G2Cdb::Gene report

Gene id
Gene symbol
Shank3 (MGI)
Mus musculus
SH3/ankyrin domain gene 3
G00001370 (Homo sapiens)

Databases (9)

ENSMUSG00000022623 (Ensembl mouse gene)
58234 (Entrez Gene)
465 (G2Cdb plasticity & disease)
Gene Expression
NM_021423 (Allen Brain Atlas)
g02230 (BGEM)
shank3 (gensat)
606230 (OMIM)
Marker Symbol
MGI:1930016 (MGI)
Protein Sequence
Q4ACU6 (UniProt)

Literature (12)

Pubmed - other

  • Shank3 mutant mice display autistic-like behaviours and striatal dysfunction.

    Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z and Feng G

    Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

    Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan-McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice.

    Funded by: NIMH NIH HHS: F32 MH084460, F32MH084460, R01 MH081201, R01 MH081201-05, R01MH081201, R03 MH085224, R03MH085224

    Nature 2011;472;7344;437-42

  • A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D, Magen A, Canidio E, Pagani M, Peluso I, Lin-Marq N, Koch M, Bilio M, Cantiello I, Verde R, De Masi C, Bianchi SA, Cicchini J, Perroud E, Mehmeti S, Dagand E, Schrinner S, Nürnberger A, Schmidt K, Metz K, Zwingmann C, Brieske N, Springer C, Hernandez AM, Herzog S, Grabbe F, Sieverding C, Fischer B, Schrader K, Brockmeyer M, Dettmer S, Helbig C, Alunni V, Battaini MA, Mura C, Henrichsen CN, Garcia-Lopez R, Echevarria D, Puelles E, Garcia-Calero E, Kruse S, Uhr M, Kauck C, Feng G, Milyaev N, Ong CK, Kumar L, Lam M, Semple CA, Gyenesei A, Mundlos S, Radelof U, Lehrach H, Sarmientos P, Reymond A, Davidson DR, Dollé P, Antonarakis SE, Yaspo ML, Martinez S, Baldock RA, Eichele G and Ballabio A

    Telethon Institute of Genetics and Medicine, Naples, Italy.

    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

    Funded by: Medical Research Council: MC_U127527203; Telethon: TGM11S03

    PLoS biology 2011;9;1;e1000582

  • Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3)-scaffolding proteins are also present in postsynaptic specializations of the peripheral nervous system.

    Raab M, Boeckers TM and Neuhuber WL

    Department of Anatomy I, University of Erlangen-Nuremberg, Krankenhausstrasse 9, 91054 Erlangen, Germany. marion.raab@anatomie1.med.uni-erlangen.de

    Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3) were originally found as synapse-associated protein 90/postsynaptic density protein-95-associated protein (SAPAP)/guanylate-kinase-associated protein (GKAP) interaction partners and also isolated from synaptic junctional protein preparations of rat brain. They are essential components of the postsynaptic density (PSD) and are specifically targeted to excitatory asymmetric type 1 synapses. Functionally, the members of the ProSAP/Shank family are one of the postsynaptic key elements since they link and attach the postsynaptic signaling apparatus, for example N-methyl-d-aspartic acid (NMDA)-receptors via direct and indirect protein interactions to the actin-based cytoskeleton. The functional significance of ProSAP1/2 for synaptic transmission and the paucity of data with respect to the molecular composition of PSDs of the peripheral nervous system (PNS) stimulated us to investigate neuromuscular junctions (NMJs), synapses of the superior cervical ganglion (SCG), and synapses in myenteric ganglia as representative synaptic junctions of the PNS. Confocal imaging revealed ProSAP1/2-immunoreactivity (-iry) in NMJs of rat and mouse sternomastoid and tibialis anterior muscles. In contrast, ProSAP1/2-iry was only negligibly found in motor endplates of striated esophageal muscle probably caused by antigen masking or a different postsynaptic molecular anatomy at these synapses. ProSAP1/2-iry was furthermore detected in cell bodies and dendrites of superior cervical ganglion neurons and myenteric neurons in esophagus and stomach. Ultrastructural analysis of ProSAP1/2 expression in myenteric ganglia demonstrated that ProSAP1 and ProSAP2 antibodies specifically labelled PSDs of myenteric neurons. Thus, scaffolding proteins ProSAP1/2 were found within the postsynaptic specializations of synapses within the PNS, indicating a similar molecular assembly of central and peripheral postsynapses.

