G2Cdb::Gene report

Gene id
Gene symbol
Actn1 (MGI)
Mus musculus
actinin, alpha 1
G00001791 (Homo sapiens)

Databases (7)

ENSMUSG00000015143 (Ensembl mouse gene)
109711 (Entrez Gene)
964 (G2Cdb plasticity & disease)
Gene Expression
MGI:2137706 (Allen Brain Atlas)
102575 (OMIM)
Marker Symbol
MGI:2137706 (MGI)
Protein Sequence
Q7TPR4 (UniProt)

Literature (35)

Pubmed - other

  • Talin 1 and 2 are required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions.

    Conti FJ, Monkley SJ, Wood MR, Critchley DR and Müller U

    The Scripps Research Institute, Department of Cell Biology and Institute of Childhood and Neglected Diseases, La Jolla, CA 92037, USA.

    Talin 1 and 2 connect integrins to the actin cytoskeleton and regulate the affinity of integrins for ligands. In skeletal muscle, talin 1 regulates the stability of myotendinous junctions (MTJs), but the function of talin 2 in skeletal muscle is not known. Here we show that MTJ integrity is affected in talin 2-deficient mice. Concomitant ablation of talin 1 and 2 leads to defects in myoblast fusion and sarcomere assembly, resembling defects in muscle lacking beta1 integrins. Talin 1/2-deficient myoblasts express functionally active beta1 integrins, suggesting that defects in muscle development are not primarily caused by defects in ligand binding, but rather by disruptions of the interaction of integrins with the cytoskeleton. Consistent with this finding, assembly of integrin adhesion complexes is perturbed in the remaining muscle fibers of talin 1/2-deficient mice. We conclude that talin 1 and 2 are crucial for skeletal muscle development, where they regulate myoblast fusion, sarcomere assembly and the maintenance of MTJs.

    Funded by: NIMH NIH HHS: MH078833; NINDS NIH HHS: NS046456

    Development (Cambridge, England) 2009;136;21;3597-606

  • Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart.

    Zhou B, Ma Q, Kong SW, Hu Y, Campbell PH, McGowan FX, Ackerman KG, Wu B, Zhou B, Tevosian SG and Pu WT

    Department of Cardiology, Children's Hospital Boston and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

    Aberrant transcriptional regulation contributes to the pathogenesis of both congenital and adult forms of heart disease. While the transcriptional regulator friend of Gata 2 (FOG2) is known to be essential for heart morphogenesis and coronary development, its tissue-specific function has not been previously investigated. Additionally, little is known about the role of FOG2 in the adult heart. Here we used spatiotemporally regulated inactivation of Fog2 to delineate its function in both the embryonic and adult mouse heart. Early cardiomyocyte- restricted loss of Fog2 recapitulated the cardiac and coronary defects of the Fog2 germline murine knockouts. Later cardiomyocyte-restricted loss of Fog2 (Fog2MC) did not result in defects in cardiac structure or coronary vessel formation. However, Fog2MC adult mice had severely depressed ventricular function and died at 8-14 weeks. Fog2MC adult hearts displayed a paucity of coronary vessels, associated with myocardial hypoxia, increased cardiomyocyte apoptosis, and cardiac fibrosis. Induced inactivation of Fog2 in the adult mouse heart resulted in similar phenotypes, as did ablation of the FOG2 interaction with the transcription factor GATA4. Loss of the FOG2 or FOG2-GATA4 interaction altered the expression of a panel of angiogenesis-related genes. Collectively, our data indicate that FOG2 regulates adult heart function and coronary angiogenesis.

    Funded by: NHLBI NIH HHS: K08 HL076286, P50 HL074734, P50HL074734, R01 HL095712

    The Journal of clinical investigation 2009;119;6;1462-76

  • Stable membrane expression of postsynaptic CaV1.2 calcium channel clusters is independent of interactions with AKAP79/150 and PDZ proteins.

    Di Biase V, Obermair GJ, Szabo Z, Altier C, Sanguesa J, Bourinet E and Flucher BE

    Department of Physiology and Medical Physics, Innsbruck Medical University, A-6020 Innsbruck, Austria.

    In neurons L-type calcium currents contribute to synaptic plasticity and to activity-dependent gene regulation. The subcellular localization of Ca(V)1.2 and its association with upstream and downstream signaling proteins is important for efficient and specific signal transduction. Here we tested the hypothesis that A-kinase anchoring proteins (AKAPs) or PDZ-proteins are responsible for the targeting and anchoring of Ca(V)1.2 in the postsynaptic compartment of glutamatergic neurons. Double-immunofluorescence labeling of hippocampal neurons transfected with external HA epitope-tagged Ca(V)1.2 demonstrated that clusters of membrane-incorporated Ca(V)1.2-HA were colocalized with AKAP79/150 but not with PSD-95 in the spines and shafts of dendrites. To disrupt the interactions with these scaffold proteins, we mutated known binding sequences for AKAP79/150 and PDZ proteins in the C terminus of Ca(V)1.2-HA. Unexpectedly, the distribution pattern, the density, and the fluorescence intensity of clusters were similar for wild-type and mutant Ca(V)1.2-HA, indicating that interactions with AKAP and PDZ proteins are not essential for the correct targeting of Ca(V)1.2. In agreement, brief treatment with NMDA (a chemical LTD paradigm) caused the degradation of PSD-95 and the redistribution of AKAP79/150 and alpha-actinin from dendritic spines into the shaft, without a concurrent loss or redistribution of Ca(V)1.2-HA clusters. Thus, in the postsynaptic compartment of hippocampal neurons Ca(V)1.2 calcium channels form signaling complexes apart from those of glutamate receptors and PSD-95. Their number and distribution in dendritic spines is not altered upon NMDA-induced disruption of the glutamate receptor signaling complex, and targeting and anchoring of Ca(V)1.2 is independent of its interactions with AKAP79/150 and PDZ proteins.

