G2Cdb::Gene report

Gene id
G00000192
Gene symbol
Ppp1cc (MGI)
Species
Mus musculus
Description
protein phosphatase 1, catalytic subunit, gamma isoform
Orthologue
G00001441 (Homo sapiens)

Databases (10)

Curated Gene
OTTMUSG00000016349 (Vega mouse gene)
Gene
ENSMUSG00000044341 (Ensembl mouse gene)
19047 (Entrez Gene)
183 (G2Cdb plasticity & disease)
Gene Expression
MGI:104872 (Allen Brain Atlas)
19047 (Genepaint)
ppp1cc (gensat)
Literature
176914 (OMIM)
Marker Symbol
MGI:104872 (MGI)
Protein Sequence
P63087 (UniProt)

Synonyms (4)

  • PP1
  • PP1C gamma
  • PP1C gamma 1
  • PP1C gamma 2

Literature (48)

Pubmed - other

  • Loss of protein phosphatase 1c{gamma} (PPP1CC) leads to impaired spermatogenesis associated with defects in chromatin condensation and acrosome development: an ultrastructural analysis.

    Forgione N, Vogl AW and Varmuza S

    Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.

    Human male infertility affects approximately 5% of men, with one-third suffering from testicular failure, likely the result of an underlying genetic abnormality that disrupts spermatogenesis during development. Mouse models of male infertility such as the Ppp1cc knockout mouse display very similar phenotypes to humans with testicular failure. Male Ppp1cc mutant mice are sterile due to disruptions in spermatogenesis that begin during prepubertal testicular development, and continue into adulthood, often resulting in loss of germ cells to the point of Sertoli cell-only syndrome. The current study employs light and electron microscopy to identify new morphological abnormalities in Ppp1cc mutant seminiferous epithelium. This study reveals that germ cells become delayed in their development around stages VII and VIII of spermatogenesis. Loss of these cells likely results in the reduced numbers of elongating spermatids and spermatozoa previously observed in mutant animals. Interestingly, Ppp1cc mutants also display reduced numbers of spermatogonia compared with their wild-type counterparts. Using electron microscopy, we have shown that junction complexes in Ppp1cc mutants are ultrastructurally normal, and therefore do not contribute to the breakdown in tissue architecture seen in mutants. Electron microscopy revealed major acrosomal and chromatin condensation defects in Ppp1cc mutants. Our observations are discussed in the context of known molecular changes in Ppp1cc mutant testes.

    Reproduction (Cambridge, England) 2010;139;6;1021-9

  • Spatial learning and expression patterns of PP1 mRNA in mouse hippocampus.

    Haege S, Galetzka D, Zechner U, Haaf T, Gamerdinger M, Behl C, Hiemke C and Schmitt U

    Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.

    Background: Synaptic plasticity is believed to be the major cellular basis for learning and memory. Protein phosphorylation is a key process involved in changes in the efficacy of neurotransmission. In long-term changes synaptic plasticity is followed by structural plasticity and protein de novo synthesis. Such mechanisms are believed to build the basis of hippocampal learning and memory investigated in the Morris water maze (MWM) task. To examine the role of dephosphorylation during that model for spatial learning, we analyzed protein phosphatase 1 (PP1) expression in the hippocampus of mice at various stages of the task and in two groups with different learning abilities.

    Methods: Mice were trained for 4 days with four trials each day in the MWM. For gene expression hippocampi were prepared 1, 6 and 24 h after the last trial of each day. PP1 and brain-derived neurotrophic factor (BDNF) mRNA levels were determined by quantitative real-time PCR.

    Results: The task requirements themselves affected expression levels of both PP1 and BDNF. In contrast to BDNF, PP1 was differentially expressed during learning. Poorly and well performing mice differed significantly. When performance was poor the expression level of PP1 was higher.

    Conclusion: Present results add further in vivo evidence that not only phosphorylation but also dephosphorylation is a major mechanism involved in learning and memory. Therefore, inhibition of hippocampal phosphatase activity might improve learning and memory.

    Neuropsychobiology 2010;61;4;188-96

  • The catalytic subunit of protein phosphatase 1 gamma regulates thrombin-induced murine platelet alpha(IIb)beta(3) function.

    Gushiken FC, Hyojeong H, Pradhan S, Langlois KW, Alrehani N, Cruz MA, Rumbaut RE and Vijayan KV

    Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.

    Background: Hemostasis and thrombosis are regulated by agonist-induced activation of platelet integrin alpha(IIb)beta(3). Integrin activation, in turn is mediated by cellular signaling via protein kinases and protein phosphatases. Although the catalytic subunit of protein phosphatase 1 (PP1c) interacts with alpha(IIb)beta(3), the role of PP1c in platelet reactivity is unclear.

    Using gamma isoform of PP1c deficient mice (PP1cgamma(-/-)), we show that the platelets have moderately decreased soluble fibrinogen binding and aggregation to low concentrations of thrombin or protease-activated receptor 4 (PAR4)-activating peptide but not to adenosine diphosphate (ADP), collagen or collagen-related peptide (CRP). Thrombin-stimulated PP1cgamma(-/-) platelets showed decreased alpha(IIb)beta(3) activation despite comparable levels of alpha(IIb)beta(3), PAR3, PAR4 expression and normal granule secretion. Functions regulated by outside-in integrin alpha(IIb)beta(3) signaling like adhesion to immobilized fibrinogen and clot retraction were not altered in PP1cgamma(-/-) platelets. Thrombus formation induced by a light/dye injury in the cremaster muscle venules was significantly delayed in PP1cgamma(-/-) mice. Phosphorylation of glycogen synthase kinase (GSK3)beta-serine 9 that promotes platelet function, was reduced in thrombin-stimulated PP1cgamma(-/-) platelets by an AKT independent mechanism. Inhibition of GSK3beta partially abolished the difference in fibrinogen binding between thrombin-stimulated wild type and PP1cgamma(-/-) platelets.

    These studies illustrate a role for PP1cgamma in maintaining GSK3beta-serine9 phosphorylation downstream of thrombin signaling and promoting thrombus formation via fibrinogen binding and platelet aggregation.

    Funded by: NHLBI NIH HHS: HL079368, HL081613, R01 HL079368, R01 HL079368-04, R01 HL081613, T-32HL072754, T32 HL072754

    PloS one 2009;4;12;e8304

  • Protein phosphatase 1 regulates the histone code for long-term memory.

    Koshibu K, Gräff J, Beullens M, Heitz FD, Berchtold D, Russig H, Farinelli M, Bollen M and Mansuy IM

    Brain Research Institute, University of Zürich, Swiss Federal Institute of Technology, CH-8057 Zurich, Switzerland.

    Chromatin remodeling through histone posttranslational modifications (PTMs) and DNA methylation has recently been implicated in cognitive functions, but the mechanisms involved in such epigenetic regulation remain poorly understood. Here, we show that protein phosphatase 1 (PP1) is a critical regulator of chromatin remodeling in the mammalian brain that controls histone PTMs and gene transcription associated with long-term memory. Our data show that PP1 is present at the chromatin in brain cells and interacts with enzymes of the epigenetic machinery including HDAC1 (histone deacetylase 1) and histone demethylase JMJD2A (jumonji domain-containing protein 2A). The selective inhibition of the nuclear pool of PP1 in forebrain neurons in transgenic mice is shown to induce several histone PTMs that include not only phosphorylation but also acetylation and methylation. These PTMs are residue-specific and occur at the promoter of genes important for memory formation like CREB (cAMP response element-binding protein) and NF-kappaB (nuclear factor-kappaB). These histone PTMs further co-occur with selective binding of RNA polymerase II and altered gene transcription, and are associated with improved long-term memory for objects and space. Together, these findings reveal a novel mechanism for the epigenetic control of gene transcription and long-term memory in the adult brain that depends on PP1.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2009;29;41;13079-89

  • Dab2 stabilizes Axin and attenuates Wnt/beta-catenin signaling by preventing protein phosphatase 1 (PP1)-Axin interactions.

    Jiang Y, Luo W and Howe PH

    Department of Cancer Biology NB4, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

    Wnt/beta-catenin signaling plays a pivotal role in modulating cellular proliferation, differentiation, tissue organization and embryonic development. Earlier, we found that the endocytic adaptor disabled-2 (Dab2) could attenuate Wnt/beta-catenin signaling by stabilizing Axin and preventing its translocation to the membrane. Recently, protein phosphatase 1 (PP1) has been shown to interact with, and dephosphorylate Axin, leading to its destabilization. Here, we show that Dab2 functions upstream of PP1 to block the interaction between Axin and PP1, inhibiting Axin dephosphorylation and thereby stabilizing its expression, ultimately leading to inhibition of Wnt/beta-catenin. We show that Dab2 acts as a competitive inhibitor of PP1 by binding to the same C-terminal domain of Axin. Both PP1 and Axin bind to the N-terminus of Dab2 and a Dab2 truncation mutant consisting of the N-terminal phosphotyrosine binding domain blocks PP1-Axin interactions and inhibits Wnt signaling. We confirm the inhibitory effect of Dab2 on Wnt/beta-catenin signaling in zebrafish embryos, showing that its ectopic expression phenocopies Axin overexpression resulting in altered dorsoventral patterning. We conclude that Dab2 stabilizes Axin and attenuates Wnt/beta-catenin signaling by preventing PP1 from binding Axin.

    Funded by: NCI NIH HHS: CA55536, CA80095, R01 CA055536, R01 CA055536-18, R01 CA080095

    Oncogene 2009;28;33;2999-3007

  • Expression of transgenic PPP1CC2 in the testis of Ppp1cc-null mice rescues spermatid viability and spermiation but does not restore normal sperm tail ultrastructure, sperm motility, or fertility.

