G2Cdb::Gene report

Gene id
Gene symbol
Actn3 (MGI)
Mus musculus
actinin alpha 3
G00001794 (Homo sapiens)

Databases (9)

Curated Gene
OTTMUSG00000016351 (Vega mouse gene)
ENSMUSG00000006457 (Ensembl mouse gene)
11474 (Entrez Gene)
169 (G2Cdb plasticity & disease)
Gene Expression
NM_013456 (Allen Brain Atlas)
11474 (Genepaint)
102574 (OMIM)
Marker Symbol
MGI:99678 (MGI)
Protein Sequence
O88990 (UniProt)

Literature (26)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Properties of extensor digitorum longus muscle and skinned fibers from adult and aged male and female Actn3 knockout mice.

    Chan S, Seto JT, Houweling PJ, Yang N, North KN and Head SI

    School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.

    Absence of α-actinin-3, encoded by the ACTN3 "speed gene," is associated with poorer sprinting performance in athletes and a slowing of relaxation in fast-twitch muscles of Actn3 knockout (KO) mice. Our first aim was to investigate, at the individual-fiber level, possible mechanisms for this slowed relaxation. Our second aim was to characterize the contractile properties of whole extensor digitorum longus (EDL) muscles from KO mice by age and gender. We examined caffeine-induced Ca(2+) release in mechanically skinned EDL fibers from KO mice, and measured isolated whole EDL contractile properties. The sarcoplasmic reticulum of KO muscle fibers loaded Ca(2+) more slowly than that of wild-types (WTs). Whole KO EDL muscles had longer twitch and tetanus relaxation times than WTs, and reduced mass and cross-sectional area. These effects occurred in both male and female mice, but they diminished with age. These changes in KO muscles and fibers help to explain the effects of α-actinin-3 deficiency observed in athletes.

    Muscle & nerve 2011;43;1;37-48

  • A gene for speed: the emerging role of alpha-actinin-3 in muscle metabolism.

    Berman Y and North KN

    Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia.

    A common polymorphism (R577X) in the ACTN3 gene results in complete deficiency of alpha-actinin-3 protein in approximately 16% of humans worldwide. The presence of alpha-actinin-3 protein is associated with improved sprint/power performance in athletes and the general population. Despite this, there is evidence that the null genotype XX has been acted on by recent positive selection, likely due to its emerging role in the regulation of muscle metabolism. alpha-Actinin-3 deficiency reduces the activity of glycogen phosphorylase and results in a fundamental shift toward more oxidative pathways of energy utilization.

    Physiology (Bethesda, Md.) 2010;25;4;250-9

  • Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle.

    Quinlan KG, Seto JT, Turner N, Vandebrouck A, Floetenmeyer M, Macarthur DG, Raftery JM, Lek M, Yang N, Parton RG, Cooney GJ and North KN

    Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW, Australia.

    Approximately one billion people worldwide are homozygous for a stop codon polymorphism in the ACTN3 gene (R577X) which results in complete deficiency of the fast fibre muscle protein alpha-actinin-3. ACTN3 genotype is associated with human athletic performance and alpha-actinin-3 deficient mice [Actn3 knockout (KO) mice] have a shift in the properties of fast muscle fibres towards slower fibre properties, with increased activity of multiple enzymes in the aerobic metabolic pathway and slower contractile properties. alpha-Actinins have been shown to interact with a number of muscle proteins including the key metabolic regulator glycogen phosphorylase (GPh). In this study, we demonstrated a link between alpha-actinin-3 and glycogen metabolism which may underlie the metabolic changes seen in the KO mouse. Actn3 KO mice have higher muscle glycogen content and a 50% reduction in the activity of GPh. The reduction in enzyme activity is accompanied by altered post-translational modification of GPh, suggesting that alpha-actinin-3 regulates GPh activity by altering its level of phosphorylation. We propose that the changes in glycogen metabolism underlie the downstream metabolic consequences of alpha-actinin-3 deficiency. Finally, as GPh has been shown to regulate calcium handling, we examined calcium handling in KO mouse primary mouse myoblasts and find changes that may explain the slower contractile properties previously observed in these mice. We propose that the alteration in GPh activity in the absence of alpha-actinin-3 is a fundamental mechanistic link in the association between ACTN3 genotype and human performance.

    Human molecular genetics 2010;19;7;1335-46

  • Gene expression and dental enamel structure in developing mouse incisor.

    Sehic A, Risnes S, Khan QE, Khuu C and Osmundsen H

    Department of Oral Biology, University of Oslo, Box 1052 Blindern, 0316 Oslo, Norway.

