G2Cdb::Gene report

Gene id
G00000827
Gene symbol
Sgip1 (MGI)
Species
Mus musculus
Description
SH3-domain GRB2-like (endophilin) interacting protein 1
Orthologue
G00002076 (Homo sapiens)

Databases (8)

Curated Gene
OTTMUSG00000008057 (Vega mouse gene)
Gene
ENSMUSG00000028524 (Ensembl mouse gene)
73094 (Entrez Gene)
1258 (G2Cdb plasticity & disease)
Gene Expression
NM_144906 (Allen Brain Atlas)
73094 (Genepaint)
Marker Symbol
MGI:1920344 (MGI)
Protein Sequence
Q8VD37 (UniProt)

Literature (10)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation.

    Reider A, Barker SL, Mishra SK, Im YJ, Maldonado-Báez L, Hurley JH, Traub LM and Wendland B

    Department of Biology, The Johns Hopkins University, Baltimore, MD 21218-2685, USA.

    Internalization of diverse transmembrane cargos from the plasma membrane requires a similarly diverse array of specialized adaptors, yet only a few adaptors have been characterized. We report the identification of the muniscin family of endocytic adaptors that is conserved from yeast to human beings. Solving the structures of yeast muniscin domains confirmed the unique combination of an N-terminal domain homologous to the crescent-shaped membrane-tubulating EFC/F-BAR domains and a C-terminal domain homologous to cargo-binding mu homology domains (muHDs). In vitro and in vivo assays confirmed membrane-tubulation activity for muniscin EFC/F-BAR domains. The muHD domain has conserved interactions with the endocytic adaptor/scaffold Ede1/eps15, which influences muniscin localization. The transmembrane protein Mid2, earlier implicated in polarized Rho1 signalling, was identified as a cargo of the yeast adaptor protein. These and other data suggest a model in which the muniscins provide a combined adaptor/membrane-tubulation activity that is important for regulating endocytosis.

    Funded by: Intramural NIH HHS; NIDDK NIH HHS: R01 DK053249, R01 DK53249; NIGMS NIH HHS: GM07231, R01 GM060979, R01 GM60979, T32 GM007231

    The EMBO journal 2009;28;20;3103-16

  • SGIP1alpha is an endocytic protein that directly interacts with phospholipids and Eps15.

    Uezu A, Horiuchi A, Kanda K, Kikuchi N, Umeda K, Tsujita K, Suetsugu S, Araki N, Yamamoto H, Takenawa T and Nakanishi H

    Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.

    SGIP1 has been shown to be an endophilin-interacting protein that regulates energy balance, but its function is not fully understood. Here, we identified its splicing variant of SGIP1 and named it SGIP1alpha. SGIP1alpha bound to phosphatidylserine and phosphoinositides and deformed the plasma membrane and liposomes into narrow tubules, suggesting the involvement in vesicle formation during endocytosis. SGIP1alpha furthermore bound to Eps15, an important adaptor protein of clathrin-mediated endocytic machinery. SGIP1alpha was colocalized with Eps15 and the AP-2 complex. Upon epidermal growth factor (EGF) stimulation, SGIP1alpha was colocalized with EGF at the plasma membrane, indicating the localization of SGIP1alpha at clathrin-coated pits/vesicles. SGIP1alpha overexpression reduced transferrin and EGF endocytosis. SGIP1alpha knockdown reduced transferrin endocytosis but not EGF endocytosis; this difference may be due to the presence of redundant pathways in EGF endocytosis. These results suggest that SGIP1alpha plays an essential role in clathrin-mediated endocytosis by interacting with phospholipids and Eps15.

    The Journal of biological chemistry 2007;282;36;26481-9

  • Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations.

    Munton RP, Tweedie-Cullen R, Livingstone-Zatchej M, Weinandy F, Waidelich M, Longo D, Gehrig P, Potthast F, Rutishauser D, Gerrits B, Panse C, Schlapbach R and Mansuy IM

    Brain Research Institute, Medical Faculty of the University of Zürich, Switzerland.

    Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular compartments of brain cells. Following highly sensitive phosphopeptide enrichment using immobilized metal affinity chromatography and mass spectrometry, we isolated and identified 974 unique phosphorylation sites on 499 proteins, many of which are novel. To further explore the significance of specific phosphorylation sites, we used isobaric peptide labels and determined the absolute quantity of both phosphorylated and non-phosphorylated peptides of candidate phosphoproteins and estimated phosphorylation stoichiometry. The analyses of phosphorylation dynamics using differentially stimulated synaptic terminal preparations revealed activity-dependent changes in phosphorylation stoichiometry of target proteins. Using this method, we were able to differentiate between distinct isoforms of Ca2+/calmodulin-dependent protein kinase (CaMKII) and identify a novel activity-regulated phosphorylation site on the glutamate receptor subunit GluR1. Together these data illustrate that mass spectrometry-based methods can be used to determine activity-dependent changes in phosphorylation stoichiometry on candidate phosphopeptides following large scale phosphoproteome analysis of brain tissue.

