G2Cdb::Gene report

Gene id
G00000805
Gene symbol
Sri (MGI)
Species
Mus musculus
Description
sorcin
Orthologue
G00002054 (Homo sapiens)

Databases (5)

Gene
ENSMUSG00000003161 (Ensembl mouse gene)
1224 (G2Cdb plasticity & disease)
Gene Expression
NM_025618 (Allen Brain Atlas)
Marker Symbol
MGI:98419 (MGI)
Protein Sequence
Q6P069 (UniProt)

Synonyms (1)

  • Sor

Literature (7)

Pubmed - other

  • Presenilin 2 regulates the systolic function of heart by modulating Ca2+ signaling.

    Takeda T, Asahi M, Yamaguchi O, Hikoso S, Nakayama H, Kusakari Y, Kawai M, Hongo K, Higuchi Y, Kashiwase K, Watanabe T, Taniike M, Nakai A, Nishida K, Kurihara S, Donoviel DB, Bernstein A, Tomita T, Iwatsubo T, Hori M and Otsu K

    Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.

    Genetic studies of families with familial Alzheimer's disease have implicated presenilin 2 (PS2) in the pathogenesis of this disease. PS2 is ubiquitously expressed in various tissues including hearts. In this study, we examined cardiac phenotypes of PS2 knockout (PS2KO) mice to elucidate a role of PS2 in hearts. PS2KO mice developed normally with no evidence of cardiac hypertrophy and fibrosis. Invasive hemodynamic analysis revealed that cardiac contractility in PS2KO mice increased compared with that in their littermate controls. A study of isolated papillary muscle showed that peak amplitudes of Ca2+ transients and peak tension were significantly higher in PS2KO mice than those in their littermate controls. PS2KO mouse hearts exhibited no change in expression of calcium regulatory proteins. Since it has been demonstrated that PS2 in brain interacts with sorcin, which serves as a modulator of cardiac ryanodine receptor (RyR2), we tested whether PS2 also interacts with RyR2. Immmunoprecipitation analysis showed that PS2, sorcin, and RyR2 interact with each other in HEK-293 cells overexpressing these proteins or in mouse hearts. Immunohistochemistry of heart muscle indicated that PS2 colocalizes with RyR2 and sorcin at the Z-lines. Elevated Ca2+ attenuated the association of RyR2 with PS2, whereas the association of sorcin with PS2 was enhanced. The enhanced Ca2+ transients and contractility in PS2KO mice were observed at low extracellular [Ca2+] but not at high levels of [Ca2+]. Taken together, our results suggest that PS2 plays an important role in cardiac excitation-contraction coupling by interacting with RyR2.

    FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2005;19;14;2069-71

  • The lack of annexin A7 affects functions of primary astrocytes.

    Clemen CS, Herr C, Hövelmeyer N and Noegel AA

    Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Federal Republic of Germany.

    Annexin A7 is a Ca(2+)- and phospholipid-binding protein, which is thought to function in membrane organization and Ca(2+)-dependent signaling processes. It localizes to different cellular compartments and exists in a 47- and 51-kDa isoform with the large isoform being expressed in brain, skeletal, and heart muscle. In human temporal brain annexin A7 was found exclusively in astroglial cells. As astrocytes are thought to play key roles in several processes of the brain we focused on Ca(2+)-dependent signaling processes and astrocyte proliferation. Primary astrocytes from an anxA7(-/-) mouse exhibited an increased velocity of mechanically induced astrocytic Ca(2+) waves as compared to wild type. We also observed a remarkably increased proliferation rate in cultured mutant astrocytes. A search for annexin A7 binding partners with advanced biochemical methods confirmed sorcin as the major binding protein. However, in vivo GFP-tagged annexin A7 and sorcin appeared to redistribute mainly independently from each other in wild type and in mutant astrocytes. Our results favor an involvement of annexin A7 in Ca(2+)-dependent signaling or Ca(2+) homeostasis in astrocytes.

    Experimental cell research 2003;291;2;406-14

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • Function, expression and localization of annexin A7 in platelets and red blood cells: insights derived from an annexin A7 mutant mouse.