    Soler DC, Kadunganattil S, Ramdas S, Myers K, Roca J, Slaughter T, Pilder SH and Vijayaraghavan S

    Biological Sciences, Kent State University, Kent, Ohio, USA.

    Two isoforms of phosphoprotein phosphatase 1, PPP1CC1 and PPP1CC2, are translated from alternatively spliced transcripts of a single gene, Ppp1cc, and differ only at their extreme C-termini. While PPP1CC1 expression is almost ubiquitous, PPP1CC2 is largely restricted to testicular germ cells and mature spermatozoa. Targeted deletion of Ppp1cc leads to sterility of -/- males due to a combination of gross structural defects in developing spermatids resulting in apoptosis and faulty spermiation. Because PPP1CC2 is the only PP1 isoform that demonstrates high-level expression in wild-type meiotic and postmeiotic male germ cells, we have tested whether its loss in Ppp1cc-/- males is largely responsible for manifestation of this phenotype by expressing PPP1CC2 transgenically in the testis of Ppp1cc-/- mice (rescue mice). Herein, we demonstrate that PPP1CC2 expression in the Ppp1cc-/- testis is antiapoptotic, thus reestablishing spermatid development and spermiation. However, because aberrant flagellar morphogenesis is incompletely ameliorated, rescue males remain infertile. Because these results suggest that expression of PPP1CC2 in developing germ cells is essential but insufficient for normal spermatogenesis to occur, appropriate spatial and temporal expression of both PPP1CC isoforms in the testis during spermatogenesis appears to be necessary to produce structurally normal fertility-competent spermatozoa.

    Funded by: NICHD NIH HHS: HD 38520, HD31164, R01 HD031164, R01 HD038520, R29 HD031164, R56 HD031164

    Biology of reproduction 2009;81;2;343-52

  • Disruption of the allosteric phosphorylase a regulation of the hepatic glycogen-targeted protein phosphatase 1 improves glucose tolerance in vivo.

    Kelsall IR, Rosenzweig D and Cohen PT

    Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland, UK.

    Type 2 diabetes is characterised by elevated blood glucose concentrations, which potentially could be normalised by stimulation of hepatic glycogen synthesis. Under glycogenolytic conditions, the interaction of hepatic glycogen-associated protein phosphatase-1 (PP1-G(L)) with glycogen phosphorylase a is believed to inhibit the dephosphorylation and activation of glycogen synthase (GS) by the PP1-G(L) complex, suppressing glycogen synthesis. Consequently, the interaction of G(L) with phosphorylase a has emerged as an attractive anti-diabetic target, pharmacological disruption of which could provide a novel mechanism to lower blood glucose levels by increasing hepatic glycogen synthesis. Here we report for the first time the in vivo consequences of disrupting the G(L)-phosphorylase a interaction, using a mouse model containing a Tyr284Phe substitution in the phosphorylase a-binding region of the G(L) protein. The resulting G(L)(Y284F/Y284F) mice display hepatic PP1-G(L) activity that is no longer sensitive to allosteric inhibition by phosphorylase a, resulting in increased GS activity under glycogenolytic conditions, demonstrating that regulation of G(L) by phosphorylase a operates in vivo. G(L)(Y284F/Y284F) and G(L)(Y284F/+) mice display improved glucose tolerance compared with G(L)(+/+) littermates, without significant accumulation of hepatic glycogen. The data provide the first in vivo evidence in support of targeting the G(L)-phosphorylase a interaction for treatment of hyperglycaemia. During prolonged fasting the G(L)(Y284F/Y284F) mice lose more body weight and display decreased blood glucose levels in comparison with their G(L)(+/+) littermates. These results suggest that, during periods of food deprivation, the phosphorylase a regulation of G(L) may prevent futile glucose-glycogen cycling, preserving energy and thus providing a selective biological advantage that may explain the observed conservation of the allosteric regulation of PP1-G(L) by phosphorylase a in mammals.

    Funded by: Medical Research Council: MC_U127015389

    Cellular signalling 2009;21;7;1123-34

  • Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1.

    Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ and Dovat S

    Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108, USA.

    Ikaros encodes a zinc finger protein that is involved in gene regulation and chromatin remodeling. The majority of Ikaros localizes at pericentromeric heterochromatin (PC-HC) where it regulates expression of target genes. Ikaros function is controlled by posttranslational modification. Phosphorylation of Ikaros by CK2 kinase determines its ability to bind DNA and exert cell cycle control as well as its subcellular localization. We report that Ikaros interacts with protein phosphatase 1 (PP1) via a conserved PP1 binding motif, RVXF, in the C-terminal end of the Ikaros protein. Point mutations of the RVXF motif abolish Ikaros-PP1 interaction and result in decreased DNA binding, an inability to localize to PC-HC, and rapid degradation of the Ikaros protein. The introduction of alanine mutations at CK2-phosphorylated residues increases the half-life of the PP1-nonbinding Ikaros mutant. This suggests that dephosphorylation of these sites by PP1 stabilizes the Ikaros protein and prevents its degradation. In the nucleus, Ikaros forms complexes with ubiquitin, providing evidence that Ikaros degradation involves the ubiquitin/proteasome pathway. In vivo, Ikaros can target PP1 to the nucleus, and a fraction of PP1 colocalizes with Ikaros at PC-HC. These data suggest a novel function for the Ikaros protein; that is, the targeting of PP1 to PC-HC and other chromatin structures. We propose a model whereby the function of Ikaros is controlled by the CK2 and PP1 pathways and that a balance between these two signal transduction pathways is essential for normal cellular function and for the prevention of malignant transformation.

    Funded by: NCI NIH HHS: K12 CA 087718, K12 CA087718, K22 CA 111392; NCRR NIH HHS: 1UL1RR025011; NHLBI NIH HHS: T32 HL07899; NIDDK NIH HHS: 5K01 DK066163

    The Journal of biological chemistry 2009;284;20;13869-80

  • Mechanism of activation and functional role of protein kinase Ceta in human platelets.

    Bynagari YS, Nagy B, Tuluc F, Bhavaraju K, Kim S, Vijayan KV and Kunapuli SP

    Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.

    The novel class of protein kinase C (nPKC) isoform eta is expressed in platelets, but not much is known about its activation and function. In this study, we investigated the mechanism of activation and functional implications of nPKCeta using pharmacological and gene knock-out approaches. nPKCeta was phosphorylated (at Thr-512) in a time- and concentration-dependent manner by 2MeSADP. Pretreatment of platelets with MRS-2179, a P2Y1 receptor antagonist, or YM-254890, a G(q) blocker, abolished 2MeSADP-induced phosphorylation of nPKCeta. Similarly, ADP failed to activate nPKCeta in platelets isolated from P2Y1 and G(q) knock-out mice. However, pretreatment of platelets with P2Y12 receptor antagonist, AR-C69331MX did not interfere with ADP-induced nPKCeta phosphorylation. In addition, when platelets were activated with 2MeSADP under stirring conditions, although nPKCeta was phosphorylated within 30 s by ADP receptors, it was also dephosphorylated by activated integrin alpha(IIb)beta3 mediated outside-in signaling. Moreover, in the presence of SC-57101, a alpha(IIb)beta3 receptor antagonist, nPKCeta dephosphorylation was inhibited. Furthermore, in murine platelets lacking PP1cgamma, a catalytic subunit of serine/threonine phosphatase, alpha(IIb)beta3 failed to dephosphorylate nPKCeta. Thus, we conclude that ADP activates nPKCeta via P2Y1 receptor and is subsequently dephosphorylated by PP1gamma phosphatase activated by alpha(IIb)beta3 integrin. In addition, pretreatment of platelets with eta-RACK antagonistic peptides, a specific inhibitor of nPKCeta, inhibited ADP-induced thromboxane generation. However, these peptides had no affect on ADP-induced aggregation when thromboxane generation was blocked. In summary, nPKCeta positively regulates agonist-induced thromboxane generation with no effects on platelet aggregation.

    Funded by: NHLBI NIH HHS: HL60683, HL80444, HL81322, R01 HL081613, R01 HL081613-03

    The Journal of biological chemistry 2009;284;20;13413-21

  • PP1gamma2 and PPP1R11 are parts of a multimeric complex in developing testicular germ cells in which their steady state levels are reciprocally related.

    Cheng L, Pilder S, Nairn AC, Ramdas S and Vijayaraghavan S

    Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America.

    Mice lacking the protein phosphatase 1 gamma isoforms, PP1gamma1 and PP1gamma2, are male-sterile due to defective germ cell morphogenesis and apoptosis. However, this deficiency causes no obvious abnormality in other tissues. A biochemical approach was employed to learn how expression versus deficiency of PP1gamma2, the predominant PP1 isoform in male germ cells, affects spermatogenesis. Methods used in this study include column chromatography, western blot and northern blot analyses, GST pull-down assays, immunoprecipitation, non-denaturing gel electrophoresis, phosphatase enzyme assays, protein sequencing, and immunohistochemistry. We report for the first time that in wild-type testis, PP1gamma2 forms an inactive complex with actin, protein phosphatase 1 regulatory subunit 7 (PPP1R7), and protein phosphatase 1 regulatory subunit 11 (PPP1R11), the latter, a potent PP1 inhibitor. Interestingly, PPP1R11 protein, but not its mRNA level, falls significantly in PP1gamma-null testis where mature sperm are virtually absent. Conversely, both mature sperm numbers and the PPP1R11 level increase substantially in PP1gamma-null testis expressing transgenic PP1gamma2. PPP1R11 also appears to be ubiquitinated in PP1gamma-null testis. The levels of PP1gamma2 and PPP1R11 were increased in phenotypically normal PP1alpha-null testis. However, in PP1alpha-null spleen, where PP1gamma2 normally is not expressed, PPP1R11 levels remained unchanged. Our data clearly show a direct reciprocal relationship between the levels of the protein phosphatase isoform PP1gamma2 and its regulator PPP1R11, and suggest that complex formation between these polypeptides in testis may prevent proteolysis of PPP1R11 and thus, germ cell apoptosis.