    At the mouse incisor tip the initially differentiated ameloblasts produce a thin, prism-free enamel, while further apically, in the immediate adjacent segment, the enamel thickness increases and the four-layered enamel of mouse incisor is formed. Comparative gene-expression profiling was carried out on RNA isolated from these two segments of incisor tooth germs at embryonic day (E)17.5 and at postnatal days (P)0, 1, 2, and 10 using microarrays to measure messenger RNA (mRNA) and microRNA (miRNA) species present in the segments. Validation of expression data was achieved using real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. Bioinformatic data suggested enhanced cellular apoptosis in the incisal tip segment, which, together with diminished expression of the Amelx and Enam genes, may contribute to the production of the thin enamel seen in this tooth segment. For genes exhibiting higher levels of expression in the adjacent segment where complex enamel is being formed, bioinformatic analysis suggested significant associations with cellular functions involving the actin cytoskeleton, cellular development, morphology, and movement. This is suggested to reflect that ameloblasts with Tomes' process are being organized in transverse rows, facilitating the transverse movement that results in prism decussation in the inner enamel of the adjacent segment. Bioinformatic analysis of miRNA expression data lends support to these suggestions.

    European journal of oral sciences 2010;118;2;118-30

  • A gene for speed: contractile properties of isolated whole EDL muscle from an alpha-actinin-3 knockout mouse.

    Chan S, Seto JT, MacArthur DG, Yang N, North KN and Head SI

    School of Medical Sciences, University of New South Wales, Sydney, Australia.

    The actin-binding protein alpha-actinin-3 is one of the two isoforms of alpha-actinin that are found in the Z-discs of skeletal muscle. alpha-Actinin-3 is exclusively expressed in fast glycolytic muscle fibers. Homozygosity for a common polymorphism in the ACTN3 gene results in complete deficiency of alpha-actinin-3 in about 1 billion individuals worldwide. Recent genetic studies suggest that the absence of alpha-actinin-3 is detrimental to sprint and power performance in elite athletes and in the general population. In contrast, alpha-actinin-3 deficiency appears to be beneficial for endurance athletes. To determine the effect of alpha-actinin-3 deficiency on the contractile properties of skeletal muscle, we studied isolated extensor digitorum longus (fast-twitch) muscles from a specially developed alpha-actinin-3 knockout (KO) mouse. alpha-Actinin-3-deficient muscles showed similar levels of damage to wild-type (WT) muscles following lengthening contractions of 20% strain, suggesting that the presence or absence of alpha-actinin-3 does not significantly influence the mechanical stability of the sarcomere in the mouse. alpha-Actinin-3 deficiency does not result in any change in myosin heavy chain expression. However, compared with alpha-actinin-3-positive muscles, alpha-actinin-3-deficient muscles displayed longer twitch half-relaxation times, better recovery from fatigue, smaller cross-sectional areas, and lower twitch-to-tetanus ratios. We conclude that alpha-actinin-3 deficiency results in fast-twitch, glycolytic fibers developing slower-twitch, more oxidative properties. These changes in the contractile properties of fast-twitch skeletal muscle from alpha-actinin-3-deficient individuals would be detrimental to optimal sprint and power performance, but beneficial for endurance performance.

    American journal of physiology. Cell physiology 2008;295;4;C897-904

  • Why is alpha-actinin-3 deficiency so common in the general population? The evolution of athletic performance.

    North K

    Institute for Neuromuscular Research, The Children's Hospital at Westmead, Sydney, Australia. kathryn@chw.edu.au

    'We can now explain how this common genetic variation influences athletic performance as well as why it has become so common in the general population. There is a fascinating link between factors that influence survival in ancient humans and the factors that contribute to athletic abilities in modern man.' The human ACTN3 gene encodes the protein alpha-actinin-3, a component of the contractile apparatus in fast skeletal muscle fibers. In 1999, we identified a common polymorphism in ACTN3 (R577X) that results in absence of alpha-actinin-3 in more than one billion people worldwide, despite the ACTN3 gene being highly conserved during human evolution. In 2003, we demonstrated that ACTN3 genotype influences elite athletic performance, and the association between ACTN3 genotype and skeletal muscle performance has since been replicated in athletes and non-athlete cohorts. We have also studied the evolution of the R577X allele during human evolution and demonstrated that the null (X) allele has undergone strong, recent positive selection in Europeans and Asian populations. We have developed an Actn3 knockout mouse model that replicates alpha-actinin-3 deficiency in humans and has already provided insight into the role of alpha-actinin-3 in the regulation of skeletal muscle metabolism, fibre size, muscle mass and contractile properties. In particular, mouse muscle lacking alpha-actinin-3 uses energy more efficiently, with the fast fibers displaying metabolic and contractile properties of slow oxidative fibers. While this favors endurance activities, the trade off is that the muscle cannot generate the rapid contractions needed to excel in sprinting. We propose that the shift towards more efficient aerobic muscle metabolism associated with alpha-actinin-3 deficiency also underlies the adaptive benefit of the 577X allele. Our future studies will focus on the effect of ACTN3 genotype on response to exercise and ageing, and the onset and severity of muscle disease phenotype.

