G2Cdb::Gene report

Gene id
G00000308
Gene symbol
Ndufs3 (MGI)
Species
Mus musculus
Description
NADH dehydrogenase (ubiquinone) Fe-S protein 3
Orthologue
G00001557 (Homo sapiens)

Databases (9)

Curated Gene
OTTMUSG00000014317 (Vega mouse gene)
Gene
ENSMUSG00000005510 (Ensembl mouse gene)
68349 (Entrez Gene)
646 (G2Cdb plasticity & disease)
Gene Expression
MGI:1915599 (Allen Brain Atlas)
68349 (Genepaint)
Literature
603846 (OMIM)
Marker Symbol
MGI:1915599 (MGI)
Protein Sequence
Q9DCT2 (UniProt)

Literature (12)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Analysis of mouse models of cytochrome c oxidase deficiency owing to mutations in Sco2.

    Yang H, Brosel S, Acin-Perez R, Slavkovich V, Nishino I, Khan R, Goldberg IJ, Graziano J, Manfredi G and Schon EA

    Department of Neurology, Columbia University Medical Center, Berrie-303A, New York, NY 10032, USA.

    Mutations in SCO2, a protein required for the proper assembly and functioning of cytochrome c oxidase (COX; complex IV of the mitochondrial respiratory chain), cause a fatal infantile cardioencephalomyopathy with COX deficiency. We have generated mice harboring a Sco2 knock-out (KO) allele and a Sco2 knock-in (KI) allele expressing an E-->K mutation at position 129 (E129K), corresponding to the E140K mutation found in almost all human SCO2-mutated patients. Whereas homozygous KO mice were embryonic lethals, homozygous KI and compound heterozygous KI/KO mice were viable, but had muscle weakness; biochemically, they had respiratory chain deficiencies as well as complex IV assembly defects in multiple tissues. There was a concomitant reduction in mitochondrial copper content, but the total amount of copper in examined tissues was not reduced. These mouse models should be of use in further studies of Sco2 function, as well as in testing therapeutic approaches to treat the human disorder.

    Funded by: NHLBI NIH HHS: HL73029, R01 HL045095; NIA NIH HHS: AG08702; NICHD NIH HHS: HD83062; NIEHS NIH HHS: P30ES09089, P42ES10340; NINDS NIH HHS: K02NS047306, NS11766; PHS HHS: T3207343

    Human molecular genetics 2010;19;1;170-80

  • Proteomics analysis identifies phosphorylation-dependent alpha-synuclein protein interactions.

    McFarland MA, Ellis CE, Markey SP and Nussbaum RL

    National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20891, USA.

    Mutations and copy number variation in the SNCA gene encoding the neuronal protein alpha-synuclein have been linked to familial Parkinson disease (Thomas, B., and Beal, M. F. (2007) Parkinson's disease. Hum. Mol. Genet. 16, R183-R194). The carboxyl terminus of alpha-synuclein can be phosphorylated at tyrosine 125 and serine 129, although only a small fraction of the protein is phosphorylated under normal conditions (Okochi, M., Walter, J., Koyama, A., Nakajo, S., Baba, M., Iwatsubo, T., Meijer, L., Kahle, P. J., and Haass, C. (2000) Constitutive phosphorylation of the Parkinson's disease associated alpha-synuclein. J. Biol. Chem. 275, 390-397). Under pathological conditions, such as in Parkinson disease, alpha-synuclein is a major component of Lewy bodies, a pathological hallmark of Parkinson disease, and is mostly phosphorylated at Ser-129 (Anderson, J. P., Walker, D. E., Goldstein, J. M., de Laat, R., Banducci, K., Caccavello, R. J., Barbour, R., Huang, J. P., Kling, K., Lee, M., Diep, L., Keim, P. S., Shen, X. F., Chataway, T., Schlossmacher, M. G., Seubert, P., Schenk, D., Sinha, S., Gai, W. P., and Chilcote, T. J. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 281, 29739-29752). Controversy exists over the extent to which phosphorylation of alpha-synuclein and/or the visible protein aggregation in Lewy bodies are steps in disease pathogenesis, are protective, or are neutral markers for the disease process. Here we used the combination of peptide pulldown assays and mass spectrometry to identify and compare protein-protein interactions of phosphorylated and non-phosphorylated alpha-synuclein. We showed that non-phosphorylated alpha-synuclein carboxyl terminus pulled down protein complexes that were highly enriched for mitochondrial electron transport proteins, whereas alpha-synuclein carboxyl terminus phosphorylated on either Ser-129 or Tyr-125 did not. Instead the set of proteins pulled down by phosphorylated alpha-synuclein was highly enriched in certain cytoskeletal proteins, in vesicular trafficking proteins, and in a small number of enzymes involved in protein serine phosphorylation. This targeted comparative proteomics approach for unbiased identification of protein-protein interactions suggests that there are functional consequences when alpha-synuclein is phosphorylated.

