G2Cdb::Gene report

Gene id
G00000621
Gene symbol
Cse1l (MGI)
Species
Mus musculus
Description
chromosome segregation 1-like (S. cerevisiae)
Orthologue
G00001870 (Homo sapiens)

Databases (10)

Curated Gene
OTTMUSG00000001165 (Vega mouse gene)
Gene
ENSMUSG00000002718 (Ensembl mouse gene)
110750 (Entrez Gene)
152 (G2Cdb plasticity & disease)
Gene Expression
NM_023565 (Allen Brain Atlas)
EMAGE:2247 (EMAGE)
110750 (Genepaint)
Literature
601342 (OMIM)
Marker Symbol
MGI:1339951 (MGI)
Protein Sequence
Q9ERK4 (UniProt)

Synonyms (3)

  • Capts
  • Cas
  • Xpo2

Literature (13)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • The SRC homology 2 domain protein Shep1 plays an important role in the penetration of olfactory sensory axons into the forebrain.

    Wang L, Vervoort V, Wallez Y, Coré N, Cremer H and Pasquale EB

    Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.

    Shep1 is a multidomain signaling protein that forms a complex with Cas, a key scaffolding component of integrin signaling pathways, to promote the migration of non-neuronal cells. However, the physiological function of Shep1 in the nervous system remains unknown. Interestingly, we found that Shep1 and Cas are both concentrated in the axons of developing olfactory sensory neurons (OSNs). These neurons extend their axons from the olfactory epithelium to the olfactory bulb located at the anterior tip of the forebrain. However, in developing Shep1 knock-out mice, we did not detect penetration of OSN axons across the pial basement membrane surrounding the olfactory bulb, suggesting that Shep1 function is important for the establishment of OSN connections with the olfactory bulb. Interestingly, we observed reduced levels of Cas tyrosine phosphorylation in OSN axons of Shep1 knock-out mice, suggesting compromised Cas signaling function. Indeed, when embedded in a three-dimensional gel of basement membrane proteins, explants from Shep1 knock-out olfactory epithelium extend neuronal processes less efficiently than explants from control epithelium. Furthermore, ectopic expression of Shep1 in non-neuronal cells promotes cell migration through a collagen gel. Later in development, loss of Shep1 function also causes a marked reduction in olfactory bulb size and disruption of bulb lamination, which may be primarily attributable to the defective innervation. The greatly reduced OSN connections and hypoplasia of the olfactory bulb, likely resulting in anosmia, are reminiscent of the symptoms of Kallmann syndrome, a human developmental disease that can be caused by mutations in a growing number of genes.

    Funded by: NCI NIH HHS: CA102583, P01 CA102583, P01 CA102583-05; NICHD NIH HHS: HD025938, P01 HD025938, P01 HD025938-190008

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2010;30;39;13201-10

  • Serum cellular apoptosis susceptibility protein is a potential prognostic marker for metastatic colorectal cancer.

    Stella Tsai CS, Chen HC, Tung JN, Tsou SS, Tsao TY, Liao CF, Chen YC, Yeh CY, Yeh KT and Jiang MC

    Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Wuchi, Taichung County 435, Taiwan.

    Colorectal cancer has high rates of recurrence and metastasis. Many patients with similar histopathological features show significantly different clinical outcomes, and these differences are primarily related to metastases undetected by current diagnostic methods. There is no useful serological marker for metastatic disease. We investigated the cellular apoptosis susceptibility (CSE1L/CAS) protein in comparison with carcinoembryonic antigen (CEA) as a marker for metastatic colorectal cancer. Using serum from 103 patients with stage I, II, III, and IV disease, CSE1L was detected in 36.0% (9 of 25), 57.7% (15 of 26), 71.4% (30 of 42), and 88.9% (8 of 9) of patients, respectively; a pathological CEA level was found in 16.0% (4 of 25), 42.3% (11 of 26), 47.6% (20 of 42), and 77.8% (7 of 9) of patients, respectively; a combined CSE1L/CEA assay was detected in 48.0% (12 of 25), 65.4% (17 of 26), 88.1% (37 of 42), and 100% (9 of 9) of patients, respectively. Lymphatic metastasis is an important predictor of poor prognosis and crucial for determination of therapeutic strategy. Serum CSE1L was detected in 74.5% (38 of 51) of patients with lymph node metastasis, whereas a pathological CEA level was found in only 52.9% (27 of 51) of the same patients (P < 0.001); the combined CSE1L/CEA assay increased sensitivity to 90.2% (46 of 51). Animal experiments showed CSE1L reduction in B16-F10 melanoma cells correlated with decreased metastasis to the colorectal tract in C57BL/6 mice. These results indicate that assay of serum CSE1L may facilitate diagnosis of colorectal cancer lymphatic metastases; furthermore, CSE1L is a possible therapeutic target.