    Funded by: NICHD NIH HHS: HD31164, R01 HD031164, R01 HD038520, R01 HD38520, R29 HD031164, R56 HD031164; NIDA NIH HHS: DA10044, P01 DA010044

    PloS one 2009;4;3;e4861

  • Inhibitor-2 prevents protein phosphatase 1-induced cardiac hypertrophy and mortality.

    Brüchert N, Mavila N, Boknik P, Baba HA, Fabritz L, Gergs U, Kirchhefer U, Kirchhof P, Matus M, Schmitz W, DePaoli-Roach AA and Neumann J

    Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany.

    Cardiac-specific overexpression of the catalytic subunit of protein phosphatase type 1 (PP1) in mice results in hypertrophy, depressed contractility, propensity to heart failure, and premature death. To further address the role of PP1 in heart function, PP1 mice were crossed with mice that overexpress a functional COOH-terminally truncated form of PP1 inhibitor-2 (I-2(140)). Protein phosphatase activity was increased in PP1 mice but was normalized in double transgenic (DT) mice. The maximal rates of contraction (+dP/dt) and of relaxation (-dP/dt) were reduced in catheterized PP1 mice but normalized in DT mice. Similar contractile abnormalities were observed in isolated, perfused work-performing hearts and in whole animals by means of echocardiography. The increased absolute and relative heart weights observed in PP1 mice were normalized in DT mice. Histological analyses indicated that PP1 mice had significant cardiac fibrosis, which was absent in DT mice. Furthermore, PP1 mice exhibited an age-dependent increase in mortality, which was abrogated in DT mice. These results indicate that I-2 overexpression prevents the detrimental effects of PP1 overexpression in the heart and further underscore the fundamental role of PP1 in cardiac function. Therefore, PP1 inhibitors such as I-2 could offer new therapeutic options to ameliorate the deleterious effects of heart failure.

    Funded by: NIDDK NIH HHS: DK-36569

    American journal of physiology. Heart and circulatory physiology 2008;295;4;H1539-46

  • Protein phosphatase 1 regulates the phosphorylation state of the polarity scaffold Par-3.

    Traweger A, Wiggin G, Taylor L, Tate SA, Metalnikov P and Pawson T

    Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.

    Phosphorylation of the polarity protein Par-3 by the serine/threonine kinases aPKCzeta/iota and Par-1 (EMK1/MARK2) regulates various aspects of epithelial cell polarity, but little is known about the mechanisms by which these posttranslational modifications are reversed. We find that the serine/threonine protein phosphatase PP1 (predominantly the alpha isoform) binds Par-3, which localizes to tight junctions in MDCKII cells. PP1alpha can associate with multiple sites on Par-3 while retaining its phosphatase activity. By using a quantitative mass spectrometry-based technique, multiple reaction monitoring, we show that PP1alpha specifically dephosphorylates Ser-144 and Ser-824 of mouse Par-3, as well as a peptide encompassing Ser-885. Consistent with these observations, PP1alpha regulates the binding of 14-3-3 proteins and the atypical protein kinase C (aPKC) zeta to Par-3. Furthermore, the induced expression of a catalytically inactive mutant of PP1alpha severely delays the formation of functional tight junctions in MDCKII cells. Collectively, these results show that Par-3 functions as a scaffold, coordinating both serine/threonine kinases and the PP1alpha phosphatase, thereby providing dynamic control of the phosphorylation events that regulate the Par-3/aPKC complex.

    Proceedings of the National Academy of Sciences of the United States of America 2008;105;30;10402-7

  • Proteomic characterization of protein phosphatase 1 complexes in ischemia-reperfusion and ischemic tolerance.

    Cid C, Garcia-Bonilla L, Camafeita E, Burda J, Salinas M and Alcazar A

    Department of Investigation, Hospital Ramón y Cajal, Madrid, Spain.

    Serine/threonine protein phosphatase 1 (PP1) regulates multiple cellular processes. Protein phosphorylation-dephosphorylation is largely altered during ischemia and subsequent reperfusion. The brain is particularly vulnerable to stress resulting from ischemia-reperfusion (IR), however, the acquisition of ischemic tolerance (IT) protects against IR stress. We studied PP1 complexes in response to IR stress and IT in brain using proteomic characterization of PP1 complexes in animal models of IR and IT. PP1alpha and PP1gamma were immunoprecipitated and resolved by 2-D. DIGE analysis detected 14 different PP1-interacting proteins that exhibited significant changes in their association with PP1alpha or PP1gamma. These proteins were identified by MALDI-TOF MS. Seven had the PP1-binding RVxF motif. IR altered the interaction of heat shock cognate 71 kDa-protein, creatine kinase B, and dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP32) with both PP1alpha and PP1gamma, and the interaction of phosphodiesterase-6B, transitional ER ATPase, lamin-A, glucose-regulated 78 kDa-protein, dihydropyrimidinase-related protein-2, gamma-enolase, neurofilament-L, and ubiquitin ligase SIAH2 with PP1gamma. IT prevented most of the IR-induced effects. This study identifies novel PP1alpha- and PP1gamma-interacting proteins and reveals an in vivo modularity of PP1 holoenzymes in response to physiological ischemic stress. It supports a potential role of PP1 in IR stress and as a target of the endogenous protective mechanisms induced by IT.

    Proteomics 2007;7;17;3207-18

  • Analysis of Ppp1cc-null mice suggests a role for PP1gamma2 in sperm morphogenesis.

    Chakrabarti R, Kline D, Lu J, Orth J, Pilder S and Vijayaraghavan S

    Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.

    Serine/threonine protein phosphatase 1 (PP1) consists of four ubiquitously expressed major isoforms, two of which, PP1gamma1 and PP1gamma2, are derived by alternative splicing of a single gene, Ppp1cc. PP1gamma2 is the most abundant isoform in the testis, and is a key regulator of sperm motility. Targeted disruption of the Ppp1cc gene causes male infertility in mice due to impaired spermiogenesis. This study was undertaken to determine the expression patterns of specific PP1 isoforms in testes of wild-type mice and to establish how the defects produced in Ppp1cc-null developing sperm are related to the loss of PP1gamma isoform expression. We observed that PP1gamma2 was prominently expressed in the cytoplasm of secondary spermatocytes and round spermatids as well as in elongating spermatids and testicular and epididymal spermatozoa, whereas its expression was weak or absent in spermatogonia, pachytene spermatocytes, and interstitial cells. In contrast, a high level of PP1gamma1 expression was observed in interstitial cells, whereas much weaker expression was observed in all stages of spermatogenesis. Another PP1 isoform, PP1alpha, was predominant in spermatogonia, pachytene spermatocytes, and interstitial cells. Examining the temporal expression of PP1 enzymes in testes revealed a striking postnatal increase in PP1gamma2 levels compared with other isoforms. Testicular sperm tails from Ppp1cc-null mice showed malformed mitochondrial sheaths and extra outer dense fibers in both the middle and principal pieces. These data suggest that in addition to its previously documented role in motility, PP1gamma2 is involved in sperm tail morphogenesis.

    Funded by: NICHD NIH HHS: HD 38520

    Biology of reproduction 2007;76;6;992-1001

  • A testis specific isoform of endophilin B1, endophilin B1t, interacts specifically with protein phosphatase-1c gamma2 in mouse testis and is abnormally expressed in PP1c gamma null mice.

    Hrabchak C, Henderson H and Varmuza S

    Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.

    Male mice homozygous for a null mutation in the protein phosphatase-1c gamma (PP1c gamma) gene are infertile, displaying a severe impairment in spermatogenesis that is not compensated by the presence of PP1c alpha and PP1c beta in mutant testes. A lack of the PP1c gamma2 splice variant seems the most likely cause of the mutant phenotype, as it is the most heavily expressed PP1c gamma isoform in wild type testes. Yeast two-hybrid screening using PP1c gamma2 has identified several new binding partners, including endophilin B1t, a testis enriched isoform of endophilin B1a which differs from the somatic form by virtue of a carboxy terminal deletion spanning the last 10 amino acids. The testis isoform did not show an interaction with PP1c alpha, or with a truncated PP1c gamma2 mutant lacking the unique carboxy terminus. In contrast, somatic endophilin B1a did not interact with any of the PP1c isoforms. Sedimentation and co-immunoprecipitation experiments using native testis proteins verified binding of endophilin B1t to PP1c gamma2. Immunohistochemistry on wild type testis sections revealed a stage specific expression pattern for endophilin that appeared concentrated at discrete puncta throughout the seminiferous epithelium. Punctate endophilin expression in cells adjacent to the lumen was absent in PP1c gamma null mice. Phosphatase assays indicate that chimeric endophilin B1t is able to inhibit recombinant PP1c gamma2 activity toward phosphorylase a while having little effect on the activity of PP1c alpha. A potential role for endophilin B1t in mammalian spermatogenesis is discussed within the context of the PP1c gamma knockout testis phenotype.

    Biochemistry 2007;46;15;4635-44

  • Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes.