    Funded by: Austrian Science Fund FWF: P 17806, P 17807, P 20059

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2008;28;51;13845-55

  • MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance.

    Ogata T, Ueyama T, Isodono K, Tagawa M, Takehara N, Kawashima T, Harada K, Takahashi T, Shioi T, Matsubara H and Oh H

    Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan.

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.

    Molecular and cellular biology 2008;28;10;3424-36

  • Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion.

    Nygren JM, Liuba K, Breitbach M, Stott S, Thorén L, Roell W, Geisen C, Sasse P, Kirik D, Björklund A, Nerlov C, Fleischmann BK, Jovinge S and Jacobsen SE

    Hematopoietic Stem Cell Laboratory, Lund University, BMC B10, Klinikgatan 26, 221 84 Lund, Sweden.

    Recent studies have suggested that regeneration of non-haematopoietic cell lineages can occur through heterotypic cell fusion with haematopoietic cells of the myeloid lineage. Here we show that lymphocytes also form heterotypic-fusion hybrids with cardiomyocytes, skeletal muscle, hepatocytes and Purkinje neurons. However, through lineage fate-mapping we demonstrate that such in vivo fusion of lymphoid and myeloid blood cells does not occur to an appreciable extent in steady-state adult tissues or during normal development. Rather, fusion of blood cells with different non-haematopoietic cell types is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion hybrids, but almost exclusively in response to injuries or inflammation.

    Funded by: Medical Research Council: G0501838

    Nature cell biology 2008;10;5;584-92

  • Myocardial Pitx2 differentially regulates the left atrial identity and ventricular asymmetric remodeling programs.

    Tessari A, Pietrobon M, Notte A, Cifelli G, Gage PJ, Schneider MD, Lembo G and Campione M

    CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Italy.

    The Pitx2 gene regulates left-right (L/R) asymmetrical cardiac morphogenesis. Constitutive Pitx2 knock out (ko) mice die before birth and display, among other defects, right atrial isomerism, atrial and ventricular septal defects, and double outlet right ventricle. The myocardial role of the gene has not been dissected. In particular, how Pitx2 regulates the differential L/R cardiac identity program is not clear. Additionally, the relation between Pitx2 ko ventricular defects and the gene expression pattern is not understood. In this article we analyze Pitx2 myocardial function during mouse heart development. By in situ hybridization analysis we show that myocardial Pitx2 expression delineates the remodeling of the left atrioventricular canal, the inner curvature, the ventral part of the interventricular ring, and the ventral portion of the right and left ventricle. By genetic analysis using an allelic series of Pitx2 mutants, among which a myocardial specific ko (ko(myo)) we show it has a crucial role in this process. Pitx2 ko(myo) mutants survive to adulthood, when they present strong cardiac morphological and functional defects. Confocal analysis of embryonic Pitx2 ko(myo) hearts reveals delayed cardiomyocyte development in the ventricular but not in the atrial Pitx2 null areas. Conversely, selective left atrial BMP10 mRNA downregulation which normally occurs at fetal stages is not found in the Pitx2 ko(myo) mice. This is the first evidence for distinct Pitx2 action in mediating L/R atrial identity and asymmetrical ventricular remodeling.

    Funded by: NEI NIH HHS: EY014126, EY07003, R01 EY014126

    Circulation research 2008;102;7;813-22

  • EUCOMM--the European conditional mouse mutagenesis program.

    Friedel RH, Seisenberger C, Kaloff C and Wurst W

    GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.

    Functional analysis of the mammalian genome is an enormous challenge for biomedical scientists. To facilitate this endeavour, the European Conditional Mouse Mutagenesis Program (EUCOMM) aims at generating up to 12 000 mutations by gene trapping and up to 8000 mutations by gene targeting in mouse embryonic stem (ES) cells. These mutations can be rendered into conditional alleles, allowing Cre recombinase-mediated disruption of gene function in a time- and tissue-specific manner. Furthermore, the EUCOMM program will generate up to 320 mouse lines from the EUCOMM resource and up to 20 new Cre driver mouse lines. The EUCOMM resource of vectors, mutant ES cell lines and mutant mice will be openly available to the scientific community. EUCOMM will be one of the cornerstones of an international effort to create a global mouse mutant resource.

    Briefings in functional genomics & proteomics 2007;6;3;180-5

  • Actin-binding protein alpha-actinin-1 interacts with the metabotropic glutamate receptor type 5b and modulates the cell surface expression and function of the receptor.

    Cabello N, Remelli R, Canela L, Soriguera A, Mallol J, Canela EI, Robbins MJ, Lluis C, Franco R, McIlhinney RA and Ciruela F

    Institut d'Investigacions Biomèdiques August Pi i Sunyer and Department of Biochemistry and Molecular Biology, University of Barcelona, Facultat de Biologia, Avda. Diagonal 645, Barcelona 08028, Spain.

    Receptors for neurotransmitters require scaffolding proteins for membrane microdomain targeting and for regulating receptor function. Using a yeast two-hybrid screen, alpha-actinin-1, a major F-actin cross-linking protein, was identified as a binding partner for the C-terminal domain of metabotropic glutamate receptor type 5b (mGlu(5b) receptor). Co-expression, co-immunoprecipitation, and pull-down experiments showed a close and specific interaction between mGlu(5b) receptor and alpha-actinin-1 in both transfected HEK-293 cells and rat striatum. The interaction of alpha-actinin-1 with mGlu(5b) receptor modulated the cell surface expression of the receptor. This was dependent on the binding of alpha-actinin-1 to the actin cytoskeleton. In addition, the alpha-actinin-1/mGlu(5b) receptor interaction regulated receptor-mediated activation of the mitogen-activated protein kinase pathway. Together, these findings indicate that there is an alpha-actinin-1-dependent mGlu(5b) receptor association with the actin cytoskeleton modulating receptor cell surface expression and functioning.

    Funded by: Medical Research Council: MC_U138162357

    The Journal of biological chemistry 2007;282;16;12143-53

  • Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells.

    Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, Chen J and Evans SM

    Skaggs School of Pharmacy, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

    Islet1 (Isl1) is a LIM homedomain protein that plays a pivotal role in cardiac progenitors of the second heart field. Here, lineage studies with an inducible isl1-cre demonstrated that most Isl1 progenitors have migrated into the heart by E9. Although Isl1 expression is downregulated in most cardiac progenitors as they differentiate, analysis of an isl1-nlacZ mouse and coimmunostaining for Isl1 and lineage markers demonstrated that Isl1 is expressed in distinct subdomains of the heart, and in diverse cardiovascular lineages. Isl1 expression was observed in myocardial lineages of the distal outflow tract, atrial septum, and in sinoatrial and atrioventricular node. The myocardialized septum of the outflow tract was found to derive from Isl1 expressing cells. Isl1 expressing cells also contribute to endothelial and vascular smooth muscle lineages including smooth muscle of the coronary vessels. Our data indicate that Isl1 is a specific marker for a subset of pacemaker cells at developmental stages examined, and suggest genetic heterogeneity within the central conduction system and coronary smooth muscle. Our studies suggest a role for Isl1 in these distinct domains of expression within the heart.

    Funded by: NHLBI NIH HHS: R01 HL074066

    Developmental biology 2007;304;1;286-96

  • Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin.

    Barrientos T, Frank D, Kuwahara K, Bezprozvannaya S, Pipes GC, Bassel-Duby R, Richardson JA, Katus HA, Olson EN and Frey N

    Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.

    In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.

    The Journal of biological chemistry 2007;282;11;8393-403

  • Somatodendritic localization of EFA6A, a guanine nucleotide exchange factor for ADP-ribosylation factor 6, and its possible interaction with alpha-actinin in dendritic spines.

    Sakagami H, Honma T, Sukegawa J, Owada Y, Yanagisawa T and Kondo H

    Division of Histology, Department of Cell Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai 980-8575, Japan. h-sakagami@mail.tains.tohoku.ac.jp

    EFA6A is a member of the guanine nucleotide exchange factors that can specifically activate ADP ribosylation factor 6 (ARF6). In this study, we identified alpha-actinin-1 as a possible interacting protein with EFA6A by the yeast two-hybrid screening with its C-terminal region as bait. The central region of alpha-actinin-1 containing a part of spectrin repeat 1 and spectrin repeats 2-3 is responsible for this interaction. In the hippocampal formation, EFA6A immunoreactivity occurred at a high level as numerous fine puncta in the strata oriens, radiatum, lacunosum-moleculare of the hippocampal CA1-3 subfields and the dentate molecular layer, whereas the immunoreactivity was faint in the neuronal cell layers and the stratum lucidum, the mossy fiber-recipient layer of the CA3 subfield. Double-immunofluorescent analyses revealed a partial overlapping of EFA6A and alpha-actinin at the dendritic spines of in vivo and cultured hippocampal neurons. Our present findings suggest that EFA6A may form a protein complex with alpha-actinin and activate ARF6 in close proximity of the actin cytoskeleton and membrane proteins in the dendritic spines.

    The European journal of neuroscience 2007;25;3;618-28

  • Intracellular substrates of brain-enriched receptor protein tyrosine phosphatase rho (RPTPrho/PTPRT).

    Besco JA, Hooft van Huijsduijnen R, Frostholm A and Rotter A

    Department of Pharmacology, The Ohio State University, 333 W 10th Ave., Columbus, OH 43210, USA. besco.1@osu.edu

    Receptor protein tyrosine phosphatase rho (RPTPrho/PTPRT) is a transmembrane protein that is highly expressed in the developing and adult central nervous system. It is a member of the RPTP R2B subfamily, which includes PTPkappa, PTPmu and PCP-2. Glutathione-S-transferase (GST) pulldown assays were used to show that RPTPrho interacts with several adherens junctional proteins in brain, including E-cadherin, N-cadherin, VE-cadherin (cadherin-5), desmoglein, alpha, beta and gamma catenin, p120(ctn) and alpha-actinin. With the exception of E-cadherin and alpha-actinin, binding was considerably reduced at high sodium concentrations. Furthermore, immunoprecipitation phosphatase assays indicated that E-cadherin, and to a far lesser extent p120(ctn), were tyrosine dephosphorylated by a recombinant RPTPrho intracellular fragment, and thus, were likely to be primary substrates for RPTPrho. The interaction of RPTPrho with adherens junctional components suggests that this phosphatase may transduce extracellular signals to the actin cytoskeleton and thereby play a role in regulating cadherin-mediated cell adhesion in the central nervous system.

    Funded by: NIMH NIH HHS: MH 57415

    Brain research 2006;1116;1;50-7

  • Differential binding of cross-reactive anti-DNA antibodies to mesangial cells: the role of alpha-actinin.

    Zhao Z, Deocharan B, Scherer PE, Ozelius LJ and Putterman C

    The Irving and Ruth Claremon Research Laboratory, Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

    Target Ag display is a necessary requirement for the expression of certain immune-mediated kidney diseases. We previously had shown that anti-DNA Abs that cross-react with alpha-actinin may be important in the pathogenesis of murine and human lupus nephritis; in murine models, we had found that a significant proportion of pathogenic serum and kidney-deposited Igs are alpha-actinin reactive. Furthermore, a pathogenic anti-DNA/alpha-actinin Ab showed enhanced binding to immortalized mesangial cells (MCs) derived from a lupus prone MRL-lpr/lpr mouse as compared with MCs from BALB/c mice which are not susceptible to spontaneous lupus, suggesting that kidney alpha-actinin expression may be contributing to nephritis. In the current study, we established that two isoforms of alpha-actinin that are present in the kidney, alpha-actinin 1 and alpha-actinin 4, can both be targeted by anti-alpha-actinin Abs. We found novel sequence polymorphisms between MRL-lpr/lpr and BALB/c in the gene for alpha-actinin 4. Moreover, alpha-actinin 4 and a splice variant of alpha-actinin 1 were both expressed at significantly higher levels (mRNA and protein) in MCs from the lupus prone MRL-lpr/lpr strain. Significantly, we were able to confirm these differences in intact kidney by examining glomerular Ig deposition of anti-alpha-actinin Abs. We conclude that enhanced alpha-actinin expression may determine the extent of Ig deposition in the Ab-mediated kidney disease in lupus. Modulation of Ag expression may be a promising approach to down-regulate immune complex formation in the target organ in individuals with circulating pathogenic Abs.