    Funded by: Intramural NIH HHS; NIMH NIH HHS: Z01 MH000279

    Molecular & cellular proteomics : MCP 2008;7;11;2123-37

  • A mitochondrial protein compendium elucidates complex I disease biology.

    Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA and Mootha VK

    Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA.

    Mitochondria are complex organelles whose dysfunction underlies a broad spectrum of human diseases. Identifying all of the proteins resident in this organelle and understanding how they integrate into pathways represent major challenges in cell biology. Toward this goal, we performed mass spectrometry, GFP tagging, and machine learning to create a mitochondrial compendium of 1098 genes and their protein expression across 14 mouse tissues. We link poorly characterized proteins in this inventory to known mitochondrial pathways by virtue of shared evolutionary history. Using this approach, we predict 19 proteins to be important for the function of complex I (CI) of the electron transport chain. We validate a subset of these predictions using RNAi, including C8orf38, which we further show harbors an inherited mutation in a lethal, infantile CI deficiency. Our results have important implications for understanding CI function and pathogenesis and, more generally, illustrate how our compendium can serve as a foundation for systematic investigations of mitochondria.

    Funded by: Howard Hughes Medical Institute; NIDDK NIH HHS: DK43351, DK57521, P30 DK043351, P30 DK057521; NIGMS NIH HHS: GM077465, R01 GM077465, R01 GM077465-04

    Cell 2008;134;1;112-23

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria.

    Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, Patterson N, Lander ES and Mann M

    MDS Proteomics, Odense 5230, Denmark.

    Mitochondria are tailored to meet the metabolic and signaling needs of each cell. To explore its molecular composition, we performed a proteomic survey of mitochondria from mouse brain, heart, kidney, and liver and combined the results with existing gene annotations to produce a list of 591 mitochondrial proteins, including 163 proteins not previously associated with this organelle. The protein expression data were largely concordant with large-scale surveys of RNA abundance and both measures indicate tissue-specific differences in organelle composition. RNA expression profiles across tissues revealed networks of mitochondrial genes that share functional and regulatory mechanisms. We also determined a larger "neighborhood" of genes whose expression is closely correlated to the mitochondrial genes. The combined analysis identifies specific genes of biological interest, such as candidates for mtDNA repair enzymes, offers new insights into the biogenesis and ancestry of mammalian mitochondria, and provides a framework for understanding the organelle's contribution to human disease.

    Cell 2003;115;5;629-40

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • Proteomic analysis of the mouse liver mitochondrial inner membrane.

    Da Cruz S, Xenarios I, Langridge J, Vilbois F, Parone PA and Martinou JC

    University of Geneva, Department of Cellular Biology, 30 quai E Ansermet, 1205 Geneva, Switzerland.