    Twin research and human genetics : the official journal of the International Society for Twin Studies 2008;11;4;384-94

  • Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion.

    Nygren JM, Liuba K, Breitbach M, Stott S, Thorén L, Roell W, Geisen C, Sasse P, Kirik D, Björklund A, Nerlov C, Fleischmann BK, Jovinge S and Jacobsen SE

    Hematopoietic Stem Cell Laboratory, Lund University, BMC B10, Klinikgatan 26, 221 84 Lund, Sweden.

    Recent studies have suggested that regeneration of non-haematopoietic cell lineages can occur through heterotypic cell fusion with haematopoietic cells of the myeloid lineage. Here we show that lymphocytes also form heterotypic-fusion hybrids with cardiomyocytes, skeletal muscle, hepatocytes and Purkinje neurons. However, through lineage fate-mapping we demonstrate that such in vivo fusion of lymphoid and myeloid blood cells does not occur to an appreciable extent in steady-state adult tissues or during normal development. Rather, fusion of blood cells with different non-haematopoietic cell types is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion hybrids, but almost exclusively in response to injuries or inflammation.

    Funded by: Medical Research Council: G0501838

    Nature cell biology 2008;10;5;584-92

  • An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance.

    MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM, Turner N, Nicholson MD, Kee AJ, Hardeman EC, Gunning PW, Cooney GJ, Head SI, Yang N and North KN

    Institute for Neuromuscular Research, The Children's Hospital at Westmead, Sydney 2145, NSW, Australia.

    A common nonsense polymorphism (R577X) in the ACTN3 gene results in complete deficiency of the fast skeletal muscle fiber protein alpha-actinin-3 in an estimated one billion humans worldwide. The XX null genotype is under-represented in elite sprint athletes, associated with reduced muscle strength and sprint performance in non-athletes, and is over-represented in endurance athletes, suggesting that alpha-actinin-3 deficiency increases muscle endurance at the cost of power generation. Here we report that muscle from Actn3 knockout mice displays reduced force generation, consistent with results from human association studies. Detailed analysis of knockout mouse muscle reveals reduced fast fiber diameter, increased activity of multiple enzymes in the aerobic metabolic pathway, altered contractile properties, and enhanced recovery from fatigue, suggesting a shift in the properties of fast fibers towards those characteristic of slow fibers. These findings provide the first mechanistic explanation for the reported associations between R577X and human athletic performance and muscle function.

    Human molecular genetics 2008;17;8;1076-86

  • Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans.

    MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y, Hardeman EC, Gunning PW, Easteal S, Yang N and North KN

    Institute for Neuromuscular Research, Children's Hospital at Westmead, Sydney, New South Wales 2145, Australia.

    More than a billion humans worldwide are predicted to be completely deficient in the fast skeletal muscle fiber protein alpha-actinin-3 owing to homozygosity for a premature stop codon polymorphism, R577X, in the ACTN3 gene. The R577X polymorphism is associated with elite athlete status and human muscle performance, suggesting that alpha-actinin-3 deficiency influences the function of fast muscle fibers. Here we show that loss of alpha-actinin-3 expression in a knockout mouse model results in a shift in muscle metabolism toward the more efficient aerobic pathway and an increase in intrinsic endurance performance. In addition, we demonstrate that the genomic region surrounding the 577X null allele shows low levels of genetic variation and recombination in individuals of European and East Asian descent, consistent with strong, recent positive selection. We propose that the 577X allele has been positively selected in some human populations owing to its effect on skeletal muscle metabolism.

    Nature genetics 2007;39;10;1261-5

  • Altered expression of genes involved in regulation of vitamin A metabolism, solute transportation, and cytoskeletal function in the androgen-insensitive tfm mouse testis.

    O'Shaughnessy PJ, Abel M, Charlton HM, Hu B, Johnston H and Baker PJ

    Division of Cell Sciences, University of Glasgow Veterinary School, Bearsden Road, Glasgow, Scotland, United Kingdom. p.j.oshaughnessy@vet.gla.ac.uk