    Funded by: NIAID NIH HHS: P01-AI-51392; NIAMS NIH HHS: R01-AR-48692

    Journal of immunology (Baltimore, Md. : 1950) 2006;176;12;7704-14

  • The relationship among nephrin, podocin, CD2AP, and alpha-actinin might not be a true 'interaction' in podocyte.

    Fan Q, Xing Y, Ding J, Guan N and Zhang J

    Department of Pediatrics, Peking University First Hospital, Beijing, Peoples Republic of China.

    The abnormality of a single podocyte molecule, caused by a single gene mutation, such as NPHS1, NPHS2, CD2AP, and ACTN4, can lead to the hereditary/congenital nephrotic syndromes (NS). Further studies suggested that more than one podocyte molecule were together involved in acquired or experimental NS. However, we do not know much on the relationship among these podocyte molecules, and the molecular response induced by the change of each podocyte protein to the remaining ones. We respectively knockdown the nephrin, podocin, CD2AP, or alpha-actinin-4 mRNA by using reconstructed RNA interference vector--psiRNA-hH1GFPzeo in mouse podocyte clone. The molecular behavior or response was revealed by the quantitative expression both at mRNA and protein levels with RT-PCR and Western blot, and by the molecular distribution detected with confocal microscopy. With nephrin knockdown, only CD2AP increased, whereas podocin showed no change. Contrarily, with podocin or CD2AP knockdown, nephrin decreased, while CD2AP or podocin increased. Nephrin, podocin, or CD2AP knockdown did not change the expression of alpha-actinin-4, whereas alpha-actinin-4 knockdown begetted the reduction of nephrin, and the increment of podocin and CD2AP. The redistributions of nephrin, podocin, and CD2AP were revealed around a predominant nuclear staining compared with the membrane surface staining in the control podocytes. Our data imply that the response between the four podocyte molecules is very complicated and evidently different. There is not always an interaction between podocyte molecules. The normal localization of podocyte molecules would depend on their normal expression quantity and the molecular reactions between them.

    Kidney international 2006;69;7;1207-15

  • The vinculin binding sites of talin and alpha-actinin are sufficient to activate vinculin.

    Bois PR, O'Hara BP, Nietlispach D, Kirkpatrick J and Izard T

    Department of Biochemistry, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA.

    Vinculin regulates both cell-cell and cell-matrix junctions and anchors adhesion complexes to the actin cytoskeleton through its interactions with the vinculin binding sites of alpha-actinin or talin. Activation of vinculin requires a severing of the intramolecular interactions between its N- and C-terminal domains, which is necessary for vinculin to bind to F-actin; yet how this occurs in cells is not resolved. We tested the hypothesis that talin and alpha-actinin activate vinculin through their vinculin binding sites. Indeed, we show that these vinculin binding sites have a high affinity for full-length vinculin, are sufficient to sever the head-tail interactions of vinculin, and they induce conformational changes that allow vinculin to bind to F-actin. Finally, microinjection of these vinculin binding sites specifically targets vinculin in cells, disrupting its interactions with talin and alpha-actinin and disassembling focal adhesions. In their native (inactive) states the vinculin binding sites of talin and alpha-actinin are buried within helical bundles present in their central rod domains. Collectively, these results support a model where the engagement of adhesion receptors first activates talin or alpha-actinin, by provoking structural changes that allow their vinculin binding sites to swing out, which are then sufficient to bind to and activate vinculin.

    Funded by: NCI NIH HHS: CA 21765; NIGMS NIH HHS: GM 071596

    The Journal of biological chemistry 2006;281;11;7228-36

  • Proteomic identification of the TRAF6 regulation of vacuolar ATPase for osteoclast function.

    Ryu J, Kim H, Lee SK, Chang EJ, Kim HJ and Kim HH

    Department of Cell and Developmental Biology, Dental Research Institute, College of Dentistry, Seoul National University, Seoul, Korea.

    Osteoclasts are cells specialized for bone resorption. For osteoclast activation, tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role. To find new molecules that bind TRAF6 and have a function in osteoclast activation, we employed a proteomic approach. TRAF6-binding proteins were purified from osteoclast cell lysates by affinity chromatography and their identity was disclosed by MS. The identified proteins included several heat shock proteins, actin and actin-binding proteins, and vacuolar ATPase (V-ATPase). V-ATPase, documented for a great increase in expression during osteoclast differentiation, is an important enzyme for osteoclast function; it transports proton to resorption lacunae for hydroxyapatite dissolution. The binding of V-ATPase with TRAF6 was confirmed both in vitro by GST pull-down assays and in osteoclasts by co-immunoprecipitation and confocal microscopy experiments. In addition, the V-ATPase activity associated with TRAF6 increased in osteoclasts stimulated with receptor activator of nuclear factor kappaB ligand (RANKL). Furthermore, a dominant-negative form of TRAF6 abrogated the RANKL stimulation of V-ATPase activity. Our study identified V-ATPase as a TRAF6-binding protein using a proteomics strategy and proved a direct link between these two important molecules for osteoclast function.

    Proteomics 2005;5;16;4152-60

  • Rabphilin localizes with the cell actin cytoskeleton and stimulates association of granules with F-actin cross-linked by {alpha}-actinin.

