repeat sequence, and it associates in vitro with microtubules. In mouse and rat testis, KLC3 protein expression is restricted to round and elongating spermatids, and KLC3 is present in sperm tails. In contrast, KLC1 and KLC2 can only be detected before meiosis in testis. Interestingly, the expression profiles of the three known KHCs and KLC3 differ significantly: Kif5a and Kif5b are not expressed after meiosis, and Kif5c is expressed at an extremely low level in spermatids but is not detectable in sperm tails. Our characterization of the KLC3 gene suggests that it carries out a unique and specialized role in spermatids.

    Funded by: Canadian Institutes of Health Research: 11361, 13680

    Biology of reproduction 2001;64;5;1320-30

  • Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules.

    Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA and Margolis B

    Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. kverhey@hms.harvard.edu

    The cargo that the molecular motor kinesin moves along microtubules has been elusive. We searched for binding partners of the COOH terminus of kinesin light chain, which contains tetratricopeptide repeat (TPR) motifs. Three proteins were found, the c-jun NH(2)-terminal kinase (JNK)-interacting proteins (JIPs) JIP-1, JIP-2, and JIP-3, which are scaffolding proteins for the JNK signaling pathway. Concentration of JIPs in nerve terminals requires kinesin, as evident from the analysis of JIP COOH-terminal mutants and dominant negative kinesin constructs. Coprecipitation experiments suggest that kinesin carries the JIP scaffolds preloaded with cytoplasmic (dual leucine zipper-bearing kinase) and transmembrane signaling molecules (the Reelin receptor, ApoER2). These results demonstrate a direct interaction between conventional kinesin and a cargo, indicate that motor proteins are linked to their membranous cargo via scaffolding proteins, and support a role for motor proteins in spatial regulation of signal transduction pathways.

    The Journal of cell biology 2001;152;5;959-70

  • Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein.

    Bowman AB, Kamal A, Ritchings BW, Philp AV, McGrail M, Gindhart JG and Goldstein LS

    Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093, USA.

    A broadly conserved membrane-associated protein required for the functional interaction of kinesin-I with axonal cargo was identified. Mutations in sunday driver (syd) and the axonal transport motor kinesin-I cause similar phenotypes in Drosophila, including aberrant accumulations of axonal cargoes. GFP-tagged mammalian SYD localizes to tubulovesicular structures that costain for kinesin-I and a marker of the secretory pathway. Coimmunoprecipitation analysis indicates that mouse SYD forms a complex with kinesin-I in vivo. Yeast two-hybrid analysis and in vitro interaction studies reveal that SYD directly binds kinesin-I via the tetratricopeptide repeat (TPR) domain of kinesin light chain (KLC) with K(d) congruent with 200 nM. We propose that SYD mediates the axonal transport of at least one class of vesicles by interacting directly with KLC.

    Funded by: NIGMS NIH HHS: GM35252

    Cell 2000;103;4;583-94

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3.

    Kelkar N, Gupta S, Dickens M and Davis RJ

    Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

    The c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein kinases (MAPKs) is activated in response to the treatment of cells with inflammatory cytokines and by exposure to environmental stress. JNK activation is mediated by a protein kinase cascade composed of a MAPK kinase and a MAPK kinase kinase. Here we describe the molecular cloning of a putative molecular scaffold protein, JIP3, that binds the protein kinase components of a JNK signaling module and facilitates JNK activation in cultured cells. JIP3 is expressed in the brain and at lower levels in the heart and other tissues. Immunofluorescence analysis demonstrated that JIP3 was present in the cytoplasm and accumulated in the growth cones of developing neurites. JIP3 is a member of a novel class of putative MAPK scaffold proteins that may regulate signal transduction by the JNK pathway.

    Molecular and cellular biology 2000;20;3;1030-43

  • Defective kinesin heavy chain behavior in mouse kinesin light chain mutants.

    Rahman A, Kamal A, Roberts EA and Goldstein LS

    Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093-0683, USA.

    Conventional kinesin, kinesin-I, is a heterotetramer of two kinesin heavy chain (KHC) subunits (KIF5A, KIF5B, or KIF5C) and two kinesin light chain (KLC) subunits. While KHC contains the motor activity, the role of KLC remains unknown. It has been suggested that KLC is involved in either modulation of KHC activity or in cargo binding. Previously, we characterized KLC genes in mouse (Rahman, A., D.S. Friedman, and L.S. Goldstein. 1998. J. Biol. Chem. 273:15395-15403). Of the two characterized gene products, KLC1 was predominant in neuronal tissues, whereas KLC2 showed a more ubiquitous pattern of expression. To define the in vivo role of KLC, we generated KLC1 gene-targeted mice. Removal of functional KLC1 resulted in significantly smaller mutant mice that also exhibited pronounced motor disabilities. Biochemical analyses demonstrated that KLC1 mutant mice have a pool of KIF5A not associated with any known KLC subunit. Immunofluorescence studies of sensory and motor neuron cell bodies in KLC1 mutants revealed that KIF5A colocalized aberrantly with the peripheral cis-Golgi marker giantin in mutant cells. Striking changes and aberrant colocalization were also observed in the intracellular distribution of KIF5B and beta'-COP, a component of COP1 coatomer. Taken together, these data best support models that suggest that KLC1 is essential for proper KHC activation or targeting.

    The Journal of cell biology 1999;146;6;1277-88

  • Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins.

    Rahman A, Friedman DS and Goldstein LS

    Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, Program in Biomedical Sciences and Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0683, USA.

    Native kinesin consists of two light chains and two heavy chains in a 1:1 stoichiometric ratio. To date, only one gene for kinesin light chain has been characterized, while a second gene was identified in a genomic sequencing study but not analyzed biochemically. Here we describe new genes encoding kinesin light chains in mouse. One of these light chains is neuronally enriched, while another shows ubiquitous expression. The presence of multiple kinesin light chain genes in mice is especially interesting, since there are two kinesin heavy chain genes in humans (Niclas, J., Navone, F., Hom-Booher, N., and Vale, R. D. (1994) Neuron 12, 1059-1072). To assess the selectivity of kinesin light chain interaction with the heavy chains, we performed immunoprecipitation experiments. The data suggested that the light chains form homodimers with no specificity in their interaction with the two heavy chains. Immunofluorescence and biochemical subfractionation suggested differences in the subcellular localization of the two kinesin light chain gene products. Although both kinesin light chains are distributed throughout the central and peripheral nervous systems, there is enrichment of one in sciatic nerve axons, while the other shows elevated levels in olfactory bulb glomeruli. These results indicate that the mammalian nervous system contains multiple kinesin light chain gene products with potentially distinct functions.

    The Journal of biological chemistry 1998;273;25;15395-403

  • The Jagged2 gene maps to chromosome 12 and is a candidate for the lgl and sm mutations.

    Lan Y, Jiang R, Shawber C, Weinmaster G and Gridley T

    Jackson Laboratory, Bar Harbor, Maine 04609, USA.

    Funded by: NCI NIH HHS: CA34196

    Mammalian genome : official journal of the International Mammalian Genome Society 1997;8;11;875-6

Gene lists (3)

Gene List Source Species Name Description Gene count
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.