    Androgens are essential for the development and maintenance of spermatogenesis, but the underlying mechanisms of androgen action in the testis remain unclear. To help clarify these mechanisms, gene expression was measured in testes of pubertal (20 d old), androgen-insensitive, testicular feminized (Tfm) mice and in normal controls. Using microarrays (Affymetrix chips 430A and 430B), initial data identified a large number of genes down-regulated in the Tfm testis (>4700). These genes were largely of germ cell origin, reflecting the arrest of spermatogenesis that is apparent in the 20-d-old Tfm testis. Subsequent screening in vitro and in silico of this gene set identified 20 genes of a somatic tubular origin that were significantly down-regulated in the Tfm testis and six genes that were significantly up-regulated. Altered expression of these genes was confirmed by real-time PCR, and genes down-regulated in the Tfm testis were shown to be up-regulated in testes of hypogonadal (hpg) mice treated with androgen. In a developmental study using real-time PCR most of the regulated genes showed normal expression during fetal and neonatal development and deviated from control only between 10 and 20 d. In all cases, expression was also reduced in the adult, although interpretation is more complex because of the inherent cryptorchidism in the adult Tfm mouse. Of the total number of somatic genes showing differential expression in the Tfm testis, 50% were associated with three separate groups of genes involved in regulation of vitamin A metabolism, solute transportation, and cytoskeletal function. Thus, effects of androgens on tubular function and spermatogenesis may be mediated in part through regulation of the tubular environment and control of retinoic acid concentrations.

    Funded by: Wellcome Trust

    Endocrinology 2007;148;6;2914-24

  • Role of p90 ribosomal S6 kinase-mediated prorenin-converting enzyme in ischemic and diabetic myocardium.

    Itoh S, Ding B, Shishido T, Lerner-Marmarosh N, Wang N, Maekawa N, Berk BC, Takeishi Y, Yan C, Blaxall BC and Abe J

    Cardiovascular Research Institute, University of Rochester, Rochester, NY, USA.

    Background: Epidemiological data strongly indicate that diabetes increases the incidence of heart failure. Although the benefit of angiotensin-converting enzyme inhibitor (ACE-I) treatment during and after myocardial infarction has been found to be greater in diabetics than nondiabetics and activation of the renin-angiotensin system (RAS) has been implicated, the molecular basis of these actions remains unclear.

    We generated transgenic mice with cardiac-specific overexpression of wild-type p90 ribosomal S6 kinase (WT-p90RSK-Tg) and a dominant-negative form of p90RSK (DN-p90RSK-Tg). Recovery of cardiac function after ischemia/reperfusion in WT-p90RSK-Tg isolated mouse hearts was significantly impaired. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed specific induction of prorenin-converting enzyme (PRECE) in WT-p90RSK-Tg mice. mRNA induction of PRECE was confirmed with serial angiotensinogen protein reduction after perfusion in WT-p90RSK-Tg mice, suggesting an increase of angiotensinogen cleavage and subsequent RAS activation in WT-p90RSK-Tg mice. We investigated the role of the RAS in WT-p90RSK-Tg animals after ischemia/reperfusion with the use of an ACE-I (captopril) and an angiotensin II type 1 receptor blocker (olmesartan). We did not observe any effect of these inhibitors in non-Tg littermate controls, thus corroborating other reports in rodents. In contrast, both captopril and olmesartan significantly improved cardiac function and reduced infarct size in WT-p90RSK-Tg mice. At 8 months of age, WT-p90RSK-Tg mice developed cardiac dysfunction. p90RSK activity and PRECE mRNA were both increased by streptozotocin-induced hyperglycemia in non-Tg littermate controls, whereas DN-p90RSK-Tg animals exposed to streptozotocin did not have PRECE induction.

    Conclusions: This study demonstrates the critical role of p90RSK in hyperglycemia-mediated myocardial PRECE induction, which may explain the augmentation of the RAS in diabetic hearts and provide an alternative therapeutic approach to treat diabetic cardiomyopathy.

    Funded by: NHLBI NIH HHS: HL-66919, HL44721; NIGMS NIH HHS: GM-071485-01A1

    Circulation 2006;113;14;1787-98

  • Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner.

    Asanuma K, Kim K, Oh J, Giardino L, Chabanis S, Faul C, Reiser J and Mundel P

    Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.

    Synaptopodin is the founding member of a novel class of proline-rich actin-associated proteins highly expressed in telencephalic dendrites and renal podocytes. Synaptopodin-deficient (synpo(-/-)) mice lack the dendritic spine apparatus and display impaired activity-dependent long-term synaptic plasticity. In contrast, the ultrastructure of podocytes in synpo(-/-) mice is normal. Here we show that synpo(-/-) mice display impaired recovery from protamine sulfate-induced podocyte foot process (FP) effacement and LPS-induced nephrotic syndrome. Similarly, synpo(-/-) podocytes show impaired actin filament reformation in vitro. We further demonstrate that synaptopodin exists in 3 isoforms, neuronal Synpo-short (685 AA), renal Synpo-long (903 AA), and Synpo-T (181 AA). The C terminus of Synpo-long is identical to that of Synpo-T. All 3 isoforms specifically interact with alpha-actinin and elongate alpha-actinin-induced actin filaments. synpo(-/-) mice lack Synpo-short and Synpo-long expression but show an upregulation of Synpo-T protein expression in podocytes, though not in the brain. Gene silencing of Synpo-T abrogates stress-fiber formation in synpo(-/-) podocytes, demonstrating that Synpo-T serves as a backup for Synpo-long in synpo(-/-) podocytes. In concert, synaptopodin regulates the actin-bundling activity of alpha-actinin in highly dynamic cell compartments, such as podocyte FPs and the dendritic spine apparatus.