    Neuroscience 2010;171;2;421-33

  • The insulin receptor substrate of 53 kDa (IRSp53) limits hippocampal synaptic plasticity.

    Sawallisch C, Berhörster K, Disanza A, Mantoani S, Kintscher M, Stoenica L, Dityatev A, Sieber S, Kindler S, Morellini F, Schweizer M, Boeckers TM, Korte M, Scita G and Kreienkamp HJ

    Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany.

    IRSp53 is an essential intermediate between the activation of Rac and Cdc42 GTPases and the formation of cellular protrusions; it affects cell shape by coupling membrane-deforming activity with the actin cytoskeleton. IRSp53 is highly expressed in neurons where it is also an abundant component of the postsynaptic density (PSD). Here we analyze the physiological function of this protein in the mouse brain by generating IRSp53-deficient mice. Neurons in the hippocampus of young and adult knock-out (KO) mice do not exhibit morphological abnormalities in vivo. Conversely, primary cultured neurons derived from IRSp53 KO mice display retarded dendritic development in vitro. On a molecular level, Eps8 cooperates with IRSp53 to enhance actin bundling and interacts with IRSp53 in developing neurons. However, postsynaptic Shank proteins which are expressed at high levels in mature neurons compete with Eps8 to block actin bundling. In electrophysiological experiments the removal of IRSp53 increases synaptic plasticity as measured by augmented long term potentiation and paired-pulse facilitation. A primarily postsynaptic role of IRSp53 is underscored by the decreased size of the PSDs, which display increased levels of N-methyl-d-aspartate receptor subunits in IRSp53 KO animals. Our data suggest that the incorporation of IRSp53 into the PSD enables the protein to limit the number of postsynaptic glutamate receptors and thereby affect synaptic plasticity rather than dendritic morphology. Consistent with altered synaptic plasticity, IRSp53-deficient mice exhibit cognitive deficits in the contextual fear-conditioning paradigm.

    The Journal of biological chemistry 2009;284;14;9225-36

  • Direct interaction of post-synaptic density-95/Dlg/ZO-1 domain-containing synaptic molecule Shank3 with GluR1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor.

    Uchino S, Wada H, Honda S, Nakamura Y, Ondo Y, Uchiyama T, Tsutsumi M, Suzuki E, Hirasawa T and Kohsaka S

    Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo, Japan.

    A class of scaffolding protein containing the post-synaptic density-95/Dlg/ZO-1 (PDZ) domain is thought to be involved in synaptic trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors during development. To clarify the molecular mechanism of AMPA receptor trafficking, we performed a yeast two-hybrid screening system using the cytoplasmic tail of the GluR1 subunit of AMPA receptor as a bait and identified a synaptic molecule, Shank3/ProSAP2, as a GluR1 subunit-interacting molecule. Shank3 is a PDZ domain-containing multidomain protein and is predominantly expressed in developing neurons. Using the glutathione S-transferase pull-down assay and immunoprecipitation technique we demonstrated that the GluR1 subunit directly binds to the PDZ domain of Shank3 via its carboxyl terminal PDZ-binding motif. We raised anti-Shank3 antibody to investigate the expression of Shank3 in cortical neurons. The pattern of Shank3 immunoreactivity was strikingly punctate, mainly observed in the spines, and closely matched the pattern of post-synaptic density-95 immunoreactivity, indicating that Shank3 is colocalized with post-synaptic density-95 in the same spines. When Shank3 and the GluR1 subunit were overexpressed in primary cortical neurons, they were also colocalized in the spines. Taken together with the biochemical interaction of Shank3 with the GluR1 subunit, these results suggest that Shank3 is an important molecule that interacts with GluR1 AMPA receptor at synaptic sites of developing neurons.