    Parra M, Mahmoudi T and Verdin E

    Gladstone Institute of Virology and Immunology, University of California, San Francisco, San Francisco, California 94158, USA.

    The repressive activity of histone deacetylase 7 (HDAC7), a class IIa HDAC expressed in CD4+CD8+ double-positive thymocytes, is regulated by its nucleocytoplasmic shuttling. In resting thymocytes, HDAC7 is nuclear and functions as a transcriptional repressor. After T-cell receptor (TCR) activation, the serine/threonine kinase PKD1 phosphorylates HDAC7, resulting in its nuclear export and the derepression of its target genes. Here, we identify protein phosphatase 1beta (PP1beta) and myosin phosphatase targeting subunit 1 (MYPT1), two components of the myosin phosphatase complex, as HDAC7-associated proteins in thymocytes. Myosin phosphatase dephosphorylates HDAC7 and promotes its nuclear localization, leading to the repression of the HDAC7 target, Nur77, and the inhibition of apoptosis in CD4+CD8+ thymocytes.

    Funded by: NCRR NIH HHS: C06 RR018928, RR 18928-01

    Genes & development 2007;21;6;638-43

  • A limited screen for protein interactions reveals new roles for protein phosphatase 1 in cell cycle control and apoptosis.

    Flores-Delgado G, Liu CW, Sposto R and Berndt N

    Division Of Hematology/Oncology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Boulevard, Los Angeles, California 90027, USA.

    Protein phosphatase 1 (PP1) catalytic subunits typically combine with other proteins that modulate their activity, direct them to distinct substrates, or serve as substrates for PP1. More than 50 PP1-interacting proteins (PIPs) have been identified so far. Given there are approximately 10 000 phosphoproteins in mammals, many PIPs remain to be discovered. We have used arrays containing 100 carefully selected antibodies to identify novel PIPs that are important in cell proliferation and cell survival in murine fetal lung epithelial cells and human A549 lung cancer cells. The antibody arrays identified 31 potential novel PIPs and 11 of 17 well-known PIPs included as controls, suggesting a sensitivity of at least 65%. A majority of the interactions between PP1 and putative PIPs were isoform- or cell type-specific. We confirmed by co-immunoprecipitation that 9 of these proteins associate with PP1: APAF-1, Bax, E-cadherin, HSP-70, Id2, p19Skp1, p53, PCNA, and PTEN. We examined two of these interactions in greater detail in A549 cells. Exposure to nicotine enhanced association of PP1 with Bax (and Bad), but also induced inhibitory phosphorylation of PP1. In addition to p19Skp1, PP1alpha antibodies also coprecipitated cullin 1, suggesting that PP1alpha is associated with the SCF1 complex. This interaction was only detectable during the G1/S transition and S phase. Forced loss of PP1 function decreased the levels of p27Kip1, a well-known SCF1 substrate, suggesting that PP1 may rescue proteins from ubiquitin/proteasome-mediated destruction. Both of these novel interactions are consistent with PP1 facilitating cell cycle arrest and/or apoptosis.

    Funded by: NCI NIH HHS: R01-CA54167

    Journal of proteome research 2007;6;3;1165-75

  • The complexity of antisense transcription revealed by the study of developing male germ cells.

    Chan WY, Wu SM, Ruszczyk L, Law E, Lee TL, Baxendale V, Lap-Yin Pang A and Rennert OM

    Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 2A08, 49 Convent Drive, MSC 4429, Bethesda, MD 20892-4429, USA. chanwy@mail.nih.gov

    Computational analyses have identified the widespread occurrence of antisense transcripts in the human and the mouse genome. However, the structure and the origin of the majority of the antisense transcripts are unknown. The presence of antisense transcripts for 19 of 64 differentially expressed genes during mouse spermatogenesis was demonstrated with orientation-specific RT-PCR. These antisense transcripts were derived from a wide variety of origins, including processed sense transcripts, intronic and exonic sequences of a single gene or multiple genes, intergenic sequences, and pseudogenes. They underwent normal and alternative splicing, 5' capping, and 3' polyadenylation, similar to the sense transcripts. There were also antisense transcripts that were not capped and/or polyadenylated. The testicular levels of the sense transcripts were higher than those of the antisense transcripts in all cases, while the relative expression in nontesticular tissues was variable. Thus antisense transcripts have complex origins and structures and the sense and antisense transcripts can be regulated independently.

    Funded by: Intramural NIH HHS

    Genomics 2006;87;6;681-92

  • Site-specific dephosphorylation of doublecortin (DCX) by protein phosphatase 1 (PP1).

    Shmueli A, Gdalyahu A, Sapoznik S, Sapir T, Tsukada M and Reiner O

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.

    Mutations in doublecortin (DCX) cause X-linked lissencephaly ("smooth brain") and double cortex syndrome in humans. DCX is highly phosphorylated in migrating neurons. Here, we demonstrate that dephosphorylation of specific sites phosphorylated by JNK is mediated by Neurabin II, which recruits the phosphatase PP1. During cortical development, the expression pattern of PP1 is widespread, while the expression of DCX and Neurabin II is dynamic, and they are coexpressed in migrating neurons. In vitro, DCX is site-specific dephosphorylated by PP1 without the presence of Neurabin II, this dephosphorylation requires an intact RVXF motif in DCX. Overexpression of the coiled-coil domain of Neurabin II, which is sufficient for interacting with DCX and recruiting the endogenous Neurabin II with PP1, induced dephosphorylation of DCX on one of the JNK-phosphorylated sites. We hypothesize that the transient recruitment of DCX to different scaffold proteins, JIP-1/2, which will regulate its phosphorylation by JNK, and Neurabin II, which will regulate its dephosphorylation by PP1, plays an important role in normal neuronal migration.

    Molecular and cellular neurosciences 2006;32;1-2;15-26

  • BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.

    Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C, Norland SM, Rice DS, Dosooye N, Shakya S, Mehta P and Curran T

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States.

    Funded by: NINDS NIH HHS: 5R37NS036558, N01-NS-0-2331, R37 NS036558

    PLoS biology 2006;4;4;e86

  • Adrenocorticotropic hormone-mediated signaling cascades coordinate a cyclic pattern of steroidogenic factor 1-dependent transcriptional activation.

    Winnay JN and Hammer GD

    Department of Molecular and Integrative Pysiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0678, USA.

    Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor that has emerged as a critical mediator of endocrine function at multiple levels of the hypothalamic-pituitary-steroidogenic axis. Within the adrenal cortex, ACTH-dependent transcriptional responses, including transcriptional activation of several key steroidogenic enzymes within the steroid biosynthetic pathway, are largely dependent upon SF-1 action. The absence of a bona fide endogenous eukaryotic ligand for SF-1 suggests that signaling pathway activation downstream of the melanocortin 2 receptor (Mc2r) modulates this transcriptional response. We have used the chromatin immunoprecipitation assay to examine the temporal formation of ACTH-dependent transcription complexes on the Mc2r gene promoter. In parallel, ACTH-dependent signaling events were examined in an attempt to correlate transcriptional events with the upstream activation of signaling pathways. Our results demonstrate that ACTH-dependent signaling cascades modulate the temporal dynamics of SF-1-dependent complex assembly on the Mc2r promoter. Strikingly, the pattern of SF-1 recruitment and the subsequent attainment of active rounds of transcription support a kinetic model of SF-1 transcriptional activation, a model originally established in the context of ligand-dependent transcription by several classical nuclear hormone receptors. An assessment of the major ACTH-dependent signaling pathways highlights pivotal roles for the MAPK as well as the cAMP-dependent protein kinase A pathway in the entrainment of SF-1-mediated transcriptional events. In addition, the current study demonstrates that specific enzymatic activities are capable of regulating distinct facets of a highly ordered transcriptional response.

    Funded by: NIDCR NIH HHS: T32 DE007057; NIDDK NIH HHS: R01 DK62027

    Molecular endocrinology (Baltimore, Md.) 2006;20;1;147-66

  • Central role for protein targeting to glycogen in the maintenance of cellular glycogen stores in 3T3-L1 adipocytes.

    Greenberg CC, Danos AM and Brady MJ

    Department of Medicine, University of Chicago, MC1027, 5841 S. Maryland Ave., Chicago, IL 60637-1470, USA.

    Overexpression of the protein phosphatase 1 (PP1) subunit protein targeting to glycogen (PTG) markedly enhances cellular glycogen levels. In order to disrupt the endogenous PTG-PP1 complex, small interfering RNA (siRNA) constructs against PTG were identified. Infection of 3T3-L1 adipocytes with PTG siRNA adenovirus decreased PTG mRNA and protein levels by >90%. In parallel, PTG reduction resulted in a >85% decrease in glycogen levels 4 days after infection, supporting a critical role for PTG in glycogen metabolism. Total PP1, glycogen synthase, and GLUT4 levels, as well as insulin-stimulated signaling cascades, were unaffected. However, PTG knockdown reduced glycogen-targeted PP1 protein levels, corresponding to decreased cellular glycogen synthase- and phosphorylase-directed PP1 activity. Interestingly, GLUT1 levels and acute insulin-stimulated glycogen synthesis rates were increased two- to threefold, and glycogen synthase activation in the presence of extracellular glucose was maintained. In contrast, glycogenolysis rates were markedly increased, suggesting that PTG primarily acts to suppress glycogen breakdown. Cumulatively, these data indicate that disruption of PTG expression resulted in the uncoupling of PP1 activity from glycogen metabolizing enzymes, the enhancement of glycogenolysis, and a dramatic decrease in cellular glycogen levels. Further, they suggest that reduction of glycogen stores induced cellular compensation by several mechanisms, but ultimately these changes could not overcome the loss of PTG expression.