    Funded by: NIDA NIH HHS: DA18886, R01 DA018886; NIDDK NIH HHS: DK062472, DK064236, DK57683, P50 DK064236, R01 DK057683, R01 DK062472

    The Journal of clinical investigation 2005;115;5;1188-98

  • Phosphorylation of mouse LASP-1 on threonine 156 by cAMP- and cGMP-dependent protein kinase.

    Keicher C, Gambaryan S, Schulze E, Marcus K, Meyer HE and Butt E

    Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.

    LIM and SH3 domain protein (LASP-1) is a specific focal adhesion protein involved in cell migration. Overlay studies demonstrate that LASP-1 directly binds to the proline-rich domains of zyxin, lipoma preferred partner (LPP), and vasodilator-stimulated phosphoprotein (VASP), with zyxin being the most prominent interacting partner. Despite the LIM/zinc-finger domain, hypothesized to be involved in homodimerization, LASP-1 exists as a monomer. In vitro phosphorylation of recombinant mouse LASP-1 by cAMP- and cGMP-dependent protein kinase (PKA and PKG, respectively) occurs at serine 61, serine 99, and threonine 156 whereas in intact cells mouse LASP-1 is phosphorylated only at threonine 156. This site is different from the known in vivo phosphorylation sites in human (serine 146) and rabbit (serine 99 and serine 146). Nevertheless, immunofluorescence of LASP-1 in human and mouse mesangial cells revealed no difference in subcellular distribution. Exposure of the cells to forskolin induced a translocation of both, human and mouse LASP-1, from the focal contacts to the cell interior without affecting F-actin structure. Immunoblotting of LASP-1 in various mouse and human tissues detected a similar prominent expression in non-muscle tissue. Altogether, our data suggest so far no functional differences between human and mouse LASP-1.

    Biochemical and biophysical research communications 2004;324;1;308-16

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • Mice deficient in alpha-actinin-4 have severe glomerular disease.

    Kos CH, Le TC, Sinha S, Henderson JM, Kim SH, Sugimoto H, Kalluri R, Gerszten RE and Pollak MR

    Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    Dominantly inherited mutations in ACTN4, which encodes alpha-actinin-4, cause a form of human focal and segmental glomerulosclerosis (FSGS). By homologous recombination in ES cells, we developed a mouse model deficient in Actn4. Mice homozygous for the targeted allele have no detectable alpha-actinin-4 protein expression. The number of homozygous mice observed was lower than expected under mendelian inheritance. Surviving mice homozygous for the targeted allele show progressive proteinuria, glomerular disease, and typically death by several months of age. Light microscopic analysis shows extensive glomerular disease and proteinaceous casts. Electron microscopic examination shows focal areas of podocyte foot-process effacement in young mice, and diffuse effacement and globally disrupted podocyte morphology in older mice. Despite the widespread distribution of alpha-actinin-4, histologic examination of mice showed abnormalities only in the kidneys. In contrast to the dominantly inherited human form of ACTN4-associated FSGS, here we show that the absence of alpha-actinin-4 causes a recessive form of disease in mice. Cell motility, as measured by lymphocyte chemotaxis assays, was increased in the absence of alpha-actinin-4. We conclude that alpha-actinin-4 is required for normal glomerular function. We further conclude that the nonsarcomeric forms of alpha-actinin (alpha-actinin-1 and alpha-actinin-4) are not functionally redundant. In addition, these genetic studies demonstrate that the nonsarcomeric alpha-actinin-4 is involved in the regulation of cell movement.

    Funded by: NHLBI NIH HHS: HL-07208, HL-65584, R01 HL065584, T32 HL007208; NIDDK NIH HHS: DK-51711, DK-55001, DK-59588, R01 DK055001, R01 DK059588, R37 DK059588

    The Journal of clinical investigation 2003;111;11;1683-90

  • The alpha-actinin gene family: a revised classification.