    Mitochondria play a crucial role in cellular homeostasis, which justifies the increasing interest in mapping the different components of these organelles. Here we have focused our study on the identification of proteins of the mitochondrial inner membrane (MIM). This membrane is of particular interest because, besides the well known components of the respiratory chain complexes, it contains several ion channels and many carrier proteins that certainly play a key role in mitochondrial function and, therefore, deserve to be identified at the molecular level. To achieve this goal we have used a novel approach combining the use of highly purified mouse liver mitochondrial inner membranes, extraction of membrane proteins with organic acid, and two-dimensional liquid chromatography coupled to tandem mass spectrometry. This procedure allowed us to identify 182 proteins that are involved in several biochemical processes, such as the electron transport machinery, the protein import machinery, protein synthesis, lipid metabolism, and ion or substrate transport. The full range of isoelectric point (3.9-12.5), molecular mass (6-527 kDa), and hydrophobicity values (up to 16 transmembrane predicted domains) were represented. In addition, of the 182 proteins found, 20 were unknown or had never previously been associated with the MIM. Overexpression of some of these proteins in mammalian cells confirmed their mitochondrial localization and resulted in severe remodeling of the mitochondrial network. This study provides the first proteome of the MIM and provides a basis for a more detailed study of the newly characterized proteins of this membrane.

    The Journal of biological chemistry 2003;278;42;41566-71

  • A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.

    Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H and Ruiz P

    Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.

    A major challenge of the postgenomic era is the functional characterization of every single gene within the mammalian genome. In an effort to address this challenge, we assembled a collection of mutations in mouse embryonic stem (ES) cells, which is the largest publicly accessible collection of such mutations to date. Using four different gene-trap vectors, we generated 5,142 sequences adjacent to the gene-trap integration sites (gene-trap sequence tags; http://genetrap.de) from >11,000 ES cell clones. Although most of the gene-trap vector insertions occurred randomly throughout the genome, we found both vector-independent and vector-specific integration "hot spots." Because >50% of the hot spots were vector-specific, we conclude that the most effective way to saturate the mouse genome with gene-trap insertions is by using a combination of gene-trap vectors. When a random sample of gene-trap integrations was passaged to the germ line, 59% (17 of 29) produced an observable phenotype in transgenic mice, a frequency similar to that achieved by conventional gene targeting. Thus, gene trapping allows a large-scale and cost-effective production of ES cell clones with mutations distributed throughout the genome, a resource likely to accelerate genome annotation and the in vivo modeling of human disease.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;17;9918-22

  • Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers.

    Ruivenkamp CA, van Wezel T, Zanon C, Stassen AP, Vlcek C, Csikós T, Klous AM, Tripodis N, Perrakis A, Boerrigter L, Groot PC, Lindeman J, Mooi WJ, Meijjer GA, Scholten G, Dauwerse H, Paces V, van Zandwijk N, van Ommen GJ and Demant P

    Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

    Only a small proportion of cancers result from familial cancer syndromes with Mendelian inheritance. Nonfamilial, 'sporadic' cancers, which represent most cancer cases, also have a significant hereditary component, but the genes involved have low penetrance and are extremely difficult to detect. Therefore, mapping and cloning of quantitative trait loci (QTLs) for cancer susceptibility in animals could help identify homologous genes in humans. Several cancer-susceptibility QTLs have been mapped in mice and rats, but none have been cloned so far. Here we report the positional cloning of the mouse gene Scc1 (Susceptibility to colon cancer 1) and the identification of Ptprj, encoding a receptor-type protein tyrosine phosphatase, as the underlying gene. In human colon, lung and breast cancers, we show frequent deletion of PTPRJ, allelic imbalance in loss of heterozygosity (LOH) and missense mutations. Our data suggest that PTPRJ is relevant to the development of several different human cancers.

    Nature genetics 2002;31;3;295-300

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

Gene lists (7)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000002 G2C Mus musculus Mouse mitochondria Mouse mitochondria adapted from Collins et al (2006) 91
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.