    Baldini G, Martelli AM, Tabellini G, Horn C, Machaca K, Narducci P and Baldini G

    Dipartimento di Morfologia Umana Normale, via Manzoni 16, Trieste, Universita' di Trieste, Trieste I-34138, Italy. gbaldini@uams.edu

    In endocrine cell, granules accumulate within an F-actin-rich region below the plasma membrane. The mechanisms involved in this process are largely unknown. Rabphilin is a cytosolic protein that is expressed in neurons and neuroendocrine cells and binds with high affinity to members of the Rab3 family of GTPases localized to synaptic vesicles and dense core granules. Rabphilin also interacts with alpha-actinin, a protein that cross-links F-actin into bundles and networks and associates with the granule membrane. Here we asked whether rabphilin, in addition to its granule localization, also interacts with the cell actin cytoskeleton. Immunofluorescence and immunoelectron microscopy show that rabphilin localizes to the sub-plasmalemmal actin cytoskeleton both in neuroendocrine and unspecialized cells. By using purified components, it is found that association of rabphilin with F-actin is dependent on added alpha-actinin. In an in vitro assay, granules, unlike endosomes or mitochondria, associate with F-actin cross-linked by alpha-actinin. Rabphilin is shown to stimulate this process. Rabphilin enhances by approximately 8-fold the granule ability to localize within regions of elevated concentration of cross-linked F-actin. These results suggest that rabphilin, by interacting with alpha-actinin, organizes the cell cytoskeleton to facilitate granule localization within F-actin-rich regions.

    Funded by: NIDDK NIH HHS: R01-DK53293

    The Journal of biological chemistry 2005;280;41;34974-84

  • Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner.

    Asanuma K, Kim K, Oh J, Giardino L, Chabanis S, Faul C, Reiser J and Mundel P

    Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA.

    Synaptopodin is the founding member of a novel class of proline-rich actin-associated proteins highly expressed in telencephalic dendrites and renal podocytes. Synaptopodin-deficient (synpo(-/-)) mice lack the dendritic spine apparatus and display impaired activity-dependent long-term synaptic plasticity. In contrast, the ultrastructure of podocytes in synpo(-/-) mice is normal. Here we show that synpo(-/-) mice display impaired recovery from protamine sulfate-induced podocyte foot process (FP) effacement and LPS-induced nephrotic syndrome. Similarly, synpo(-/-) podocytes show impaired actin filament reformation in vitro. We further demonstrate that synaptopodin exists in 3 isoforms, neuronal Synpo-short (685 AA), renal Synpo-long (903 AA), and Synpo-T (181 AA). The C terminus of Synpo-long is identical to that of Synpo-T. All 3 isoforms specifically interact with alpha-actinin and elongate alpha-actinin-induced actin filaments. synpo(-/-) mice lack Synpo-short and Synpo-long expression but show an upregulation of Synpo-T protein expression in podocytes, though not in the brain. Gene silencing of Synpo-T abrogates stress-fiber formation in synpo(-/-) podocytes, demonstrating that Synpo-T serves as a backup for Synpo-long in synpo(-/-) podocytes. In concert, synaptopodin regulates the actin-bundling activity of alpha-actinin in highly dynamic cell compartments, such as podocyte FPs and the dendritic spine apparatus.

    Funded by: NIDA NIH HHS: DA18886, R01 DA018886; NIDDK NIH HHS: DK062472, DK064236, DK57683, P50 DK064236, R01 DK057683, R01 DK062472

    The Journal of clinical investigation 2005;115;5;1188-98

  • Temporal and spatial expression pattern of beta1 sodium channel subunit during heart development.

    Domínguez JN, Navarro F, Franco D, Thompson RP and Aránega AE

    Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Paraje de las Lagunillas, s/n, 23071 Jaén, Spain.

    Objectives: The aim of this study is to analyze Scn1b mRNA expression levels and protein distribution of Scn1b, a putative modulator of the pore-forming Na(+) channel subunit in the heart, during mouse cardiac development.

    Methods: Scn1b mRNA levels were determined by real-time RT-PCR using embryonic hearts ranging from E9.5 to E18.5 as well as in postnatal and adult heart. Scn1b protein distribution and subcellular localization during cardiogenesis were analyzed by immunohistochemistry and confocal microscopy.

    Results: Scn1b mRNA showed a dynamic expression pattern, peaking at stage E12.5 and decreasing at E15.5. Scn1b mRNA increased at later embryonic and neonatal stages, being maximal in the adult heart. Immunohistochemistry experiments revealed comparable distribution of Scn1b protein between the different cardiac chambers at early embryonic stages. With further development, Scn1b protein showed an enhanced expression in the trabeculated myocardium and the bundle branches. At the subcellular level in later embryonic and postnatal mouse cardiomyocytes, Scn1b was present in T-tubules as identified by immunostaining of alpha-actinin, and in the intercalated disks as identified by immunostaining of connexin 43.

    Conclusion: These results demonstrate that Scn1b is expressed during mouse heart development, suggesting it can play an important role in the action potential configuration of the cardiomyocytes during heart morphogenesis.

    Cardiovascular research 2005;65;4;842-50

  • Myb proteins regulate the expression of diverse target genes.

    Lang G, White JR, Argent-Katwala MJ, Allinson CG and Weston K

    CRUK Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.

    Hematopoiesis, the process by which mature blood cells arise, is controlled by multiple transcription factors, which act in stage- and lineage-specific complexes. It is a major goal to elucidate the genes regulated by these transcription factors, in order to obtain a full understanding of the process and its malignant counterpart, leukemia. Myb family transcription factors play a central role in hematopoiesis. To identify new Myb family target genes, we have used an inducible dominant-negative protein for a subtraction cloning protocol in a model cell system (FDCP-Mix) with many characteristics of normal hematopoiesis. We present here a novel group of 29 validated Myb family target genes of diverse functions.

    Oncogene 2005;24;8;1375-84

  • Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc.