    Dixson JD, Forstner MJ and Garcia DM

    Department of Biology, Southwest Texas State University, San Marcos, TX 78666, USA. jamie.dixson@excite.com

    The sequencing of a genome is the first stage of its complete characterization. Subsequent work seeks to utilize available sequence data to gain a better understanding of the genes which are found within a genome. Gene families comprise large portions of the genomes of higher vertebrates, and the available genomic data allow for a reappraisal of gene family evolution. This reappraisal will clarify relatedness within and between gene families. One such family, the alpha-actinin gene family, is part of the spectrin superfamily. There are four known loci, which encode alpha-actinins 1, 2, 3, and 4. Of the eight domains in alpha-actinin, the actin-binding domain is the most highly conserved. Here we present evidence gained through phylogenetic analyses of the highly conserved actin-binding domain that alpha-actinin 2 was the first of the four alpha-actinins to arise by gene duplication, followed by the divergence of alpha-actinin 3 and then alpha-actinins 1 and 4. Resolution of the gene tree for this gene family has allowed us to reclassify several alpha-actinins which were previously given names inconsistent with the most widely accepted nomenclature for this gene family. This reclassification clarifies previous discrepancies in the public databases as well as in the literature, thus eliminating confusion caused by continued misclassification of members of the alpha-actinin gene family. In addition, the topology found for this gene family undermines the 2R hypothesis theory of two rounds of genome duplication early in vertebrate evolution.

    Funded by: NIGMS NIH HHS: GM58375-01A1

    Journal of molecular evolution 2003;56;1;1-10

  • Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy.

    Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S and North K

    Neurogenetics Research Unit, Children's Hospital at Westmead, Westmead, Sydney, NSW 2145, Australia.

    The alpha-actinins are a multigene family of four actin-binding proteins related to dystrophin. The two skeletal muscle isoforms of alpha-actinin (ACTN2 and ACTN3) are major structural components of the Z-line involved in anchoring the actin-containing thin filaments. In humans, ACTN2 is expressed in all muscle fibres, while ACTN3 expression is restricted to a subset of type 2 fibres. We have recently demonstrated that alpha-actinin-3 is absent in approximately 18% of individuals in a range of human populations, and that homozygosity for a premature stop codon (577X) accounts for most cases of true alpha-actinin-3 deficiency. Absence of alpha-actinin-3 is not associated with an obvious disease phenotype, raising the possibility that ACTN3 is functionally redundant in humans, and that alpha-actinin-2 is able to compensate for alpha-actinin-3 deficiency. We now present data concerning the expression of ACTN3 in other species. Genotyping of non-human primates indicates that the 577X null mutation has likely arisen in humans. The mouse genome contains four orthologues which all map to evolutionarily conserved syntenic regions for the four human genes. Murine Actn2 and Actn3 are differentially expressed, spatially and temporally, during embryonic development and, in contrast to humans, alpha-actinin-2 expression does not completely overlap alpha-actinin-3 in postnatal skeletal muscle, suggesting independent function. Furthermore, sequence comparison of human, mouse and chicken alpha-actinin genes demonstrates that ACTN3 has been conserved over a long period of evolutionary time, implying a constraint on evolutionary rate imposed by continued function of the gene. These observations provide a real framework in which to test theoretical models of genetic redundancy as they apply to human populations. In addition we highlight the need for caution in making conclusions about gene function from the phenotypic consequences of loss-of-function mutations in animal knockout models.

    Funded by: NIAMS NIH HHS: K02 AR02026, R01 AR44345

    Human molecular genetics 2001;10;13;1335-46

  • The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner.

    Palmer S, Groves N, Schindeler A, Yeoh T, Biben C, Wang CC, Sparrow DB, Barnett L, Jenkins NA, Copeland NG, Koentgen F, Mohun T and Harvey RP

    Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, NSW 2010, Australia.

    We have isolated a murine cDNA encoding a 9-kD protein, Chisel (Csl), in a screen for transcriptional targets of the cardiac homeodomain factor Nkx2-5. Csl transcripts were detected in atria and ventricles of the heart and in all skeletal muscles and smooth muscles of the stomach and pulmonary veins. Csl protein was distributed throughout the cytoplasm in fetal muscles, although costameric and M-line localization to the muscle cytoskeleton became obvious after further maturation. Targeted disruption of Csl showed no overt muscle phenotype. However, ectopic expression in C2C12 myoblasts induced formation of lamellipodia in which Csl protein became tethered to membrane ruffles. Migration of these cells was retarded in a monolayer wound repair assay. Csl-expressing myoblasts differentiated and fused normally, although in the presence of insulin-like growth factor (IGF)-1 they showed dramatically enhanced fusion, leading to formation of large dysmorphogenic "myosacs." The activities of transcription factors nuclear factor of activated T cells (NFAT) and myocyte enhancer-binding factor (MEF)2, were also enhanced in an IGF-1 signaling-dependent manner. The dynamic cytoskeletal localization of Csl and its dominant effects on cell shape and behavior and transcription factor activity suggest that Csl plays a role in the regulatory network through which muscle cells coordinate their structural and functional states during growth, adaptation, and repair.

    Funded by: NIA NIH HHS: R03 AG14811; Wellcome Trust

    The Journal of cell biology 2001;153;5;985-98

  • Calsarcins, a novel family of sarcomeric calcineurin-binding proteins.