    Funded by: NIDDK NIH HHS: DK064772, R01 DK064772

    Molecular and cellular biology 2006;26;1;334-42

  • Changes in intracellular distribution and activity of protein phosphatase PP1gamma2 and its regulating proteins in spermatozoa lacking AKAP4.

    Huang Z, Somanath PR, Chakrabarti R, Eddy EM and Vijayaraghavan S

    Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA. zhuang1@kent.edu

    The second messenger cAMP mediates its intracellular effects in spermatozoa through cAMP-dependent kinase (PKA, formally known as PRKACA). The intracellular organization of PKA in spermatozoa is controlled through its association with A-kinase-anchoring proteins (AKAPs). AKAP4 (A kinase [PRKA] anchor protein 4; also called fibrous sheath component 1 or AKAP 82) is sperm specific and the major fibrous sheath protein of the principal piece of the sperm flagellum. Presumably, AKAP4 recruits PKA to the fibrous sheath and facilitates local phosphorylation to regulate flagellar function. It is also proposed to act as a scaffolding protein for signaling proteins and proteins involved in metabolism. Akap4 gene knockout mice are infertile due to the lack of sperm motility. The fibrous sheath is disrupted in spermatozoa from mutant mice. In this article, we used Akap4 gene knockout mice to study the effect of fibrous sheath disruption on the presence, subcellular distribution, and/or activity changes of PKA catalytic and regulatory subunits, sperm flagellum proteins PP1gamma2 (protein phosphatase 1, catalytic subunit, gamma isoform, formally known as PPP1CC), GSK-3 (glycogen synthase kinase-3), SP17 (sperm autoantigenic protein 17, formally known as SPA17), and other signaling proteins. There were no changes in the presence and subcellular distribution for PP1gamma2, GSK-3, hsp90 (heat shock protein 1, alpha, formally known as HSPCA), sds22 (protein phosphatase 1, regulatory [inhibitor] subunit 7, formally known as PPP1R7), 14-3-3 protein (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein), and PKB (thymoma viral proto-oncogene, also known as AKT) in mutant mice. However, the subcellular distributions for PKA catalytic subunit and regulatory subunits, PI 3-kinase (phosphatidylinositol 3-kinase), and SP17 were disrupted in mutant mice. Furthermore, there was a significant change in the activity and phosphorylation of PP1gamma2 in mutant compared with wild-type spermatozoa. These studies have identified potentially significant new roles for the fibrous sheath in regulating the activity and function of key signaling enzymes.

    Funded by: NICHD NIH HHS: R01 HD38520

    Biology of reproduction 2005;72;2;384-92

  • Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas.

    Watahiki A, Waki K, Hayatsu N, Shiraki T, Kondo S, Nakamura M, Sasaki D, Arakawa T, Kawai J, Harbers M, Hayashizaki Y and Carninci P

    Genome Science Laboratory, RIKEN, Wako main campus, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan.

    It is becoming increasingly clear that alternative splicing enables the complex development and homeostasis of higher organisms. To gain a better understanding of how splicing contributes to regulatory pathways, we have developed an alternative splicing library approach for the identification of alternatively spliced exons and their flanking regions by alternative splicing sequence enriched tags sequencing. Here, we have applied our approach to mouse melan-c melanocyte and B16-F10Y melanoma cell lines, in which 5,401 genes were found to be alternatively spliced. These genes include those encoding important regulatory factors such as cyclin D2, Ilk, MAPK12, MAPK14, RAB4, melastatin 1 and previously unidentified splicing events for 436 genes. Real-time PCR further identified cell line-specific exons for Tmc6, Abi1, Sorbs1, Ndel1 and Snx16. Thus, the ASL approach proved effective in identifying splicing events, which suggest that alternative splicing is important in melanoma development.

    Nature methods 2004;1;3;233-9

  • Endogenous regulators of protein phosphatase-1 during mouse oocyte development and meiosis.

    Wang X, Swain JE, Bollen M, Liu XT, Ohl DA and Smith GD

    Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109-0617, USA.

    Reversible phosphorylation, involving protein kinases and phosphatases (PP), is important in regulating oocyte meiosis. Okadaic acid (OA) inhibition of PP1 and/or PP2A stimulates oocyte germinal vesicle breakdown (GVB). In oocytes, PP1 is localized in the cytoplasm and nucleus, yet endogenous regulation of oocyte PP1 has not been investigated. The objectives of the study were to identify intra-oocyte mechanisms regulating PP1 during acquisition of OA-sensitive meiotic competence and meiotic resumption. Immunohistochemical studies revealed that GVB-incompetent oocytes contained equivalent cytoplasmic and nuclear PP1. Upon development of OA-sensitive meiotic competence, PP1 displayed differential intracellular localization with significantly greater nuclear staining with distinct nucleolar rimming compared with cytoplasmic staining. Germinal vesicle-intact oocytes contained neither nuclear inhibitor of PP1, nor PP1 cytoplasmic inhibitor-1 transcripts or proteins. Reverse transcription-PCR with PP1 cytoplasmic inhibitor-2 (I2) primers and oocyte RNA amplified a predicted 330-bp product with the identical sequence to mouse liver I2. Oocytes contained a heat-stable PP1 inhibitor with biochemical properties of I2. Phosphorylation of PP1 at Thr320 by cyclin dependent kinase-1 (CDK1) causes PP1 inactivation. Germinal vesicle-intact oocytes did not contain phospho-Thr320-PP1. Upon GVB, PP1 became phosphorylated at Thr320 and this phosphorylation did not occur if GVB was blocked with the CDK1 inhibitor, roscovitine (ROSC). Inhibition of oocyte GVB with ROSC was reversible and coincided with PP1 phosphorylation at Thr320. Increased oocyte staining of nuclear PP1 compared with cytoplasmic staining at a chronological stage when oocytes gain meiotic competence, and phosphorylation and inhibition of PP1 by CDK1 at or around GVB appear to be important mechanisms in regulating oocyte PP1 activity and meiosis. In addition, these studies provide further support for PP1 being the OA-sensitive PP important in the regulation of the acquisition of meiotic competence, nuclear events during meiotic arrest, and GVB.

    Funded by: NICHD NIH HHS: HD35125

    Reproduction (Cambridge, England) 2004;128;5;493-502

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Identification of the spermatogenic zip protein Spz1 as a putative protein phosphatase-1 (PP1) regulatory protein that specifically binds the PP1cgamma2 splice variant in mouse testis.

    Hrabchak C and Varmuza S

    Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.

    The spermatogenic zip protein (Spz1) was originally isolated from a mouse testis library and identified as a novel member of the basic helix-loop-helix family of transcription factors. Here we identify Spz1 as a specific binding partner of the gamma2 catalytic subunit of protein phosphatase-1. Male mice homozygous for a null mutation in the protein phosphatase-1cgamma (PP1cgamma) gene are infertile and display a distinct impairment in spermiogenesis despite the continued presence of closely related PP1c isoforms. Yeast two-hybrid screening using the PP1cgamma2 splice variant has identified Spz1 as an interacting protein and possible mediator of the sterile PP1cgamma mutant phenotype. Spz1 was shown to interact specifically with PP1cgamma2 but did not show an interaction with PP1calpha or with a truncated version of PP1cgamma2 lacking 18 amino acids from the C terminus. Interaction between full-length Spz1 and PP1cgamma2 was verified by co-immunoprecipitation and co-localization experiments in COS-1 cells as well as gel-shift and sedimentation assays using whole testis lysates. Immunohistochemistry on wild type testis sections reveals a stage-specific expression pattern for Spz1 during spermatogenesis that appeared grossly abnormal in the testes of PP1cgamma mutant mice. Phosphatase assays using recombinant PP1c indicate that increasing concentrations of Spz1 are able to inhibit PP1cgamma2 activity while having little effect on the activity of PP1calpha. Furthermore, an interaction between PP1cgamma2 and Spz1 was shown to prevent binding of the latter to the consensus E-box promoter sequence. We propose that the interaction between Spz1 and PP1cgamma2 may be required for proper regulation of spermatogenesis and fertility in males.

    The Journal of biological chemistry 2004;279;35;37079-86

  • A protein phosphatase-1gamma1 isoform selectivity determinant in dendritic spine-associated neurabin.

    Carmody LC, Bauman PA, Bass MA, Mavila N, DePaoli-Roach AA and Colbran RJ

    Department of Molecular Physiology and Biophysics, The Center for Molecular Neuroscience, and The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.

    Protein phosphatase-1 (PP1) catalytic subunit isoforms interact with diverse proteins, typically containing a canonical (R/K)(V/I)XF motif. Despite sharing approximately 90% amino acid sequence identity, PP1beta and PP1gamma1 have distinct subcellular localizations that may be determined by selective interactions with PP1-binding proteins. Immunoprecipitation studies from brain and muscle extracts demonstrated that PP1gamma1 selectively interacts with spinophilin and neurabin, F-actin-targeting proteins, whereas PP1beta selectively interacted with G(M)/R(GL), the striated-muscle glycogen-targeting subunit. Glutathione S-transferase (GST) fusion proteins containing residues 146-493 of neurabin (GST-Nb-(146-493)) or residues 1-240 of G(M)/R(GL) (GST-G(M)-(1-240)) recapitulated these isoform selectivities in binding and phosphatase activity inhibition assays. Site-directed mutagenesis indicated that this isoform selectivity was not due to sequence differences between the canonical PP1-binding motifs (neurabin, (457)KIKF(460); G(M)/R(GL), (65)RVSF(68)). A chimeric GST fusion protein containing residues 1-64 of G(M)/R(GL) fused to residues 457-493 of neurabin (GST-G(M)/Nb) selectively bound to and inhibited PP1gamma1, whereas a GST-Nb/G(M) chimera containing Nb-(146-460) fused to G(M)-(69-240) selectively interacted with and weakly inhibited PP1beta, implicating domain(s) C-terminal to the (R/K)(V/I)XF motif as determinants of PP1 isoform selectivity. Deletion of Pro(464) and Ile(465) in neurabin (deltaPI) to equally space a conserved cluster of amino acids from the (R/K)(V/I)XF motif as in G(M)/R(GL) severely compromised the ability of neurabin to bind and inhibit both isoforms but did not affect PP1gamma1 selectivity. Further analysis of a series of C-terminal truncated GST-Nb-(146-493) proteins identified residues 473-479 of neurabin as containing a crucial PP1gamma1-selectivity determinant. In combination, these data identify a novel PP1gamma1-selective interaction domain in neurabin that may allow for selective regulation and/or subcellular targeting of PP1 isoforms.