    Heineke J, Ruetten H, Willenbockel C, Gross SC, Naguib M, Schaefer A, Kempf T, Hilfiker-Kleiner D, Caroni P, Kraft T, Kaiser RA, Molkentin JD, Drexler H and Wollert KC

    Department of Cardiology, Hanover Medical School, 30625 Hanover, Germany.

    Adverse left ventricular (LV) remodeling after myocardial infarction (MI) is a major cause for heart failure. Molecular modifiers of the remodeling process remain poorly defined. Patients with heart failure after MI have reduced LV expression levels of muscle LIM protein (MLP), a component of the sarcomeric Z-disk that is involved in the integration of stress signals in cardiomyocytes. By using heterozygous MLP mutant (MLP+/-) mice, we explored the role of MLP in post-MI remodeling. LV dimensions and function were similar in sham-operated WT and MLP+/- mice. After MI, however, MLP+/- mice displayed more pronounced LV dilatation and systolic dysfunction and decreased survival compared with WT mice, indicating that reduced MLP levels predispose to adverse LV remodeling. LV dilatation in MLP+/- mice was associated with reduced thickening but enhanced elongation of cardiomyocytes. Activation of the stress-responsive, prohypertrophic calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway was reduced in MLP+/- mice after MI, as shown by a blunted transcriptional activation of NFAT in cardiomyocytes isolated from MLP+/-/NFAT-luciferase reporter gene transgenic mice. Calcineurin was colocalized with MLP at the Z-disk in WT mice but was displaced from the Z-disk in MLP+/- mice, indicating that MLP is essential for calcineurin anchorage to the Z-disk. In vitro assays in cardiomyocytes with down-regulated MLP confirmed that MLP is required for stress-induced calcineurin-NFAT activation. Our study reveals a link between the stress sensor MLP and the calcineurin-NFAT pathway at the sarcomeric Z-disk in cardiomyocytes and indicates that reduced MLP-calcineurin signaling predisposes to adverse remodeling after MI.

    Proceedings of the National Academy of Sciences of the United States of America 2005;102;5;1655-60

  • Phosphorylation of mouse LASP-1 on threonine 156 by cAMP- and cGMP-dependent protein kinase.

    Keicher C, Gambaryan S, Schulze E, Marcus K, Meyer HE and Butt E

    Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.

    LIM and SH3 domain protein (LASP-1) is a specific focal adhesion protein involved in cell migration. Overlay studies demonstrate that LASP-1 directly binds to the proline-rich domains of zyxin, lipoma preferred partner (LPP), and vasodilator-stimulated phosphoprotein (VASP), with zyxin being the most prominent interacting partner. Despite the LIM/zinc-finger domain, hypothesized to be involved in homodimerization, LASP-1 exists as a monomer. In vitro phosphorylation of recombinant mouse LASP-1 by cAMP- and cGMP-dependent protein kinase (PKA and PKG, respectively) occurs at serine 61, serine 99, and threonine 156 whereas in intact cells mouse LASP-1 is phosphorylated only at threonine 156. This site is different from the known in vivo phosphorylation sites in human (serine 146) and rabbit (serine 99 and serine 146). Nevertheless, immunofluorescence of LASP-1 in human and mouse mesangial cells revealed no difference in subcellular distribution. Exposure of the cells to forskolin induced a translocation of both, human and mouse LASP-1, from the focal contacts to the cell interior without affecting F-actin structure. Immunoblotting of LASP-1 in various mouse and human tissues detected a similar prominent expression in non-muscle tissue. Altogether, our data suggest so far no functional differences between human and mouse LASP-1.

    Biochemical and biophysical research communications 2004;324;1;308-16

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions.

    Koh TJ and Escobedo J

    School of Kinesiology, University of Illinois at Chicago, Chicago, Illinois 60608, USA. tjkoh@uic.edu

    The purposes of this study were to determine whether, immediately after lengthening contractions, 1) levels of specific force-transmitting cytoskeletal elements are reduced in skeletal muscle cells and 2) cytosolic small heat shock proteins (HSPs) translocate to structures prone to disruption. Western blot analysis demonstrated decreased concentrations of z-disk proteins alpha-actinin and plectin and membrane scaffolding proteins dystrophin and beta-spectrin in muscle exposed to lengthening contractions compared with contralateral control muscle. Lengthening contractions also resulted in immediate translocation of constitutively expressed HSP25 and alphaB-crystallin from the soluble to the insoluble fraction of muscle homogenates, and cryosections showed translocation from a diffuse, cytosolic localization to striations that corresponded to z-disks. Lengthening contraction-induced translocation of HSP25 and alphaB-crystallin was associated with phosphorylation of these small HSPs, which may trigger their protective activity. In summary, these findings demonstrate loss of z-disk and membrane scaffolding proteins immediately after lengthening contractions, and concomitant translocation of HSP25 and alphaB-crystallin to the z-disk, which may help to stabilize or repair cytoskeletal elements at this site.

    American journal of physiology. Cell physiology 2004;286;3;C713-22

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • Mice deficient in alpha-actinin-4 have severe glomerular disease.

    Kos CH, Le TC, Sinha S, Henderson JM, Kim SH, Sugimoto H, Kalluri R, Gerszten RE and Pollak MR

    Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    Dominantly inherited mutations in ACTN4, which encodes alpha-actinin-4, cause a form of human focal and segmental glomerulosclerosis (FSGS). By homologous recombination in ES cells, we developed a mouse model deficient in Actn4. Mice homozygous for the targeted allele have no detectable alpha-actinin-4 protein expression. The number of homozygous mice observed was lower than expected under mendelian inheritance. Surviving mice homozygous for the targeted allele show progressive proteinuria, glomerular disease, and typically death by several months of age. Light microscopic analysis shows extensive glomerular disease and proteinaceous casts. Electron microscopic examination shows focal areas of podocyte foot-process effacement in young mice, and diffuse effacement and globally disrupted podocyte morphology in older mice. Despite the widespread distribution of alpha-actinin-4, histologic examination of mice showed abnormalities only in the kidneys. In contrast to the dominantly inherited human form of ACTN4-associated FSGS, here we show that the absence of alpha-actinin-4 causes a recessive form of disease in mice. Cell motility, as measured by lymphocyte chemotaxis assays, was increased in the absence of alpha-actinin-4. We conclude that alpha-actinin-4 is required for normal glomerular function. We further conclude that the nonsarcomeric forms of alpha-actinin (alpha-actinin-1 and alpha-actinin-4) are not functionally redundant. In addition, these genetic studies demonstrate that the nonsarcomeric alpha-actinin-4 is involved in the regulation of cell movement.

