G2Cdb::Gene report

Gene id
Gene symbol
Cdk5rap3 (MGI)
Mus musculus
CDK5 regulatory subunit associated protein 3
G00001602 (Homo sapiens)

Databases (9)

Curated Gene
OTTMUSG00000001725 (Vega mouse gene)
ENSMUSG00000018669 (Ensembl mouse gene)
80280 (Entrez Gene)
691 (G2Cdb plasticity & disease)
Gene Expression
NM_030248 (Allen Brain Atlas)
80280 (Genepaint)
608202 (OMIM)
Marker Symbol
MGI:1933126 (MGI)
Protein Sequence
Q99LM2 (UniProt)

Synonyms (5)

  • C53
  • HSF-27
  • IC53
  • MST016
  • OK/SW-cl.114

Literature (9)

Pubmed - other

  • Novel interaction between nuclear co-activator CBP and the CDK5 activator binding protein - C53.

    Yin X, Warner DR, Roberts EA, Pisano MM and Greene RM

    Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, Birth Defects Center, 501 S. Preston Street, Suite 301, Louisville, KY 40292, USA.

    cAMP response element-binding protein (CREB)-binding protein (CBP) is a multifunctional transcriptional co-activator that plays important roles in cell proliferation and differentiation. CBP is expressed in murine embryonic orofacial tissue and is developmentally regulated. To identify nuclear factors associating with CBP in developing orofacial tissue, a yeast two-hybrid screen of a cDNA library derived from embryonic orofacial tissue from gestational days 11-13 mouse embryos was conducted. The carboxy terminal region of CBP (including the C/H3 region) was utilized as a bait. C53, a 57 kDa protein known to bind to the p25 activator of cyclin-dependent kinase 5, was identified as a novel binding partner of CBP. The association of C53 with CBP was confirmed in vitro by glutathione S-transferase pull-down assays, and in vivo by co-immunoprecipitation. Reporter assays demonstrated that C53 had little effect on CBP mediated transcriptional activation. These results identify C53 as a novel binding partner for CBP. Recent research on presenilin-loss induced neurodegeneration demonstrated decreased expression of CBP and increased levels of the Cdk5 activator p25, both C53 binding proteins, suggesting that C53 might play a role in regulating neuronal proliferation, migration and/or differentiation in embryonic development.

    Funded by: NCRR NIH HHS: P20RR017702; NIDCR NIH HHS: DE05550

    International journal of molecular medicine 2005;16;2;251-6

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Genomic analysis of mouse retinal development.

    Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH, Yung R, Asch E, Ohno-Machado L, Wong WH and Cepko CL

    Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.

    The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was profiled at multiple time points using serial analysis of gene expression (SAGE). The expression patterns of 1,051 genes that showed developmentally dynamic expression by SAGE were investigated using in situ hybridization. A molecular atlas of gene expression in the developing and mature retina was thereby constructed, along with a taxonomic classification of developmental gene expression patterns. Genes were identified that label both temporal and spatial subsets of mitotic progenitor cells. For each developing and mature major retinal cell type, genes selectively expressed in that cell type were identified. The gene expression profiles of retinal Müller glia and mitotic progenitor cells were found to be highly similar, suggesting that Müller glia might serve to produce multiple retinal cell types under the right conditions. In addition, multiple transcripts that were evolutionarily conserved that did not appear to encode open reading frames of more than 100 amino acids in length ("noncoding RNAs") were found to be dynamically and specifically expressed in developing and mature retinal cell types. Finally, many photoreceptor-enriched genes that mapped to chromosomal intervals containing retinal disease genes were identified. These data serve as a starting point for functional investigations of the roles of these genes in retinal development and physiology.

    Funded by: NCI NIH HHS: P20 CA096470, P20 CA96470; NEI NIH HHS: EY08064, R01 EY008064

    PLoS biology 2004;2;9;E247

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.

    Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H and Ruiz P

    Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.

