G2Cdb::Gene report

Gene id
Gene symbol
Atp6v1c1 (MGI)
Mus musculus
ATPase, H+ transporting, lysosomal V1 subunit C1
G00001553 (Homo sapiens)

Databases (8)

ENSMUSG00000022295 (Ensembl mouse gene)
66335 (Entrez Gene)
635 (G2Cdb plasticity & disease)
Gene Expression
NM_025494 (Allen Brain Atlas)
66335 (Genepaint)
603097 (OMIM)
Marker Symbol
MGI:1913585 (MGI)
Protein Sequence
Q9Z1G3 (UniProt)

Literature (9)

Pubmed - other

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Atp6v1c1 is an essential component of the osteoclast proton pump and in F-actin ring formation in osteoclasts.

    Feng S, Deng L, Chen W, Shao J, Xu G and Li YP

    Life Science College, Zhejiang University, 388 Yuhang Road, Hongzhou 310058, People's Republic of China.

    Bone resorption relies on the extracellular acidification function of V-ATPase (vacuolar-type proton-translocating ATPase) proton pump(s) present in the plasma membrane of osteoclasts. The exact configuration of the osteoclast-specific ruffled border V-ATPases remains largely unknown. In the present study, we found that the V-ATPase subunit Atp6v1c1 (C1) is highly expressed in osteoclasts, whereas subunits Atp6v1c2a (C2a) and Atp6v1c2b (C2b) are not. The expression level of C1 is highly induced by RANKL [receptor activator for NF-kappaB (nuclear factor kappaB) ligand] during osteoclast differentiation; C1 interacts with Atp6v0a3 (a3) and is mainly localized on the ruffled border of activated osteoclasts. The results of the present study show for the first time that C1-silencing by lentivirus-mediated RNA interference severely impaired osteoclast acidification activity and bone resorption, whereas cell differentiation did not appear to be affected, which is similar to a3 silencing. The F-actin (filamentous actin) ring formation was severely defected in C1-depleted osteoclasts but not in a3-depleted and a3(-/-) osteoclasts. C1 co-localized with microtubules in the plasma membrane and its vicinity in mature osteoclasts. In addition, C1 co-localized with F-actin in the cytoplasm; however, the co-localization chiefly shifted to the cell periphery of mature osteoclasts. The present study demonstrates that Atp6v1c1 is an essential component of the osteoclast proton pump at the osteoclast ruffled border and that it may regulate F-actin ring formation in osteoclast activation.

    Funded by: NIAMS NIH HHS: AR-44741, R01 AR044741, R01 AR044741-07

    The Biochemical journal 2009;417;1;195-203

  • V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway.

    Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Brown D and Marshansky V

    Program in Membrane Biology & Nephrology Division, Richard Simches Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.

    The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.

    Funded by: NIDDK NIH HHS: DK38452, DK42956, DK43341, DK57521

    Nature cell biology 2006;8;2;124-36

  • Ubiquitous and kidney-specific subunits of vacuolar H+-ATPase are differentially expressed during nephrogenesis.

    Jouret F, Auzanneau C, Debaix H, Wada GH, Pretto C, Marbaix E, Karet FE, Courtoy PJ and Devuyst O

    Division of Nephrology, Université catholique de Louvain, 10 Avenue Hippocrate, Brussels, Belgium B-1200.

    The vacuolar H(+)-ATPase (V-ATPase) is a ubiquitous multisubunit pump that is responsible for acidification of intracellular organelles. In the kidney, a particular form of V-ATPase, made of specific subunits isoforms, has been located at the plasma membrane of intercalated cells (IC). Mutations in genes encoding IC-specific subunits cause infant distal renal tubular acidosis (dRTA), suggesting that the segmental distribution of these subunits is acquired at birth or during early infancy. However, the comparative ontogeny of the IC-specific versus the ubiquitous subunits of V-ATPase and the mechanisms involved in their segmental expression remain unknown. Real-time reverse transcription-PCR, in situ hybridization, immunoblotting, immunostaining, and subcellular fractionation analyses characterized the expression and distribution of V-ATPase subunits, transcription factors, and differentiation markers during mouse nephrogenesis. Ubiquitous A, E1, B2, G1, and C1 subunits showed an early (embryonic day 13.5 [E13.5]) and stable expression throughout nephrogenesis, followed by a slight increase around birth. The developmental pattern of a1 was bimodal, with early induction, gradual decrease during organogenesis, and neonatal increase. These patterns contrasted with the later (from E15.5) and progressive expression of IC-specific a4, B1, G3, and C2 subunits, after the induction of the forkhead transcription factor Foxi1. From E15.5, Foxi1 mRNA was detected in IC, where it co-distributed with B1 in late nephrogenesis. Immunostaining showed that the distribution of ubiquitous E1 and B2 was acquired from E15.5, whereas a4 was located in IC during late nephrogenesis. Subcellular fractionation showed that in both fetal and mature (cortex and medulla) kidneys, E1 and a4 were located in endosomes. These data demonstrate a differential expression and a coordinate regulation of IC-specific versus ubiquitous V-ATPase subunits during nephrogenesis. They provide new insights into the complex regulation of V-ATPase subunits, the maturation of IC along the nephron, and the pathophysiology of hereditary dRTA.

    Journal of the American Society of Nephrology : JASN 2005;16;11;3235-46

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • Diversity of mouse proton-translocating ATPase: presence of multiple isoforms of the C, d and G subunits.

    Sun-Wada GH, Yoshimizu T, Imai-Senga Y, Wada Y and Futai M

    Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, and CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Corp., Mihogaoka 8-1, Ibaraki-shi, Osaka 567-0047, Japan.

    Vacuolar-type proton-translocating ATPases (V-ATPases), multimeric proton pumps, are involved in a wide variety of physiological processes. For their diverse functions, V-ATPases utilize a specific subunit isoform(s). Here, we reported the molecular cloning and characterization of three novel subunit isoforms, C2, d2 and G3, of mouse V-ATPase. These isoforms were expressed in a tissue-specific manner, in contrast to the ubiquitously expressed C1, d1 and G1 isoforms. C2 was expressed predominantly in lung and kidney, and d2 and G3 specifically in kidney. We introduced these isoforms into yeasts lacking the corresponding genes. Although the G3 and d2 did not rescue the vmaDelta phenotype, d1 and the two C isoforms functionally complemented the Deltavma6 and Deltavma5, respectively, indicating that they are bona fide subunits of V-ATPase.

    Gene 2003;302;1-2;147-53

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development.

    Ko MS, Kitchen JR, Wang X, Threat TA, Wang X, Hasegawa A, Sun T, Grahovac MJ, Kargul GJ, Lim MK, Cui Y, Sano Y, Tanaka T, Liang Y, Mason S, Paonessa PD, Sauls AD, DePalma GE, Sharara R, Rowe LB, Eppig J, Morrell C and Doi H

    ERATO Doi Bioasymmetry Project, JST, Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA. kom@grc.nia.nih.gov

    Little is known about gene action in the preimplantation events that initiate mammalian development. Based on cDNA collections made from each stage from egg to blastocyst, 25438 3'-ESTs were derived, and represent 9718 genes, half of them novel. Thus, a considerable fraction of mammalian genes is dedicated to embryonic expression. This study reveals profound changes in gene expression that include the transient induction of transcripts at each stage. These results raise the possibility that development is driven by the action of a series of stage-specific expressed genes. The new genes, 798 of them placed on the mouse genetic map, provide entry points for analyses of human and mouse developmental disorders.

    Funded by: NICHD NIH HHS: R01HD32243

    Development (Cambridge, England) 2000;127;8;1737-49

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.