    The American journal of pathology 2010;176;4;1619-28

  • Tagging genes with cassette-exchange sites.

    Cobellis G, Nicolaus G, Iovino M, Romito A, Marra E, Barbarisi M, Sardiello M, Di Giorgio FP, Iovino N, Zollo M, Ballabio A and Cortese R

    Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy.

    In an effort to make transgenesis more flexible and reproducible, we developed a system based on novel 5' and 3' 'gene trap' vectors containing heterospecific Flp recognition target sites and the corresponding 'exchange' vectors allowing the insertion of any DNA sequence of interest into the trapped locus. Flp-recombinase-mediated cassette exchange was demonstrated to be highly efficient in our system, even in the absence of locus-specific selection. The feasibility of constructing a library of ES cell clones using our gene trap vectors was tested and a thousand insertion sites were characterized, following electroporation in ES cells, by RACE-PCR and sequencing. We validated the system in vivo for two trapped loci in transgenic mice and demonstrated that the reporter transgenes inserted into the trapped loci have an expression pattern identical to the endogenous genes. We believe that this system will facilitate in vivo studies of gene function and large-scale generation of mouse models of human diseases, caused by not only loss but also gain of function alleles.

    Funded by: Telethon: TGM03S01, TGM06S01

    Nucleic acids research 2005;33;4;e44

  • Mouse brain organization revealed through direct genome-scale TF expression analysis.

    Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk DI, Tsung EF, Cai Z, Alberta JA, Cheng LP, Liu Y, Stenman JM, Valerius MT, Billings N, Kim HA, Greenberg ME, McMahon AP, Rowitch DH, Stiles CD and Ma Q

    Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

    In the developing brain, transcription factors (TFs) direct the formation of a diverse array of neurons and glia. We identifed 1445 putative TFs in the mouse genome. We used in situ hybridization to map the expression of over 1000 of these TFs and TF-coregulator genes in the brains of developing mice. We found that 349 of these genes showed restricted expression patterns that were adequate to describe the anatomical organization of the brain. We provide a comprehensive inventory of murine TFs and their expression patterns in a searchable brain atlas database.

    Science (New York, N.Y.) 2004;306;5705;2255-7

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.

    Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H and Ruiz P

    Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.

    A major challenge of the postgenomic era is the functional characterization of every single gene within the mammalian genome. In an effort to address this challenge, we assembled a collection of mutations in mouse embryonic stem (ES) cells, which is the largest publicly accessible collection of such mutations to date. Using four different gene-trap vectors, we generated 5,142 sequences adjacent to the gene-trap integration sites (gene-trap sequence tags; http://genetrap.de) from >11,000 ES cell clones. Although most of the gene-trap vector insertions occurred randomly throughout the genome, we found both vector-independent and vector-specific integration "hot spots." Because >50% of the hot spots were vector-specific, we conclude that the most effective way to saturate the mouse genome with gene-trap insertions is by using a combination of gene-trap vectors. When a random sample of gene-trap integrations was passaged to the germ line, 59% (17 of 29) produced an observable phenotype in transgenic mice, a frequency similar to that achieved by conventional gene targeting. Thus, gene trapping allows a large-scale and cost-effective production of ES cell clones with mutations distributed throughout the genome, a resource likely to accelerate genome annotation and the in vivo modeling of human disease.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;17;9918-22

  • BayGenomics: a resource of insertional mutations in mouse embryonic stem cells.

    Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, Meng EC, Lee RE, Yee A, L'Italien L, Chuang PT, Young SG, Skarnes WC, Babbitt PC and Ferrin TE

    Department of Pharmaceutical Chemistry, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.

    The BayGenomics gene-trap resource (http://baygenomics.ucsf.edu) provides researchers with access to thousands of mouse embryonic stem (ES) cell lines harboring characterized insertional mutations in both known and novel genes. Each cell line contains an insertional mutation in a specific gene. The identity of the gene that has been interrupted can be determined from a DNA sequence tag. Approximately 75% of our cell lines contain insertional mutations in known mouse genes or genes that share strong sequence similarities with genes that have been identified in other organisms. These cell lines readily transmit the mutation to the germline of mice and many mutant lines of mice have already been generated from this resource. BayGenomics provides facile access to our entire database, including sequence tags for each mutant ES cell line, through the World Wide Web. Investigators can browse our resource, search for specific entries, download any portion of our database and BLAST sequences of interest against our entire set of cell line sequence tags. They can then obtain the mutant ES cell line for the purpose of generating knockout mice.

    Funded by: NCRR NIH HHS: P41 RR001081, P41 RR01081; NHLBI NIH HHS: U01 HL066621, U01 HL66621

    Nucleic acids research 2003;31;1;278-81

  • CSE1L/CAS: its role in proliferation and apoptosis.

    Behrens P, Brinkmann U and Wellmann A

    Institute of Pathology, University of Bonn, Bonn, Germany.