    Funded by: NCI NIH HHS: P30-CA68485; NIDDK NIH HHS: 5T32DK07563, R01-DK36569; NINDS NIH HHS: R01-NS37508

    The Journal of biological chemistry 2004;279;21;21714-23

  • SIPP1, a novel pre-mRNA splicing factor and interactor of protein phosphatase-1.

    Llorian M, Beullens M, Andrés I, Ortiz JM and Bollen M

    Departamento de Biologia Molecular, Facultad de Medicina, Universidad de Cantabria, Unidad Asociada al CIB-CSIC, 39011 Santander, Spain.

    We have identified a polypeptide that was already known to interact with polyglutamine-tract-binding protein (PQBP)-1/Npw38 as a novel splicing factor and interactor of protein phosphatase-1, hence the name SIPP1 for splicing factor that interacts with PQBP-1 and PP1 (protein phosphotase 1). SIPP1 was inhibitory to PP1, and its inhibitory potency was increased by phosphorylation with protein kinase CK1. Two-hybrid and co-sedimentation analysis revealed that SIPP1 has two distinct PP1-binding domains and that the binding of SIPP1 with PP1 involves a RVXF (Arg-Val-Xaa-Phe) motif, which functions as a PP1-binding sequence in most interactors of PP1. Enhanced-green-fluorescent-protein-tagged SIPP1 was targeted exclusively to the nucleus and was enriched in the nuclear speckles, which represent storage/assembly sites of splicing factors. We have mapped a nuclear localization signal in the N-terminus of SIPP1, while the proline-rich C-terminal domain appeared to be required for its subnuclear targeting to the speckles. Finally, we found that SIPP1 is also a component of the spliceosomes and that a SIPP1-fragment inhibits splicing catalysis by nuclear extracts independent of its ability to interact with PP1.

    The Biochemical journal 2004;378;Pt 1;229-38

  • Group I metabotropic glutamate receptors bind to protein phosphatase 1C. Mapping and modeling of interacting sequences.

    Croci C, Sticht H, Brandstätter JH and Enz R

    Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, Erlangen 91054, Germany.

    The modulation of neurotransmitter receptors by kinases and phosphatases represents a key mechanism in controlling synaptic signal transduction. However, molecular determinants involved in the specific targeting and interactions of these enzymes are largely unknown. Here, we identified both catalytic gamma-isoforms of protein phosphatase 1C (PP1gamma1 and PP1gamma2) as binding partners of the group I metabotropic glutamate receptors type 1a, 5a, and 5b in yeast cells and pull-down assays, using recombinant and native protein preparations. The tissue distribution of interacting proteins was compared, and protein phosphatase 1C was detected in dendrites of retinal bipolar cells expressing the respective interacting glutamate receptors. We mapped interacting domains within binding partners and identified five amino acids in the intracellular C termini of the metabotropic glutamate receptors type 1a, 5a, 5b, and 7b being both necessary and sufficient to bind protein phosphatase 1C. Furthermore, we show a dose-dependent competition of these C termini in binding the enzyme. Based on our data, we investigated the structure of the identified amino acids bound to protein phosphatase 1C by homology-based molecular modeling. In summary, these results provide a molecular description of the interaction between protein phosphatase 1C and metabotropic glutamate receptors and thereby increase our understanding of glutamatergic signal transduction.

    The Journal of biological chemistry 2003;278;50;50682-90

  • Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention.

    Zambrowicz BP, Abuin A, Ramirez-Solis R, Richter LJ, Piggott J, BeltrandelRio H, Buxton EC, Edwards J, Finch RA, Friddle CJ, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW, Kipp P, Kohlhauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Schrick J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C and Sands AT

    Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA. brian@lexgen.com

    The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;24;14109-14

  • BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis.

    Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB, Gygi SP and Korsmeyer SJ

    Howard Hughes Medical Institute, Dana-Faber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.

    Glycolysis and apoptosis are considered major but independent pathways that are critical for cell survival. The activity of BAD, a pro-apoptotic BCL-2 family member, is regulated by phosphorylation in response to growth/survival factors. Here we undertook a proteomic analysis to assess whether BAD might also participate in mitochondrial physiology. In liver mitochondria, BAD resides in a functional holoenzyme complex together with protein kinase A and protein phosphatase 1 (PP1) catalytic units, Wiskott-Aldrich family member WAVE-1 as an A kinase anchoring protein, and glucokinase (hexokinase IV). BAD is required to assemble the complex in that Bad-deficient hepatocytes lack this complex, resulting in diminished mitochondria-based glucokinase activity and blunted mitochondrial respiration in response to glucose. Glucose deprivation results in dephosphorylation of BAD, and BAD-dependent cell death. Moreover, the phosphorylation status of BAD helps regulate glucokinase activity. Mice deficient for BAD or bearing a non-phosphorylatable BAD(3SA) mutant display abnormal glucose homeostasis including profound defects in glucose tolerance. This combination of proteomics, genetics and physiology indicates an unanticipated role for BAD in integrating pathways of glucose metabolism and apoptosis.

    Nature 2003;424;6951;952-6

  • A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome.

    Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H and Ruiz P

    Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.

    A major challenge of the postgenomic era is the functional characterization of every single gene within the mammalian genome. In an effort to address this challenge, we assembled a collection of mutations in mouse embryonic stem (ES) cells, which is the largest publicly accessible collection of such mutations to date. Using four different gene-trap vectors, we generated 5,142 sequences adjacent to the gene-trap integration sites (gene-trap sequence tags; http://genetrap.de) from >11,000 ES cell clones. Although most of the gene-trap vector insertions occurred randomly throughout the genome, we found both vector-independent and vector-specific integration "hot spots." Because >50% of the hot spots were vector-specific, we conclude that the most effective way to saturate the mouse genome with gene-trap insertions is by using a combination of gene-trap vectors. When a random sample of gene-trap integrations was passaged to the germ line, 59% (17 of 29) produced an observable phenotype in transgenic mice, a frequency similar to that achieved by conventional gene targeting. Thus, gene trapping allows a large-scale and cost-effective production of ES cell clones with mutations distributed throughout the genome, a resource likely to accelerate genome annotation and the in vivo modeling of human disease.

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;17;9918-22

  • Protein phosphatase 1cgamma is required in germ cells in murine testis.

    Oppedisano-Wells L and Varmuza S

    Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5.

    The protein phosphatase 1cgamma (PP1cgamma) gene is required for spermatogenesis. Males homozygous for a null mutation are sterile, and display both germ cell and Sertoli cell defects. As these two cell types are physically and functionally intimately connected in the testis, the question arises as to whether the primary site of PP1cgamma action is in Sertoli cells, germ cells, or both. We generated chimeric males by embryo aggregation to test whether wild type Sertoli cells are capable of rescuing mutant germ cells. To distinguish between the desired XY-XY chimeras and uninformative XX-XY chimeras, we designed an adaptation of the single nucleotide primer extension (SNuPE) assay. None of the XY-XY chimeras sired pups derived from mutant germ cells, indicating that the protein is required in germ cells for production of functional sperm. Analysis of a chimeric testis revealed intermediate phenotypes when compared with PP1cgamma-/- testes, suggestive of cell nonautonomous effects. We conclude that PP1cgamma is required in a cell autonomous fashion in germ cells. There may be an additional cell nonautonomous role played by this gene in testes, possibly mediated by defective signaling between germ cells and Sertoli cells.

    Molecular reproduction and development 2003;65;2;157-66

  • Development to blastocyst is impaired when intracytoplasmic sperm injection is performed with abnormal sperm from infertile mice harboring a mutation in the protein phosphatase 1cgamma gene.

    Davies T and Varmuza S

    Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 3G5.

    Idiopathic azoospermia, characterized by abnormal spermatogenesis, is commonly treated by performing intracytoplasmic sperm injection (ICSI) with sperm retrieved from testicular biopsies. However, no controlled experiments have been performed using an animal model to assess the efficacy or safety of the procedure. We have performed ICSI with testicular sperm obtained in a similar manner from testes of male mice homozygous for a null mutation in the protein phosphatase 1cgamma gene (PP1cgamma) or those of their wild-type littermates. PP1cgamma mutant testicular sperm are less resistant to sonication than are wild-type sperm and display a range of morphological abnormalities, similar to those reported for testicular sperm from idiopathic azoospermic men. PP1cgamma mutant sperm are unable to support development to the blastocyst stage, resulting in arrested development either before or just after compaction. A comparison of testicular and epididymal sperm from wild-type males revealed that the epididymal sperm caused embryos to fragment at an elevated rate. These results suggest that ICSI with any kind of testicular sperm carries an increased risk of embryo fragmentation and that abnormal testicular sperm has an added risk of embryo wastage at later preimplantation stages.