    Journal of neurochemistry 2006;97;4;1203-14

  • BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.

    Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten DM, Eden C, Norland SM, Rice DS, Dosooye N, Shakya S, Mehta P and Curran T

    Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States.

    Funded by: NINDS NIH HHS: 5R37NS036558, N01-NS-0-2331, R37 NS036558

    PLoS biology 2006;4;4;e86

  • Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons.

    Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, Bockaert J and Fagni L

    Institut de Génomique Fonctionnelle, Unité Mixte de Recherche 5203, 34000 Montpellier, France.

    Shank proteins assemble glutamate receptors with their intracellular signaling apparatus and cytoskeleton at the postsynaptic density. Whether Shank plays a role in spinogenesis and synaptogenesis remained unclear. Here, we report that knock-down of Shank3/prolinerich synapse-associated protein-2 by RNA interference reduces spine density in hippocampal neurons. Moreover, transgene expression of Shank 3 is sufficient to induce functional dendritic spines in aspiny cerebellar neurons. Transfected Shank protein recruits functional glutamate receptors, increases the number and size of synaptic contacts, and increases amplitude, frequency, and the AMPA component of miniature EPSCs, similar to what is observed during synapse developmental maturation. Mutation/deletion approaches indicate that these effects require interactions of Shank3 with the glutamate receptor complex. Consistent with this observation, chronic treatment with glutamate receptor antagonists alters maturation of the Shank3-induced spines. These results strongly suggest that Shank proteins and the associated glutamate receptors participate in a concerted manner to form spines and functional synapses.

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2005;25;14;3560-70

  • G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain.

    Olson PA, Tkatch T, Hernandez-Lopez S, Ulrich S, Ilijic E, Mugnaini E, Zhang H, Bezprozvanny I and Surmeier DJ

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.

    Voltage-gated L-type Ca2+ channels are key determinants of synaptic integration and plasticity, dendritic electrogenesis, and activity-dependent gene expression in neurons. Fulfilling these functions requires appropriate channel gating, perisynaptic targeting, and linkage to intracellular signaling cascades controlled by G-protein-coupled receptors (GPCRs). Surprisingly, little is known about how these requirements are met in neurons. The studies described here shed new light on how this is accomplished. We show that D2 dopaminergic and M1 muscarinic receptors selectively modulate a biophysically distinctive subtype of L-type Ca2+ channels (CaV1.3) in striatal medium spiny neurons. The splice variant of these channels expressed in medium spiny neurons contains cytoplasmic Src homology 3 and PDZ (postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1) domains that bind the synaptic scaffolding protein Shank. Medium spiny neurons coexpressed CaV1.3-interacting Shank isoforms that colocalized with PSD-95 and CaV1.3a channels in puncta resembling spines on which glutamatergic corticostriatal synapses are formed. The modulation of CaV1.3 channels by D2 and M1 receptors was disrupted by intracellular dialysis of a peptide designed to compete for the CaV1.3 PDZ domain but not with one targeting a related PDZ domain. The modulation also was disrupted by application of peptides targeting the Shank interaction with Homer. Upstate transitions in medium spiny neurons driven by activation of glutamatergic receptors were suppressed by genetic deletion of CaV1.3 channels or by activation of D2 dopaminergic receptors. Together, these results suggest that Shank promotes the assembly of a signaling complex at corticostriatal synapses that enables key GPCRs to regulate L-type Ca2+ channels and the integration of glutamatergic synaptic events.

    Funded by: NIDA NIH HHS: DA12958; NINDS NIH HHS: NS34696, NS39552

    The Journal of neuroscience : the official journal of the Society for Neuroscience 2005;25;5;1050-62

  • The neuronal scaffold protein Shank3 mediates signaling and biological function of the receptor tyrosine kinase Ret in epithelial cells.

    Schuetz G, Rosário M, Grimm J, Boeckers TM, Gundelfinger ED and Birchmeier W

    MaxDelbrück-Center for Molecular Medicine, Berlin, Germany.