    Frey N, Richardson JA and Olson EN

    Departments of Molecular Biology and Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.

    The calcium- and calmodulin-dependent protein phosphatase calcineurin has been implicated in the transduction of signals that control the hypertrophy of cardiac muscle and slow fiber gene expression in skeletal muscle. To identify proteins that mediate the effects of calcineurin on striated muscles, we used the calcineurin catalytic subunit in a two-hybrid screen for cardiac calcineurin-interacting proteins. From this screen, we discovered a member of a novel family of calcineurin-interacting proteins, termed calsarcins, which tether calcineurin to alpha-actinin at the z-line of the sarcomere of cardiac and skeletal muscle cells. Calsarcin-1 and calsarcin-2 are expressed in developing cardiac and skeletal muscle during embryogenesis, but calsarcin-1 is expressed specifically in adult cardiac and slow-twitch skeletal muscle, whereas calsarcin-2 is restricted to fast skeletal muscle. Calsarcins represent a novel family of sarcomeric proteins that link calcineurin with the contractile apparatus, thereby potentially coupling muscle activity to calcineurin activation.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;26;14632-7

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • p27Kip1 is expressed transiently in developing myotomes and enhances myogenesis.

    Zabludoff SD, Csete M, Wagner R, Yu X and Wold BJ

    Division of Biology, California Institute of Technology, Pasadena 91125, USA.

    Vertebrate skeletal muscle development is characterized by tight coupling of muscle differentiation with cell cycle arrest in G1/G0. Key regulators of G1 progression are the G1 cyclin-dependent kinases, their positive regulators, the G1 cyclins, and their negative regulators, the cyclin-dependent kinase inhibitors (CDIs). Here we show that p27Kip1 protein, a G1 CDI, is expressed in a prominent but transient wave in the developing myotomes of the mouse embryo. We relate its expression to expression of MyoD and myogenin proteins, which are determination and differentiation class myogenic regulatory factors, respectively. Functional assays showed that ectopic p27 expression can powerfully enhance the efficiency of MyoD-initiated muscle differentiation in cell culture. When considered together with the myotomal expression patterns of p18, p21, and p57, these results suggest a model in which p27 acts as a "trigger" CDI while myoblasts are exiting the cell cycle and initiating differentiation. At later times, when p27 protein has been down-regulated, it is proposed that accumulation of p18, p21, and p57 maintain the differentiated myocytes in a postmitotic state.

    Funded by: NIAMS NIH HHS: AR40708, AR42671

    Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 1998;9;1;1-11

  • Comparative mapping of two adjacent regions of MMU19 with their human counterpart on HSA11q13.

    Fernandes M, Lespinasse F, Rotomondo F, Poirier C, Guenet JL, Gaudray P and Carle GF

    CNRS/UNSA UMR 6549, Faculté de Médecine, Nice, France.

    High resolution physical maps of two adjacent regions of MMU19 were constructed in order to establish a comparative map between the pericentromeric region of MMU19 and its human counterpart on HSA11q13. These two physical maps span 2.5 and 0.5 megabases on MMU19. Long range restriction analysis and YAC contigs have been built, five genes were located on MMU19 and eight new STSs were generated. The 0.5-Mb map which has been positioned close to the centromere of MMU19, based on dual-color FISH experiments and genetic data, includes eight genes (Type I markers), three microsatellites (Type II markers) and five new STSs. The 2.5-Mb map is located more telomeric and contains seven genes, four microsatellites and four new STSs. Gene order and physical distances appear to be similar in human and in mouse in this 2.5-Mb region. Strikingly, the 0.5-Mb region has a similar size in human but gene order is shuffled. The overall comparative map shows that these two regions are inverted on MMU19 when compared with HSA11q13.

    Cytogenetics and cell genetics 1998;81;3-4;237-46

  • Different MRF4 knockout alleles differentially disrupt Myf-5 expression: cis-regulatory interactions at the MRF4/Myf-5 locus.

    Yoon JK, Olson EN, Arnold HH and Wold BJ

    Division of Biology, 156-29, California Institute of Technology, Pasadena, California, 91125, USA.