    Herr C, Clemen CS, Lehnert G, Kutschkow R, Picker SM, Gathof BS, Zamparelli C, Schleicher M and Noegel AA

    Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str, 52, 50931 Cologne, Germany. Claudia.Herr@uni-koeln.de

    Background: Annexin A7 is a Ca2+- and phospholipid-binding protein expressed as a 47 and 51 kDa isoform, which is thought to be involved in membrane fusion processes. Recently the 47 kDa isoform has been identified in erythrocytes where it was proposed to be a key component in the process of the Ca2+-dependent vesicle release, a process with which red blood cells might protect themselves against an attack by for example complement components.

    Results: The role of annexin A7 in red blood cells was addressed in erythrocytes from anxA7-/- mice. Interestingly, the Ca2+-mediated vesiculation process was not impaired. Also, the membrane organization appeared not to be disturbed as assessed using gradient fractionation studies. Instead, lack of annexin A7 led to an altered cell shape and increased osmotic resistance of red blood cells. Annexin A7 was also identified in platelets. In these cells its loss led to a slightly slower aggregation velocity which seems to be compensated by an increased number of platelets. The results appear to rule out an important role of annexin A7 in membrane fusion processes occurring in red blood cells. Instead the protein might be involved in the organization of the membrane cytoskeleton. Red blood cells may represent an appropriate model to study the role of annexin A7 in cellular processes.

    Conclusion: We have demonstrated the presence of both annexin A7 isoforms in red blood cells and the presence of the small isoform in platelets. In both cell types the loss of annexin A7 impairs cellular functions. The defects observed are however not compatible with a crucial role for annexin A7 in membrane fusion processes in these cell types.

    BMC biochemistry 2003;4;8

  • [Relationship between amplicon composition and cytologic type of structures containing amplified DNA in murine P388 cells with multiple drug resistance].

    Il'inskaia GV, Demidova NS and Kopnin BP

    Previously, we showed that, development of multidrug resistance (MDR) in mouse P388 leukemia cells, is often associated with the appearance of newly-formed chromosome-like structures that contain amplified copies of the mdrl gene. In the present study, we compared amplicon content in P388 sublines showing different types of these structures. A strong correlation between the formation of specific acentric markers consisting of two identical arms and the absence of the sorcin gene co-amplification was found. In all the sublines containing other types of chromosome-like structures, the sorcin gene is co-amplified.

    Genetika 1995;31;10;1449-51

  • The reeler gene: a clue to brain development and evolution.

    Goffinet AM

    Department of Physiology, FUNDP Medical School, Namur, Belgium.

    Reeler mutant mice are characterized by profuse anomalies of cell positioning in the telencephalic and cerebellar cortices as well as by distinct malformations in non-cortical structures such as the inferior olive, the facial nerve nucleus and other brainstem nuclei. Studies of the embryonic development of these structures reveal that the early cell patterns formed by reeler neurons is consistently affected, so that the reeler gene plays an important role in the development of nerve cell patterns. Comparative studies of cortical development in reptiles suggest further that the mammalian type of cortical architectonics has been acquired progressively during brain evolution, and reveal some similarities in early cortical organization between reeler and reptilian, particularly chelonian, embryos, most notably the presence of an inverted gradient of cortical histogenesis. These observations point to a possible role of the reeler gene in cortical evolution. Although the factors responsible for the formation of neural cell patterns are largely unknown, most data point to the importance of cell-cell interactions. Cell-interaction molecules have probably been acquired during brain evolution and the reeler gene could act by perturbing, directly or indirectly, such cell interactions. The characterization and thus the cloning of the reeler gene is therefore important for our understanding of brain development. Recent data on the fine chromosomal mapping of the mutation prior to its positional cloning are reported.

    The International journal of developmental biology 1992;36;1;101-7

  • Estimation of genetic distances between "reeler" and nearby loci on mouse chromosome 5.

    Dernoncourt C, Ruelle D and Goffinet AM

    Department of Physiology, FUNDP School of Medicine, Namur, Belgium.

    Genetic distances between reeler (gene symbol rl) and the adjacent loci Pgy-1, Sor, and En-2 on proximal chromosome 5 were estimated using a backcross panel between rlOrl/rlOrl BALB/c and C57 mice. Pgy-1 and Sor are located approximately 7 cM away from and centromeric to reeler, whereas En-2 is located distally, approximately 8 cM from reeler. Backcrosses between rlOrl/rlOrl BALB/c and mice with the T31H translocation showed that the breakpoint is located less than 2 cM from reeler. Together with previous work, these observations suggest the following gene order: Cen-Sor/Pgy-1-rl-T31H-En-2-other loci.

    Genomics 1991;11;4;1167-9

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.