    CAS/CSE1L is the human homologue of the yeast gene CSE1. It was first cloned while searching for genes that rendered breast cancer cells resistant towards toxin induced apoptosis. Since depletion of CSE1 leads to cell-cycle arrest, CAS is thought to be involved in proliferation. CAS functions in the mitotic spindle checkpoint. CAS is located on chromosome 20q13, a locus often amplified in cancers of various origin, e.g. colonic or breast cancer. Since genetic instability is a hallmark of cancer, amplification or over expression of the CAS gene might interfere with or override its role in the mitotic spindle checkpoint. CAS is also implicated in the nuclear to cytoplasmic reshuffling of importin alpha, which itself is necessary for the nuclear transport of several proliferation activating proteins, transcription factors, oncogene and tumor suppressor gene products such as p53 and BRCA1. Inhibition of MEK1 mediated phosphorylation has been shown to enhance paclitaxel (Taxol) induced apoptosis in breast, ovarian, and lung tumor cell lines in-vitro. Since CAS is also phosphorylated (activated) by MEK1, and since the anti-cancer drug Taxol alters the microtubule assembly and activates pro-apoptotic signaling pathways, altering the activity/phosphorylation status of CAS via MEK1 inhibition may present a potential strategy in experimental cancer therapy.

    Apoptosis : an international journal on programmed cell death 2003;8;1;39-44

  • Cse1l is essential for early embryonic growth and development.

    Bera TK, Bera J, Brinkmann U, Tessarollo L and Pastan I

    Laboratory of Molecular Biology, Clinical Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

    The CSE1L gene, the human homologue of the yeast chromosome segregation gene CSE1, is a nuclear transport factor that plays a role in proliferation as well as in apoptosis. CSE1 and CSE1L are essential genes in Saccharomyces cerevisiae and mammalian cells, as shown by conditional yeast mutants and mammalian cell culture experiments with antisense-mediated depletion of CSE1L. To analyze whether CSE1L is also essential in vivo and whether its absence can be compensated for by other genes or mechanisms, we have cloned the murine CSE1L gene (Cse1l) and analyzed its tissue- and development-specific expression: Cse1l was detected at embryonic day 7.0 (E7.0), E11.0, E15.0, and E17.0, and in adults, high expression was observed in proliferating tissues. Subsequently, we inactivated the Cse1l gene in embryonic stem cells to generate heterozygous and homozygous knockout mice. Mice heterozygous for Cse1l appear normal and are fertile. However, no homozygous pups were born after interbreeding of heterozygous mice. In 30 heterozygote interbreeding experiments, 50 Cse1l wild-type mice and 100 heterozygotes were born but no animal with both Cse1l alleles deleted was born. Embryo analyses showed that homozygous mutant embryos were already disorganized and degenerated by E5.5. This implicates with high significance (P < 0.0001, Pearson chi-square test) an embryonically lethal phenotype of homozygous murine CSE1 deficiency and suggests that Cse1l plays a critical role in early embryonic development.

    Molecular and cellular biology 2001;21;20;7020-4

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • Tissue-specific alternative splicing of the CSE1L/CAS (cellular apoptosis susceptibility) gene.

    Brinkmann U, Brinkmann E, Bera TK, Wellmann A and Pastan I

    Laboratory of Molecular Biology, DBS, National Cancer Institute, Building 37, Room 4B13, Bethesda, Maryland 20892-4255, USA.

    CSE1L/CAS (CAS) is a nuclear transport factor that plays a role in proliferation and apoptosis. The CAS gene consists of 25 exons. mRNA homologous over its entire length to the yeast homologue CSE1 is the predominant transcript in proliferating tissues. Additional mRNAs are generated by alternative splicing in a tissue-specific manner. An extended 3'-end is found in fetal and adult brain. A mRNA containing the 5'-end of CAS up to position 690 and an alternative 3'-end is expressed in trachea and encodes a truncated Ran-binding domain. Fetal liver expresses a mRNA with deletions of a central portion of CAS and additional sequences encoded by the last intron. SW480 colon cancer cells express another approximately 1500-base mRNA. Western blot analyses of various human tissues and immunohistology of mouse embryos show a correlation of CAS transcripts and CAS protein in different tissues. CAS isoforms may control nuclear transport of tissue-specific proteins.

    Genomics 1999;58;1;41-9

  • Cellular apoptosis susceptibility gene capts maps to mouse chromosome 2.

    de Miguel M, Centanni JM, Gopalan G, Gilbert DJ, Copeland NG, Jenkins NA and Donovan PJ

    Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-FCRDC, PO BOX B, Bldg 539, Frederick, Maryland 21702-1201, USA.

    Mammalian genome : official journal of the International Mammalian Genome Society 1998;9;5;411-2

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000007 G2C Mus musculus Mouse NRC Mouse NRC adapted from Collins et al (2006) 186
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.