    Funded by: NHLBI NIH HHS: HL-07208, HL-65584, R01 HL065584, T32 HL007208; NIDDK NIH HHS: DK-51711, DK-55001, DK-59588, R01 DK055001, R01 DK059588, R37 DK059588

    The Journal of clinical investigation 2003;111;11;1683-90

  • BayGenomics: a resource of insertional mutations in mouse embryonic stem cells.

    Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, Meng EC, Lee RE, Yee A, L'Italien L, Chuang PT, Young SG, Skarnes WC, Babbitt PC and Ferrin TE

    Department of Pharmaceutical Chemistry, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.

    The BayGenomics gene-trap resource (http://baygenomics.ucsf.edu) provides researchers with access to thousands of mouse embryonic stem (ES) cell lines harboring characterized insertional mutations in both known and novel genes. Each cell line contains an insertional mutation in a specific gene. The identity of the gene that has been interrupted can be determined from a DNA sequence tag. Approximately 75% of our cell lines contain insertional mutations in known mouse genes or genes that share strong sequence similarities with genes that have been identified in other organisms. These cell lines readily transmit the mutation to the germline of mice and many mutant lines of mice have already been generated from this resource. BayGenomics provides facile access to our entire database, including sequence tags for each mutant ES cell line, through the World Wide Web. Investigators can browse our resource, search for specific entries, download any portion of our database and BLAST sequences of interest against our entire set of cell line sequence tags. They can then obtain the mutant ES cell line for the purpose of generating knockout mice.

    Funded by: NCRR NIH HHS: P41 RR001081, P41 RR01081; NHLBI NIH HHS: U01 HL066621, U01 HL66621

    Nucleic acids research 2003;31;1;278-81

  • The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner.

    Dhavan R, Greer PL, Morabito MA, Orlando LR and Tsai LH

    Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.

    Cyclin-dependent kinase 5 (Cdk5) is a critical regulator of neuronal migration in the developing CNS, and recent studies have revealed a role for Cdk5 in synaptogenesis and regulation of synaptic transmission. Deregulation of Cdk5 has been linked to the pathology of neurodegenerative diseases such as Alzheimer's disease. Activation of Cdk5 requires its association with a regulatory subunit, and two Cdk5 activators, p35 and p39, have been identified. To gain further insight into the functions of Cdk5, we identified proteins that interact with p39 in a yeast two-hybrid screen. In this study we report that alpha-actinin-1 and the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II (CaMKIIalpha), two proteins localized at the postsynaptic density, interact with Cdk5 via their association with p35 and p39. CaMKIIalpha and alpha-actinin-1 bind to distinct regions of p35 and p39 and also can interact with each other. The association of CaMKIIalpha and alpha-actinin-1 to the Cdk5 activators, as well as to each other, is stimulated by calcium. Further, the activation of glutamate receptors increases the association of p35 and p39 with CaMKIIalpha, and the inhibition of CaMKII activation diminishes this effect. The glutamate-mediated increase in association of p35 and CaMKIIalpha is mediated in large part by NMDA receptors, suggesting that cross talk between the Cdk5 and CaMKII signal transduction pathways may be a component of the complex molecular mechanisms contributing to synaptic plasticity, memory, and learning.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2002;22;18;7879-91

  • Ultrastructural and biochemical localization of N-RAP at the interface between myofibrils and intercalated disks in the mouse heart.

    Zhang JQ, Elzey B, Williams G, Lu S, Law DJ and Horowits R

    Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

    N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.

    Biochemistry 2001;40;49;14898-906

  • Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy.

    Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S and North K

    Neurogenetics Research Unit, Children's Hospital at Westmead, Westmead, Sydney, NSW 2145, Australia.

    The alpha-actinins are a multigene family of four actin-binding proteins related to dystrophin. The two skeletal muscle isoforms of alpha-actinin (ACTN2 and ACTN3) are major structural components of the Z-line involved in anchoring the actin-containing thin filaments. In humans, ACTN2 is expressed in all muscle fibres, while ACTN3 expression is restricted to a subset of type 2 fibres. We have recently demonstrated that alpha-actinin-3 is absent in approximately 18% of individuals in a range of human populations, and that homozygosity for a premature stop codon (577X) accounts for most cases of true alpha-actinin-3 deficiency. Absence of alpha-actinin-3 is not associated with an obvious disease phenotype, raising the possibility that ACTN3 is functionally redundant in humans, and that alpha-actinin-2 is able to compensate for alpha-actinin-3 deficiency. We now present data concerning the expression of ACTN3 in other species. Genotyping of non-human primates indicates that the 577X null mutation has likely arisen in humans. The mouse genome contains four orthologues which all map to evolutionarily conserved syntenic regions for the four human genes. Murine Actn2 and Actn3 are differentially expressed, spatially and temporally, during embryonic development and, in contrast to humans, alpha-actinin-2 expression does not completely overlap alpha-actinin-3 in postnatal skeletal muscle, suggesting independent function. Furthermore, sequence comparison of human, mouse and chicken alpha-actinin genes demonstrates that ACTN3 has been conserved over a long period of evolutionary time, implying a constraint on evolutionary rate imposed by continued function of the gene. These observations provide a real framework in which to test theoretical models of genetic redundancy as they apply to human populations. In addition we highlight the need for caution in making conclusions about gene function from the phenotypic consequences of loss-of-function mutations in animal knockout models.