    Biology of reproduction 2003;68;4;1470-6

  • BayGenomics: a resource of insertional mutations in mouse embryonic stem cells.

    Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, Meng EC, Lee RE, Yee A, L'Italien L, Chuang PT, Young SG, Skarnes WC, Babbitt PC and Ferrin TE

    Department of Pharmaceutical Chemistry, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.

    The BayGenomics gene-trap resource (http://baygenomics.ucsf.edu) provides researchers with access to thousands of mouse embryonic stem (ES) cell lines harboring characterized insertional mutations in both known and novel genes. Each cell line contains an insertional mutation in a specific gene. The identity of the gene that has been interrupted can be determined from a DNA sequence tag. Approximately 75% of our cell lines contain insertional mutations in known mouse genes or genes that share strong sequence similarities with genes that have been identified in other organisms. These cell lines readily transmit the mutation to the germline of mice and many mutant lines of mice have already been generated from this resource. BayGenomics provides facile access to our entire database, including sequence tags for each mutant ES cell line, through the World Wide Web. Investigators can browse our resource, search for specific entries, download any portion of our database and BLAST sequences of interest against our entire set of cell line sequence tags. They can then obtain the mutant ES cell line for the purpose of generating knockout mice.

    Funded by: NCRR NIH HHS: P41 RR001081, P41 RR01081; NHLBI NIH HHS: U01 HL066621, U01 HL66621

    Nucleic acids research 2003;31;1;278-81

  • The neuronal actin-binding proteins, neurabin I and neurabin II, recruit specific isoforms of protein phosphatase-1 catalytic subunits.

    Terry-Lorenzo RT, Carmody LC, Voltz JW, Connor JH, Li S, Smith FD, Milgram SL, Colbran RJ and Shenolikar S

    Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.

    Neurabins are protein phosphatase-1 (PP1) targeting subunits that are highly concentrated in dendritic spines and post-synaptic densities. Immunoprecipitation of neurabin I and neurabin II/spinophilin from rat brain extracts sedimented PP1gamma1 and PP1alpha but not PP1beta. In vitro studies showed that recombinant peptides representing central regions of neurabins also preferentially bound PP1gamma1 and PP1alpha from brain extracts and associated poorly with PP1beta. Analysis of PP1 binding to chimeric neurabins suggested that sequences flanking a conserved PP1-binding motif altered their selectivity for PP1beta and their activity as regulators of PP1 in vitro. Assays using recombinant PP1 catalytic subunits and a chimera of PP1 and protein phosphatase-2A indicated that the C-terminal sequences unique to the PP1 isoforms contributed to their recognition by neurabins. Collectively, the results from several different in vitro assays established the rank order of PP1 isoform selection by neurabins to be PP1gamma1 > PP1alpha > PP1beta. This PP1 isoform selectivity was confirmed by immunoprecipitation of neurabin I and II from brain extracts from wild type and mutant PP1gamma null mice. In the absence of PP1gamma1, both neurabins showed enhanced association with PP1alpha but not PP1beta. These studies identified some of the structural determinants in PP1 and neurabins that together contribute to preferential targeting of PP1gamma1 and PP1alpha to the mammalian synapse.

    Funded by: NIDDK NIH HHS: DK52054; NINDS NIH HHS: NS37508, NS38961, NS41063

    The Journal of biological chemistry 2002;277;31;27716-24

  • The rate of aneuploidy is altered in spermatids from infertile mice.

    Oppedisano L, Haines G, Hrabchak C, Fimia G, Elliott R, Sassone-Corsi P and Varmuza S

    Department of Zoology, University of Toronto, 25 Harbord St., Toronto, Ontario, Canada M4S 3G5.

    Background: It is now possible for infertile males to father their own genetic children through the technique of ICSI. This prospect has consequently prompted several investigations into the quality of sperm being retrieved from infertile males. One potential risk is the use of aneuploid sperm or spermatids, which might then be transferred to the fertilized oocyte.

    Methods: In this investigation, aneuploidy of spermatids was assessed through immunocytochemistry using antibodies directed against chromosome centromeric regions and complexes. Three different types of infertile male mice with phenotypes closely resembling those described in human non-obstructive azoospermia [PP1cgamma-deficient mice, CREM-deficient mice and C57BL/6J.MAC-17(0--23) mice] were examined for chromosome numbers by counting the number of kinetochores in round spermatids using a CREST antiserum.

    Results: PP1cgamma(-/-) and CREM(-/-) spermatids from infertile mice showed highly significant elevated levels in the rate of aneuploidy compared with wild-type animals (P < 0.0001). Thus infertile males with independent genetic mutations resulting in different histopathologies showed a high risk in the level of aneuploidy in their spermatids.

    Conclusions: These results suggest that impaired spermatogenesis may lead to production of aneuploid gametes. Analysis of aneuploidy in gametes from infertile men, coupled with appropriate genetic counselling, is recommended prior to ICSI.

    Human reproduction (Oxford, England) 2002;17;3;710-7

  • Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray.

    Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG and Ko MS

    Laboratory of Genetics and DNA Array Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6820, USA.

    cDNA microarray technology has been increasingly used to monitor global gene expression patterns in various tissues and cell types. However, applications to mammalian development have been hampered by the lack of appropriate cDNA collections, particularly for early developmental stages. To overcome this problem, a PCR-based cDNA library construction method was used to derive 52,374 expressed sequence tags from pre- and peri-implantation embryos, embryonic day (E) 12.5 female gonad/mesonephros, and newborn ovary. From these cDNA collections, a microarray representing 15,264 unique genes (78% novel and 22% known) was assembled. In initial applications, the divergence of placental and embryonic gene expression profiles was assessed. At stage E12.5 of development, based on triplicate experiments, 720 genes (6.5%) displayed statistically significant differences in expression between placenta and embryo. Among 289 more highly expressed in placenta, 61 placenta-specific genes encoded, for example, a novel prolactin-like protein. The number of genes highly expressed (and frequently specific) for placenta has thereby been increased 5-fold over the total previously reported, illustrating the potential of the microarrays for tissue-specific gene discovery and analysis of mammalian developmental programs.

    Proceedings of the National Academy of Sciences of the United States of America 2000;97;16;9127-32

  • DNA damage in round spermatids of mice with a targeted disruption of the Pp1cgamma gene and in testicular biopsies of patients with non-obstructive azoospermia.

    Jurisicova A, Lopes S, Meriano J, Oppedisano L, Casper RF and Varmuza S

    Department of Zoology, University of Toronto, Ontario, Canada.

    Non-obstructive azoospermia accounts for a considerable proportion of male factor infertility. Current therapies for treatment of this kind of infertility include procedures such as intracytoplasmic sperm injection (ICSI), round spermatid injection (ROSI), round spermatid nucleus injection (ROSNI) and elongated spermatid injection (ELSI). All involve injection of haploid germ cells retrieved from testicular biopsies into recipient oocytes. We have investigated a mouse model of azoospermia for quality of haploid germ cell genomes, based on 4,6-diamidino-2-phenylindole (DAPI)/TdT-mediated dUTP nick-end labelling (TUNEL) labelling. The mouse model, a targeted mutation in the protein phosphatase 1cg gene, results in severe depletion of haploid germ cells from the round spermatid stage on. Mice homozygous for the mutation are completely infertile, and produce only the occasional spermatozoon. Spermatozoa and round spermatids retrieved from either the epididymides or the testes of mutant mice displayed very high rates of DNA fragmentation. In contrast, similar cells retrieved from heterozygous or wild-type littermates displayed low levels of DNA fragmentation. In some cases, the high rates of DNA fragmentation in mutant cells could be lowered by inclusion of antioxidants in the retrieval media. High rates of DNA fragmentation were also observed in round spermatids retrieved from testicular biospies of human patients with non-obstructive azoospermia. These results suggest that one of the features of the pathology associated with azoospermia is fragmented DNA in haploid germ cells. This raises questions about the suitability of using these cells for fertility treatment.

    Molecular human reproduction 1999;5;4;323-30

  • Spermiogenesis is impaired in mice bearing a targeted mutation in the protein phosphatase 1cgamma gene.

    Varmuza S, Jurisicova A, Okano K, Hudson J, Boekelheide K and Shipp EB

    Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada. svarmuza@zoo.utoronto.ca

    Type 1 protein phosphatases (PP1) are involved in diverse cellular activities, ranging from glycogen metabolism to chromatin structure modification, mitosis, and meiosis. The holoenzymes are composed of two or more subunits, including a catalytic subunit (PP1c) and one or more regulatory subunits. Many eukaryotes possess several catalytic subunit genes which encode highly conserved isoforms. In rodents, one of these isoforms, PP1cgamma2, appears to be expressed predominantly in testes. Whether PP1cgamma2 performs a testis-specific function is unclear. To address this and other questions, the PP1cgamma gene was disrupted by targeted insertion in murine embryonic stem cells. Mice derived from these cells were viable, and homozygous females were fertile. However, males homozygous for the targeted insertion were infertile. Histological examination revealed severe impairment of spermiogenesis beginning at the round spermatid stage. In addition, defects in meiosis were inferred from the presence of polyploid spermatids. Immunohistochemistry revealed the presence of PP1calpha protein on condensing spermatids in both wild-type and mutant testes, suggesting that this closely related isoform is unable to compensate for the loss of PP1cgamma. These defects are discussed in the light of known functions of protein phosphatase 1.