    A major challenge of the postgenomic era is the functional characterization of every single gene within the mammalian genome. In an effort to address this challenge, we assembled a collection of mutations in mouse embryonic stem (ES) cells, which is the largest publicly accessible collection of such mutations to date. Using four different gene-trap vectors, we generated 5,142 sequences adjacent to the gene-trap integration sites (gene-trap sequence tags; http://genetrap.de) from >11,000 ES cell clones. Although most of the gene-trap vector insertions occurred randomly throughout the genome, we found both vector-independent and vector-specific integration "hot spots." Because >50% of the hot spots were vector-specific, we conclude that the most effective way to saturate the mouse genome with gene-trap insertions is by using a combination of gene-trap vectors. When a random sample of gene-trap integrations was passaged to the germ line, 59% (17 of 29) produced an observable phenotype in transgenic mice, a frequency similar to that achieved by conventional gene targeting. Thus, gene trapping allows a large-scale and cost-effective production of ES cell clones with mutations distributed throughout the genome, a resource likely to accelerate genome annotation and the in vivo modeling of human disease.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;17;9918-22

  • Large-scale screen for genes involved in gonad development.

    Wertz K and Herrmann BG

    Max-Planck-Institut für Immunbiologie, Abt. Entwicklungsbiologie, Stübeweg 51, 79108, Freiburg, Germany.

    The vertebrate gonad develops from the intermediate mesoderm as an initially bipotential organ anlage, the genital ridge. In mammals, Sry acts as a genetic switch towards testis development. Sox9 has been shown to act downstream of Sry in testis development, while Dax1 appears to counteract Sry. Few more genes have been implicated in early gonad development. However, the genetic networks controlling early differentiation events in testis and ovary are still far from being understood. In order to provide a broader basis for the molecular analysis of gonad development, high-throughput gene expression analysis was utilized to identify genes specifically expressed in the gonad. In total, among 138 genes isolated which showed tissue specific expression in the embryo, 79 were detected in the developing gonad or sex ducts. Twenty-seven have not been functionally described before, while 40 represent known genes and 12 are putative mouse orthologues. Forty-five of the latter two groups (86%) have not been described previously in the fetal gonad. In addition, 21 of the gonad specific genes showed sex-dimorphic expression suggesting a role in sex determination and/or gonad differentiation. Eighteen of the latter (86%) have not been described previously in the fetal gonad. In total we provide new data on 72 genes which may play a role in gonad or sex duct development and/or sex determination. Thus we have generated a large gene resource for the investigation of these processes, and demonstrate the suitability of high-throughput gene expression screening for the genetic analysis of organogenesis.

    Mechanisms of development 2000;98;1-2;51-70

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development.

    Ko MS, Kitchen JR, Wang X, Threat TA, Wang X, Hasegawa A, Sun T, Grahovac MJ, Kargul GJ, Lim MK, Cui Y, Sano Y, Tanaka T, Liang Y, Mason S, Paonessa PD, Sauls AD, DePalma GE, Sharara R, Rowe LB, Eppig J, Morrell C and Doi H

    ERATO Doi Bioasymmetry Project, JST, Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA. kom@grc.nia.nih.gov

    Little is known about gene action in the preimplantation events that initiate mammalian development. Based on cDNA collections made from each stage from egg to blastocyst, 25438 3'-ESTs were derived, and represent 9718 genes, half of them novel. Thus, a considerable fraction of mammalian genes is dedicated to embryonic expression. This study reveals profound changes in gene expression that include the transient induction of transcripts at each stage. These results raise the possibility that development is driven by the action of a series of stage-specific expressed genes. The new genes, 798 of them placed on the mouse genetic map, provide entry points for analyses of human and mouse developmental disorders.

    Funded by: NICHD NIH HHS: R01HD32243

    Development (Cambridge, England) 2000;127;8;1737-49

Gene lists (3)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.