G2Cdb::Gene report

Gene id
G00000872
Gene symbol
Dlgap4 (MGI)
Species
Mus musculus
Description
discs, large homolog-associated protein 4 (Drosophila)
Orthologue
G00002121 (Homo sapiens)

Databases (7)

Curated Gene
OTTMUSG00000016033 (Vega mouse gene)
Gene
ENSMUSG00000061689 (Ensembl mouse gene)
228836 (Entrez Gene)
475 (G2Cdb plasticity & disease)
Gene Expression
MGI:2138865 (Allen Brain Atlas)
Marker Symbol
MGI:2138865 (MGI)
Protein Sequence
NP_666240 (RefSeq peptide)

Synonyms (5)

  • DAP4
  • PSD-95/SAP90 binding protein 4
  • SAP90/PSD-95-associated protein 4
  • Sapap4
  • WBP16

Literature (15)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • EUCOMM--the European conditional mouse mutagenesis program.

    Friedel RH, Seisenberger C, Kaloff C and Wurst W

    GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.

    Functional analysis of the mammalian genome is an enormous challenge for biomedical scientists. To facilitate this endeavour, the European Conditional Mouse Mutagenesis Program (EUCOMM) aims at generating up to 12 000 mutations by gene trapping and up to 8000 mutations by gene targeting in mouse embryonic stem (ES) cells. These mutations can be rendered into conditional alleles, allowing Cre recombinase-mediated disruption of gene function in a time- and tissue-specific manner. Furthermore, the EUCOMM program will generate up to 320 mouse lines from the EUCOMM resource and up to 20 new Cre driver mouse lines. The EUCOMM resource of vectors, mutant ES cell lines and mutant mice will be openly available to the scientific community. EUCOMM will be one of the cornerstones of an international effort to create a global mouse mutant resource.

    Briefings in functional genomics & proteomics 2007;6;3;180-5

  • Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations.

    Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M, Weinandy F, Waidelich M, Longo D, Gehrig P, Potthast F, Rutishauser D, Gerrits B, Panse C, Schlapbach R and Mansuy IM

    Brain Research Institute, Medical Faculty of the University of Zürich, Switzerland.

    Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular compartments of brain cells. Following highly sensitive phosphopeptide enrichment using immobilized metal affinity chromatography and mass spectrometry, we isolated and identified 974 unique phosphorylation sites on 499 proteins, many of which are novel. To further explore the significance of specific phosphorylation sites, we used isobaric peptide labels and determined the absolute quantity of both phosphorylated and non-phosphorylated peptides of candidate phosphoproteins and estimated phosphorylation stoichiometry. The analyses of phosphorylation dynamics using differentially stimulated synaptic terminal preparations revealed activity-dependent changes in phosphorylation stoichiometry of target proteins. Using this method, we were able to differentiate between distinct isoforms of Ca2+/calmodulin-dependent protein kinase (CaMKII) and identify a novel activity-regulated phosphorylation site on the glutamate receptor subunit GluR1. Together these data illustrate that mass spectrometry-based methods can be used to determine activity-dependent changes in phosphorylation stoichiometry on candidate phosphopeptides following large scale phosphoproteome analysis of brain tissue.

    Molecular & cellular proteomics : MCP 2007;6;2;283-93

  • Comprehensive identification of phosphorylation sites in postsynaptic density preparations.

    Trinidad JC, Specht CG, Thalhammer A, Schoepfer R and Burlingame AL

    Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA.

    In the mammalian central nervous system, the structure known as the postsynaptic density (PSD) is a dense complex of proteins whose function is to detect and respond to neurotransmitter released from presynaptic axon terminals. Regulation of protein phosphorylation in this molecular machinery is critical to the activity of its components, which include neurotransmitter receptors, kinases/phosphatases, scaffolding molecules, and proteins regulating cytoskeletal structure. To characterize the phosphorylation state of proteins in PSD samples, we combined strong cation exchange (SCX) chromatography with IMAC. Initially, tryptic peptides were separated by cation exchange and analyzed by reverse phase chromatography coupled to tandem mass spectrometry, which led to the identification of phosphopeptides in most SCX fractions. Because each of these individual fractions was too complex to characterize completely in single LC-MS/MS runs, we enriched for phosphopeptides by performing IMAC on each SCX fraction, yielding at least a 3-fold increase in identified phosphopeptides relative to either approach alone (SCX or IMAC). This enabled us to identify at least one site of phosphorylation on 23% (287 of 1,264) of all proteins found to be present in the postsynaptic density preparation. In total, we identified 998 unique phosphorylated peptides, mapping to 723 unique sites of phosphorylation. At least one exact site of phosphorylation was determined on 62% (621 of 998) of all phosphopeptides, and approximately 80% of identified phosphorylation sites are novel.