    Molecular & cellular proteomics : MCP 2007;6;2;283-93

  • Comprehensive identification of phosphorylation sites in postsynaptic density preparations.

    Trinidad JC, Specht CG, Thalhammer A, Schoepfer R and Burlingame AL

    Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA.

    In the mammalian central nervous system, the structure known as the postsynaptic density (PSD) is a dense complex of proteins whose function is to detect and respond to neurotransmitter released from presynaptic axon terminals. Regulation of protein phosphorylation in this molecular machinery is critical to the activity of its components, which include neurotransmitter receptors, kinases/phosphatases, scaffolding molecules, and proteins regulating cytoskeletal structure. To characterize the phosphorylation state of proteins in PSD samples, we combined strong cation exchange (SCX) chromatography with IMAC. Initially, tryptic peptides were separated by cation exchange and analyzed by reverse phase chromatography coupled to tandem mass spectrometry, which led to the identification of phosphopeptides in most SCX fractions. Because each of these individual fractions was too complex to characterize completely in single LC-MS/MS runs, we enriched for phosphopeptides by performing IMAC on each SCX fraction, yielding at least a 3-fold increase in identified phosphopeptides relative to either approach alone (SCX or IMAC). This enabled us to identify at least one site of phosphorylation on 23% (287 of 1,264) of all proteins found to be present in the postsynaptic density preparation. In total, we identified 998 unique phosphorylated peptides, mapping to 723 unique sites of phosphorylation. At least one exact site of phosphorylation was determined on 62% (621 of 998) of all phosphopeptides, and approximately 80% of identified phosphorylation sites are novel.

    Funded by: NCRR NIH HHS: RR14606; Wellcome Trust

    Molecular & cellular proteomics : MCP 2006;5;5;914-22

  • Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1, a novel neuronal protein that regulates energy balance.

    Trevaskis J, Walder K, Foletta V, Kerr-Bayles L, McMillan J, Cooper A, Lee S, Bolton K, Prior M, Fahey R, Whitecross K, Morton GJ, Schwartz MW and Collier GR

    Metabolic Research Unit, School of Exercise and Nutrition Sciences, Deakin University, Geelong 3217, Victoria, Australia.

    To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (A(y)/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.

    Funded by: NIDDK NIH HHS: DK12829, DK52989, DK68304; NINDS NIH HHS: NS32273

    Endocrinology 2005;146;9;3757-64

  • Proteomic analysis of in vivo phosphorylated synaptic proteins.

    Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, Choudhary JS and Grant SG

    Division of Neuroscience, University of Edinburgh, Edinburgh EH8 9JZ, UK.

    In the nervous system, protein phosphorylation is an essential feature of synaptic function. Although protein phosphorylation is known to be important for many synaptic processes and in disease, little is known about global phosphorylation of synaptic proteins. Heterogeneity and low abundance make protein phosphorylation analysis difficult, particularly for mammalian tissue samples. Using a new approach, combining both protein and peptide immobilized metal affinity chromatography and mass spectrometry data acquisition strategies, we have produced the first large scale map of the mouse synapse phosphoproteome. We report over 650 phosphorylation events corresponding to 331 sites (289 have been unambiguously assigned), 92% of which are novel. These represent 79 proteins, half of which are novel phosphoproteins, and include several highly phosphorylated proteins such as MAP1B (33 sites) and Bassoon (30 sites). An additional 149 candidate phosphoproteins were identified by profiling the composition of the protein immobilized metal affinity chromatography enrichment. All major synaptic protein classes were observed, including components of important pre- and postsynaptic complexes as well as low abundance signaling proteins. Bioinformatic and in vitro phosphorylation assays of peptide arrays suggest that a small number of kinases phosphorylate many proteins and that each substrate is phosphorylated by many kinases. These data substantially increase existing knowledge of synapse protein phosphorylation and support a model where the synapse phosphoproteome is functionally organized into a highly interconnected signaling network.

    The Journal of biological chemistry 2005;280;7;5972-82

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Database resources of the National Center for Biotechnology Information.

    Wheeler DL, Church DM, Lash AE, Leipe DD, Madden TL, Pontius JU, Schuler GD, Schriml LM, Tatusova TA, Wagner L and Rapp BA

    National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA. wheeler@ncbi.nlm.nih.gov

    In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI's Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, GeneMap'99, Human-Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP), SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheri-tance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih. gov.

    Nucleic acids research 2001;29;1;11-6

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.