    Funded by: NIAMS NIH HHS: K02 AR02026, R01 AR44345

    Human molecular genetics 2001;10;13;1335-46

  • Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy.

    Pashmforoush M, Pomiès P, Peterson KL, Kubalak S, Ross J, Hefti A, Aebi U, Beckerle MC and Chien KR

    UCSD-Salk Program in Molecular Medicine and the UCSD Institute of Molecular Medicine, University of California at San Diego, La Jolla, California, USA.

    Although cytoskeletal mutations are known causes of genetically based forms of dilated cardiomyopathy, the pathways that link these defects with cardiomyopathy are unclear. Here we report that the alpha-actinin-associated LIM protein (ALP; Alp in mice) has an essential role in the embryonic development of the right ventricular (RV) chamber during its exposure to high biomechanical workloads in utero. Disruption of the gene encoding Alp (Alp) is associated with RV chamber dilation and dysfunction, directly implicating alpha-actinin-associated proteins in the onset of cardiomyopathy. In vitro assays showed that Alp directly enhances the capacity of alpha-actinin to cross-link actin filaments, indicating that the loss of Alp function contributes to destabilization of actin anchorage sites in cardiac muscle. Alp also colocalizes at the intercalated disc with alpha-actinin and gamma-catenin, the latter being a known disease gene for human RV dysplasia. Taken together, these studies point to a novel developmental pathway for RV dilated cardiomyopathy via instability of alpha-actinin complexes.

    Nature medicine 2001;7;5;591-7

  • Calsarcins, a novel family of sarcomeric calcineurin-binding proteins.

    Frey N, Richardson JA and Olson EN

    Departments of Molecular Biology and Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.

    The calcium- and calmodulin-dependent protein phosphatase calcineurin has been implicated in the transduction of signals that control the hypertrophy of cardiac muscle and slow fiber gene expression in skeletal muscle. To identify proteins that mediate the effects of calcineurin on striated muscles, we used the calcineurin catalytic subunit in a two-hybrid screen for cardiac calcineurin-interacting proteins. From this screen, we discovered a member of a novel family of calcineurin-interacting proteins, termed calsarcins, which tether calcineurin to alpha-actinin at the z-line of the sarcomere of cardiac and skeletal muscle cells. Calsarcin-1 and calsarcin-2 are expressed in developing cardiac and skeletal muscle during embryogenesis, but calsarcin-1 is expressed specifically in adult cardiac and slow-twitch skeletal muscle, whereas calsarcin-2 is restricted to fast skeletal muscle. Calsarcins represent a novel family of sarcomeric proteins that link calcineurin with the contractile apparatus, thereby potentially coupling muscle activity to calcineurin activation.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;26;14632-7

  • Fine mapping of the alpha-actinin binding site within cysteine-rich protein.

    Harper BD, Beckerle MC and Pomiès P

    Department of Biology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA.

    The cysteine-rich proteins (CRPs) are a family of highly conserved LIM (an acronym derived from the three gene products lin-11, isl-1 and mec-3) domain proteins that have been implicated in muscle differentiation. All CRP family members characterized so far have been shown to interact with the filamentous actin cross-linker alpha-actinin. The region of CRP required for this interaction has previously been broadly mapped to the molecule's N-terminal half. Here we report that the alpha-actinin-binding region of CRP, which we have mapped by using a combination of blot overlay and Western immunoblot techniques, is confined to an 18-residue sequence occurring within the protein's N-terminal glycine-rich repeat. A site-directed mutagenesis analysis of the binding region has revealed the critical importance of a single lysine residue (lysine 65 in human CRP1). Alterations at this site lead to a 10-fold decrease in alpha-actinin binding in comparison with wild-type CRP. The critical lysine residue localizes within a short alpha-helix, raising the possibility that mutagenesis-induced alterations in alpha-actinin-binding capacity might be attributed to the disruption of a key structural element.

    Funded by: NHLBI NIH HHS: HL60591, R01 HL060591

    The Biochemical journal 2000;350 Pt 1;269-74

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • ENH, containing PDZ and LIM domains, heart/skeletal muscle-specific protein, associates with cytoskeletal proteins through the PDZ domain.

    Nakagawa N, Hoshijima M, Oyasu M, Saito N, Tanizawa K and Kuroda S

    Department of Structural Molecular Biology, Osaka University, Japan.

    The Enigma homologue protein (ENH), containing an N-terminal PDZ domain and three C-terminal LIM domains, is a heart and skeletal muscle-specific protein that has been shown to preferentially interact with protein kinase C beta (PKCbeta) through the LIM domains (Kuroda et al., J. Biol. Chem. 271, 31029-31032, 1996). We here demonstrate that ENH is colocalized with a cytoskeletal protein alpha-actinin in the Z-disk region of rat neonatal cardiomyocytes. Pull-down assays using the glutathione-S-transferase-fusion system also showed the interaction of the PDZ domain of ENH with actin and alpha-actinin. Furthermore, by combined use of the in silico and conventional cDNA cloning methods, we have isolated three ENH-related clones from a mouse heart-derived cDNA library: mENH1 (591 amino acid residues) corresponding to rat ENH, mENH2 (337 residues), and mENH3 (239 residues); the latter two containing only a single PDZ domain. Deciphering their cDNA sequences, these mENH1-3 mRNAs appear to be generated from a single mENH gene by alternative splicing. Northern blot analyses using human cancer cells and mouse embryos have shown expression of each mENH mRNA to vary considerably among the cell types and during the developmental stage. Together with a recent finding that PKCbeta is markedly activated in the cardiac hypertrophic signaling, these results suggest that ENH1 plays an important role in the heart development by scaffolding PKCbeta to the Z-disk region and that ENH2 and ENH3 negatively modulate the scaffolding activity of ENH1.

    Biochemical and biophysical research communications 2000;272;2;505-12

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.