    Funded by: NCRR NIH HHS: RR14606; Wellcome Trust

    Molecular & cellular proteomics : MCP 2006;5;5;914-22

  • Behavioral testing upregulates pCaMKII, BDNF, PSD-95 and egr-1 in hippocampus of FVB/N mice.

    Pollak DD, Herkner K, Hoeger H and Lubec G

    Department of Pediatrics, Division of Pediatric Neuroscience, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.

    Several protein cascades are proposed to be involved in the formation of synaptic plasticity and have been linked to neuronal information processing and storage. Although modified expression of specific proteins following behavioral testing has been shown, no systematic approach for their concomitant determination has been reported. We therefore determined hippocampal expression of signaling proteins, transcription factors and synaptosomal-associated proteins representing key elements of neuronal plasticity in mice following behavioral training. Male FVB/N mice, 12 weeks of age, were used for behavioral testing. After completion of tests mice were sacrificed and hippocampi were dissected. Levels of total and autophosphorylated (T286) alphacalcium-calmodulin dependent kinase II (CaMKII, pCaMKII), total and phosphorylated mitogen-activated protein kinase (MAPK, pMAPK), total and phosphorylated calcium-responsive element binding (creb, pcreb), early-growth response protein 1 (egr-1), brain derived neurotrophic factor (BDNF), tyrosine kinase receptor B (trk B), drebrin and postsynaptic density-95 (PSD-95) were quantified in hippocampi of behavior trained animals (n=7) and naïve caged controls (n=7). Expression of pCaMKII, BDNF, PSD-95 and egr-1 was significantly increased in the behavior-trained group. Expression of total CaMKII, total and pMAPK, total and pcreb, trk B and drebrin was comparable between groups. Detection of significantly increased pCaMKII, BDNF, PSD-95 and egr-1 induced by behavioral training at the protein level per se is intriguing and supports the proposed importance of these molecules for neuronal information storage.

    Behavioural brain research 2005;163;1;128-35

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • Phosphoproteomic analysis of the developing mouse brain.

    Ballif BA, Villén J, Beausoleil SA, Schwartz D and Gygi SP

    Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

    Proper development of the mammalian brain requires the precise integration of numerous temporally and spatially regulated stimuli. Many of these signals transduce their cues via the reversible phosphorylation of downstream effector molecules. Neuronal stimuli acting in concert have the potential of generating enormous arrays of regulatory phosphoproteins. Toward the global profiling of phosphoproteins in the developing brain, we report here the use of a mass spectrometry-based methodology permitting the first proteomic-scale phosphorylation site analysis of primary animal tissue, identifying over 500 protein phosphorylation sites in the developing mouse brain.

    Funded by: NHGRI NIH HHS: HG00041

    Molecular & cellular proteomics : MCP 2004;3;11;1093-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse.

    Welch JM, Wang D and Feng G

    Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

    The supramolecular anchoring/signaling complex at the postsynaptic density of glutamatergic synapses has been proposed to play a key role in regulating synaptic function and plasticity. One class of proteins present in the complex is the SAP90/PSD-95-associated protein family (SAPAPs). The SAPAPs, identified by their direct interaction with PSD-95 family proteins, were initially proposed to function in the anchoring/signaling complex as linker proteins between glutamate receptor binding proteins and the cytoskeleton. However, recent studies have indicated that the SAPAPs also bind to signaling molecules and may thus have multiple roles at synapses. Four homologous genes encoding SAPAP proteins have been previously identified. As a first step toward understanding the physiological function of the SAPAPs, we have investigated in detail, at both the mRNA and protein levels, the localization of the individual SAPAP genes in the adult murine nervous system. We find that the SAPAP mRNAs are highly, yet differentially, expressed in many regions of the brain, including the hippocampus and cerebellum. Furthermore, SAPAP3 mRNA is targeted to dendrites, whereas SAPAP1, -2, and -4 mRNAs are detected mainly in cell bodies. The SAPAP proteins are localized at synapses in a manner consistent with mRNA expression. Surprisingly, in addition to glutamatergic synapse localization, antibody staining also reveals that the SAPAP proteins are localized at cholinergic synapses, including neuronal cholinergic synapses and the neuromuscular junction. Together, these results indicate that the SAPAPs are general components of excitatory synapses and that each of these proteins may perform a distinct function.

    Funded by: NINDS NIH HHS: R01 NS42609

    The Journal of comparative neurology 2004;472;1;24-39

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.

    Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H and Ruiz P

    Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.