    Funded by: NIEHS NIH HHS: ES05033, ES08956

    Developmental biology 1999;205;1;98-110

  • Characterization of protein phosphatases in mouse oocytes.

    Smith GD, Sadhu A, Mathies S and Wolf DP

    Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois, 60637, USA. gsmith@babies.bsd.uchicago.edu

    Okadaic acid (OA) enhances the resumption of meiosis in mouse oocytes, indicating that serine/threonine protein phosphatase-1 (PP1) and/or PP2A is involved. However, specific identification of PP1 and/or PP2A in mouse oocytes has not been reported. Here we demonstrate that fully grown germinal vesicle-intact (GVI) mouse oocytes contain mRNA corresponding to two isotypes of PP1, PP1alpha and PP1gamma. In addition, the transcript for PP2A was also present. At the protein level only PP1alpha and PP2A were recognized in fully grown GVI oocytes by Western blot analysis. Neither of the PP1gamma spliced variant proteins, PP1gamma1 and PP1gamma2, was detectable. Immunohistochemical analysis of ovarian tissue from gonadotropin-stimulated adult mice resulted in subcellular localization of both PP1alpha and PP2A, but not PP1gamma, in oocytes from all stages of folliculogenesis. In primordial oocytes, PP1alpha and PP2A were present in the cytoplasm. In more advanced stages of oogenesis, PP1alpha, although still present in the cytoplasm, was highly concentrated in the nucleus, whereas PP2A was predominantly cytoplasmic with a distinct reduction in the nuclear area. Both PP1alpha and PP2A were immunodetectable in oocytes during the prepubertal period. Eleven-day-old mouse oocytes, considered OA-insensitive and germinal vesicle breakdown (GVB)-incompetent, displayed both PP1alpha and PP2A predominantly in the cytoplasm. By 15 days of age mouse oocytes, which are beginning to acquire OA sensitivity and GVB competence, showed a relocation of PP1alpha into the nucleoplasm while PP2A remained predominantly cytoplasmic. This is the first specific identification of PP1alpha and PP2A in mouse oocytes. The differential localization of PP1alpha and PP2A, in addition to the relocation of PP1alpha during the acquisition of meiotic competence, suggests that these PPs have distinct regulatory roles during the resumption of meiosis.

    Funded by: NICHD NIH HHS: HD35125-01A1

    Developmental biology 1998;204;2;537-49

  • Genomic organization and functional analysis of the murine protein phosphatase 1c gamma (Ppp1cc) gene.

    Okano K, Heng H, Trevisanato S, Tyers M and Varmuza S

    Department of Zoology, University of Toronto, Ontario, Canada.

    Protein phosphatase 1 holoenzymes are composed of catalytic subunits in combination with various regulatory subunits. In rodents, four different catalytic isoforms are known, PP1c alpha, -delta, -gamma 1, and -gamma 2. Here we describe the genomic organization of the murine Ppp1cc gene that encodes the PP1c gamma 1 and PP1c gamma 2 isoforms. We determined that Ppp1cc maps to F1.2-G1.2 on chromosome 5 by FISH mapping. Southern hybridization and analysis of cross-hybridizing genomic clones revealed four Ppp1cc-related pseudogenes in the mouse genome. The authentic Ppp1cc gene encodes two isoforms, PP1c gamma 1 and PP1c gamma 2, that arise from alternative splicing and differ by retention of the last intron. The introns of Ppp1cc are flanked by short direct repeats, the significance of which is not clear. Both isoforms retain phosphatase function since they are able to complement the cold-sensitive PP1 defect caused by the dis2-11 mutation in the fission yeast Schizosaccharomyces pombe.

    Genomics 1997;45;1;211-5

  • Assignment of the gene encoding type 1 gamma protein phosphatase catalytic subunit (PPP1CC) on human, rat, and mouse chromosomes.

    Saadat M, Nomoto K, Mizuno Y, Kikuchi K and Yoshida MC

    Section of Biochemistry, Hokkaido University, Sapporo, Japan.

    Using fluorescent in situ hybridization (FISH) method, a gene encoding the catalytic subunit of protein phosphatase type 1 gamma (PPP1CC) was mapped to human 12q24.1-q24.2, rat 7 q22, and mouse 10C. These results indicate that the PPP1CC is a member of conserved synteny group between rat chromosome 7, mouse chromosome 10 and human chromosome 12. These data and mapping data about other members of PP1 family show that in spite of the high identity of PP1 isoforms, each isoform is encoded by different genes which located on different chromosomes in human, rat, and mouse.

    The Japanese journal of human genetics 1996;41;1;159-65

  • Identification of genes showing altered expression in preimplantation and early postimplantation parthenogenetic embryos.

    Mann M, Latham KE and Varmuza S

    Department of Zoology, University of Toronto, Ontario, Canada.

    Uniparental embryos have been instrumental in studying imprinting because contributions from the parental genomes can be determined unambiguously. In this study, we set out to identify imprinted genes showing differential expression between parthenogenetic and fertilized embryos during preimplantation and early postimplantation stages of development. We identified three genes--apolipoprotein E, pyruvate kinase-3, and protein phosphatase 1 gamma--that represent excellent candidates for imprinted genes, based on the results of the differential screen, their function in differentiation and the cell cycle, and their location within imprinted chromosomal regions. In addition, two novel genes expressed in trophoblast were identified, 1661 and RA81. These genes, together with four known imprinted genes, H19, Igf2r, Igf2, and Snrpn, showed evidence of expression from both parental alleles in early stage embryos, indicating a role for postfertilization processes in regulating imprinted gene function.

    Funded by: NCI NIH HHS: P30 CA 12227; NIGMS NIH HHS: GM 49489

    Developmental genetics 1995;17;3;223-32

  • Chromosomal localization of human, rat, and mouse protein phosphatase type 1 beta catalytic subunit genes (PPP1CB) by fluorescence in situ hybridization.

    Saadat M, Kakinoki Y, Mizuno Y, Kikuchi K and Yoshida MC

    Section of Biochemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.

    Using fluorescent in situ hybridization (FISH) method, gene encoding the catalytic subunit of protein phosphatase type 1 beta (PPP1CB) in human and its corresponding gene in rat (PP1 delta) and mouse (dis2m2) were mapped to human 2p23, rat 6q21-q23, and mouse 12D, respectively. These results indicate that PPP1CB is a member of conserved syntenic group. It is shown that the genes encoding catalytic subunit of protein phosphatase type 1 family (PP1 alpha, PP1 beta, and PP1 gamma in human and those corresponding genes in rat and mouse), in spite of their high identity, are located to different chromosomes in these three species.

    Idengaku zasshi 1994;69;6;697-700

  • Increase in potential activities of protein phosphatases PP1 and PP2A in lymphoid tissues of autoimmune MRL/MpJ-lpr/lpr mice.

    Matsuzawa S, Tamura T, Mizuno Y, Kobayashi S, Okuyama H, Tsukitani Y, Uemura D and Kikuchi K

    Section of Biochemistry, Hokkaido University.

    The differential assay conditions for protein phosphatases PP1, PP2A, and PP2C were extensively studied by using crude extracts from mouse lymphoid tissues as enzyme sources. Under these conditions, the protein phosphatase activities were measured in MRL/MpJ-lpr/lpr mice (MRL/lpr mice), autoimmune-prone mice, and MRL/MpJ(-)+/+ mice (MRL/+/+ mice) and C3H/HeJ mice as the controls. In MRL/lpr mice, significant alterations in protein phosphatase activities from those in the control mice were demonstrated. In spleen and liver from MRL/lpr mice, potential activities of PP1 and PP2A were distinctly elevated over those of the control mice. These elevations appeared to be due to accumulation of the abnormal lymphocytes that emerged in MRL/lpr mice. Although the PP1 activity in MRL/lpr lymph nodes was lower than those of normal spleen and thymus, it was greatly increased by Co(2+)-trypsin treatment so that the PP1 activity of MRL/lpr lymph nodes was the highest among those of all the tissues examined. In contrast, PP2C activity showed no remarkable alteration in the autoimmune disease model mice as compared with that in the control mice. These results demonstrated a specific elevation in potency of protein dephosphorylation in the tissues of MRL/lpr mice, suggesting a new explanation for the defect in signal transduction in this disease.

    Journal of biochemistry 1992;111;4;472-7

  • The fission yeast dis2+ gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatases.

    Ohkura H, Kinoshita N, Miyatani S, Toda T and Yanagida M

    Department of Biophysics, Faculty of Science, Kyoto University, Japan.

    S. pombe dis mutants block mitotic chromosome disjunction in a manner reminiscent of aneuploidy formation, and belong to three distinct genes, dis1-dis3. We cloned two independent genomic DNAs that complemented both the cold-sensitive and caffeine-hypersensitive phenotype of dis2-11. These genes, dis2+ and a suppressor sds21+, encode proteins (calculated MW 37,000) with similar predicted amino acid sequences. dis2+ and sds21+ have overlapping functions, and disruptants are lethal only when both genes are disrupted. The gene products identified by anti-dis2 serum are enriched in nuclei. By hybridization, we obtained two cDNA clones from mouse and one genomic clone from S. cerevisiae; the latter complements S. pombe dis2-11. These dis2+ and similar polypeptides of yeasts and mouse are found to be highly homologous (75%-90% identical) to rabbit protein phosphatase 1. The implications of these findings are discussed with regard to mitotic control.

    Cell 1989;57;6;997-1007

Gene lists (7)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000007 G2C Mus musculus Mouse NRC Mouse NRC adapted from Collins et al (2006) 186
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000024 G2C Mus musculus Pocklington M6 Cluster 6 (mouse) from Pocklington et al (2006) 5
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.