    Three different null alleles of the myogenic bHLH gene MRF4/herculin/Myf-6 were created recently. The three alleles were similar in design but were surprisingly different in the intensity of their phenotypes, which ranged from complete viability of homozygotes to complete lethality. One possible explanation for these differences is that each mutation altered expression from the nearby Myf-5 gene to a different extent. This possibility was first raised by the observation that the most severe MRF4 knockout allele expresses no Myf-5 RNA and is a developmental phenocopy of the Myf-5 null mutation. Furthermore, initial studies of the two weaker alleles had shown that their differences in viability correlate with the intensity of rib skeletal defects, and the most extreme version of this rib defect is the hallmark phenotype of Myf-5 null animals. In the present study we tested this hypothesis for the two milder MRF4 alleles. By analyzing compound heterozygous animals carrying either the intermediate or the weakest MRF4 knockout allele on one chromosome 10 and a Myf-5 knockout allele on the other chromosome, we found that both of these MRF4 alleles apparently downregulate Myf-5 expression by a cis-acting mechanism. Compound heterozygotes showed increased mortality of the normally viable MRF4 allele, together with intensified rib defects for both MRF4 alleles and increased deficits in myotomal Myf-5 expression. The allele-specific gradation in phenotypes also suggested that rib morphogenesis is profoundly sensitive to quantitative differences in Myf-5 function if Myf-5 products drop below hemizygous levels. The mechanistic basis for cis interactions at the MRF4/Myf-5 locus was further examined by fusing a DNA segment containing the entire MRF4 structural gene, including all sequences deleted in the three MRF knockout alleles, with a basal promoter and a lacZ reporter. Transgenic embryos showed specific LacZ expression in myotomes in a pattern that closely resembles the expression of Myf-5 RNA. cis-acting interactions between Myf-5 and MRF4 may therefore play a significant role in regulating expression of these genes in the early myotomes of wildtype embryos.

    Funded by: NIAMS NIH HHS: AR40780, AR42671

    Developmental biology 1997;188;2;349-62

  • Fibroblast growth factor-1-inducible gene FR-17 encodes a nonmuscle alpha-actinin isoform.

    Hsu DK, Guo Y, Alberts GF, Peifley KA and Winkles JA

    Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA.

    Polypeptide growth factor binding to cell surface receptors activates a cytoplasmic signaling cascade that ultimately promotes the expression of specific nuclear genes. As an approach to investigate the molecular mechanism of fibroblast growth factor (FGF)-1 mitogenic signaling, we have begun to identify and characterize FGF-1-inducible genes in murine NIH 3T3 cells. Here we report that one of these genes, termed FGF-regulated (FR)-17, is predicted to encode a nonmuscle isoform of alpha-actinin, an actin cross-linking protein found along microfilaments and in focal adhesion plaques. FGF-1 induction of alpha-actinin mRNA expression is first detectable at 2 h after mitogen addition and is dependent on the novo RNA and protein synthesis. Maximal alpha-actinin mRNA expression, corresponding to an approximately nineteenfold level of induction, is present after 12 h of FGF-1 stimulation. Western blot analysis indicated that FGF-1-stimulated cells also produce an increased amount of alpha-actinin protein. The FGF-1-related mitogen FGF-2, calf serum, several of the polypeptide growth factors present in serum, and the tumor promoter phorbol myristate acetate can also induce alpha-actinin mRNA expression. Finally, nonmuscle alpha-actinin mRNA is expressed in vivo in a tissue-specific manner, with relatively high levels detected in adult mouse intestine and kidney. These results indicate that nonmuscle alpha-actinin is a serum-, polypeptide growth factor-, and tumor promoter-inducible gene in mouse fibroblasts.

    Funded by: NHLBI NIH HHS: HL-07698, HL-39727

    Journal of cellular physiology 1996;167;2;261-8

  • Molecular diversity of myofibrillar proteins: gene regulation and functional significance.

    Schiaffino S and Reggiani C

    Department of Biomedical Sciences, University of Padova, Padua, Italy.

    Myofibrillar proteins exist as multiple isoforms that derive from multigene (isogene) families. Additional isoforms, including products of tropomyosin, myosin light chain 1 fast, troponin T, titin, and nebulin genes, can be generated from the same gene through alternative splicing or use of alternative promoters. Myofibrillar protein isogenes are differentially expressed in various muscle types and fiber types but can be coexpressed within the same fiber. Isogenes are regulated by transcriptional and posttranscriptional mechanisms; however, specific regulatory sequences and transcriptional factors have not yet been identified. The pattern of isogene expression varies during muscle development in relation to the different origin of myogenic cells and primary/secondary fiber generations and is affected by neural and hormonal influences. The variable expression of myofibrillar protein isoforms is a major determinant of the contractile properties of skeletal muscle fibers. The diversity among isomyosins is related to the differences in the parameters of chemomechanical transduction as ATP hydrolysis rate and shortening velocity. Troponin and tropomyosin isoforms determine the variable sensitivity to calcium, whereas titin isoforms dictate the elastic properties of muscle fibers at rest. Both myosin and troponin isoforms contribute to the differences in the resistance to fatigue of muscle fibers.

    Funded by: Telethon: 343, A.012

    Physiological reviews 1996;76;2;371-423

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000007 G2C Mus musculus Mouse NRC Mouse NRC adapted from Collins et al (2006) 186
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.