    A major challenge of the postgenomic era is the functional characterization of every single gene within the mammalian genome. In an effort to address this challenge, we assembled a collection of mutations in mouse embryonic stem (ES) cells, which is the largest publicly accessible collection of such mutations to date. Using four different gene-trap vectors, we generated 5,142 sequences adjacent to the gene-trap integration sites (gene-trap sequence tags; http://genetrap.de) from >11,000 ES cell clones. Although most of the gene-trap vector insertions occurred randomly throughout the genome, we found both vector-independent and vector-specific integration "hot spots." Because >50% of the hot spots were vector-specific, we conclude that the most effective way to saturate the mouse genome with gene-trap insertions is by using a combination of gene-trap vectors. When a random sample of gene-trap integrations was passaged to the germ line, 59% (17 of 29) produced an observable phenotype in transgenic mice, a frequency similar to that achieved by conventional gene targeting. Thus, gene trapping allows a large-scale and cost-effective production of ES cell clones with mutations distributed throughout the genome, a resource likely to accelerate genome annotation and the in vivo modeling of human disease.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;17;9918-22

  • Prediction of the coding sequences of mouse homologues of KIAA gene: II. The complete nucleotide sequences of 400 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries.

    Okazaki N, Kikuno R, Ohara R, Inamoto S, Aizawa H, Yuasa S, Nakajima D, Nagase T, Ohara O and Koga H

    Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.

    We have accumulated information of the coding sequences of uncharacterized human genes, which are known as KIAA genes, and the number of these genes exceeds 2000 at present. As an extension of this sequencing project, we recently have begun to accumulate mouse KIAA-homologous cDNAs, because it would be useful to prepare a set of human and mouse homologous cDNA pairs for further functional analysis of the KIAA genes. We herein present the entire sequences of 400 mouse KIAA cDNA clones and 4 novel cDNA clones which were incidentally identified during this project. Most of clones entirely sequenced in this study were selected by computer-assisted analysis of terminal sequences of the cDNAs. The average size of the 404 cDNA sequences reached 5.3 kb and that of the deduced amino acid sequences from these cDNAs was 868 amino acid residues. The results of sequence analyses of these clones showed that single mouse KIAA cDNAs bridged two different human KIAA cDNAs in some cases, which indicated that these two human KIAA cDNAs were derived from single genes although they had been supposed to originate from different genes. Furthermore, we successfully mapped all the mouse KIAA cDNAs along the genome using a recently published mouse genome draft sequence.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2003;10;1;35-48

  • BayGenomics: a resource of insertional mutations in mouse embryonic stem cells.

    Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, Meng EC, Lee RE, Yee A, L'Italien L, Chuang PT, Young SG, Skarnes WC, Babbitt PC and Ferrin TE

    Department of Pharmaceutical Chemistry, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.

    The BayGenomics gene-trap resource (http://baygenomics.ucsf.edu) provides researchers with access to thousands of mouse embryonic stem (ES) cell lines harboring characterized insertional mutations in both known and novel genes. Each cell line contains an insertional mutation in a specific gene. The identity of the gene that has been interrupted can be determined from a DNA sequence tag. Approximately 75% of our cell lines contain insertional mutations in known mouse genes or genes that share strong sequence similarities with genes that have been identified in other organisms. These cell lines readily transmit the mutation to the germline of mice and many mutant lines of mice have already been generated from this resource. BayGenomics provides facile access to our entire database, including sequence tags for each mutant ES cell line, through the World Wide Web. Investigators can browse our resource, search for specific entries, download any portion of our database and BLAST sequences of interest against our entire set of cell line sequence tags. They can then obtain the mutant ES cell line for the purpose of generating knockout mice.

    Funded by: NCRR NIH HHS: P41 RR001081, P41 RR01081; NHLBI NIH HHS: U01 HL066621, U01 HL66621

    Nucleic acids research 2003;31;1;278-81

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • A novel pro-Arg motif recognized by WW domains.

    Bedford MT, Sarbassova D, Xu J, Leder P and Yaffe MB

    Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.

    WW domains mediate protein-protein interactions through binding to short proline-rich sequences. Two distinct sequence motifs, PPXY and PPLP, are recognized by different classes of WW domains, and another class binds to phospho-Ser-Pro sequences. We now describe a novel Pro-Arg sequence motif recognized by a different class of WW domains using data from oriented peptide library screening, expression cloning, and in vitro binding experiments. The prototype member of this group is the WW domain of formin-binding protein 30 (FBP30), a p53-regulated molecule whose WW domains bind to Pro-Arg-rich cellular proteins. This new Pro-Arg sequence motif re-classifies the organization of WW domains based on ligand specificity, and the Pro-Arg class now includes the WW domains of FBP21 and FE65. A structural model is presented which rationalizes the distinct motifs selected by the WW domains of YAP, Pin1, and FBP30. The Pro-Arg motif identified for WW domains often overlaps with SH3 domain motifs within protein sequences, suggesting that the same extended proline-rich sequence could form discrete SH3 or WW domain complexes to transduce distinct cellular signals.

    Funded by: NHLBI NIH HHS: HL03601; NIGMS NIH HHS: GM56203

    The Journal of biological chemistry 2000;275;14;10359-69

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000050 G2C Mus musculus TAP-PSD-95-CORE TAP-PSD-95 pull-down core list 120
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.