    Shank proteins, initially also described as ProSAP proteins, are scaffolding adaptors that have been previously shown to integrate neurotransmitter receptors into the cortical cytoskeleton at postsynaptic densities. We show here that Shank proteins are also crucial in receptor tyrosine kinase signaling. The PDZ domain-containing Shank3 protein was found to represent a novel interaction partner of the receptor tyrosine kinase Ret, which binds specifically to a PDZ-binding motif present in the Ret9 but not in the Ret51 isoform. Furthermore, we show that Ret9 but not Ret51 induces epithelial cells to form branched tubular structures in three-dimensional cultures in a Shank3-dependent manner. Ret9 but not Ret51 has been previously shown to be required for kidney development. Shank3 protein mediates sustained Erk-MAPK and PI3K signaling, which is crucial for tubule formation, through recruitment of the adaptor protein Grb2. These results demonstrate that the Shank3 adaptor protein can mediate cellular signaling, and provide a molecular mechanism for the biological divergence between the Ret9 and Ret51 isoform.

    The Journal of cell biology 2004;167;5;945-52

  • Prediction of the coding sequences of mouse homologues of KIAA gene: IV. The complete nucleotide sequences of 500 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries.

    Okazaki N, F-Kikuno R, Ohara R, Inamoto S, Koseki H, Hiraoka S, Saga Y, Seino S, Nishimura M, Kaisho T, Hoshino K, Kitamura H, Nagase T, Ohara O and Koga H

    Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.

    We have been conducting a mouse cDNA project to predict protein-coding sequences of mouse homologues of human KIAA and FLJ genes since 2001. As an extension of these projects, we herein present the entire sequences of 500 mKIAA cDNA clones and 4 novel cDNA clones that were incidentally identified during this project. We have isolated cDNA clones from the size-fractionated mouse cDNA libraries derived from 7 tissues and 3 types of cultured cells. The average size of the 504 cDNA sequences reached 4.3 kb and that of the deduced amino acid sequences from these cDNAs was 807 amino acid residues. We assigned the integrity of CDSs from the comparison with the corresponding human KIAA cDNA sequences. The comparison of mouse and human sequences revealed that two different human KIAA cDNAs are derived from single genes. Furthermore, 3 out of 4 proteins encoded in the novel cDNA clones showed moderate sequence similarity with human KIAA proteins, thus we could obtain new members of KIAA protein families through our mouse cDNA projects.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2004;11;3;205-18

  • Direct interaction of GluRdelta2 with Shank scaffold proteins in cerebellar Purkinje cells.

    Uemura T, Mori H and Mishina M

    Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, and Japan; SORST, Japan Science and Technology Corporation, Tokyo 113-0033, Japan.

    Glutamate receptor (GluR) delta2 selectively expressed in cerebellar Purkinje cells plays a central role in cerebellar long-term depression (LTD), motor learning, and formation of parallel fiber synapses. By yeast two-hybrid screening, we identified members of the Shank family of scaffold proteins as major GluRdelta2-interacting molecules. GluRdelta2 bound directly to the PDZ domain of Shank proteins through an internal motif in the carboxyl-terminal putative cytoplasmic domain. Shank1 and Shank2 proteins as well as GluRdelta2 proteins were localized in the dendritic spines of cultured Purkinje cells. Anti-GluRdelta2 antibodies immunoprecipitated Shank1, Shank2, Homer, and metabotropic GluR1alpha proteins from the synaptosomal membrane fractions of cerebella. Furthermore, Shank2 interacted with GRIP1 in the cerebellum. These results suggest that through Shank1 and Shank2, GluRdelta2 interacts with the metabotropic GluR1alpha, the AMPA-type GluR, and the inositol 1,4,5-trisphosphate receptor (IP3R) that are essential for cerebellar LTD.

    Molecular and cellular neurosciences 2004;26;2;330-41

  • Differential distribution of Rac1 and Rac3 GTPases in the developing mouse brain: implications for a role of Rac3 in Purkinje cell differentiation.

    Bolis A, Corbetta S, Cioce A and de Curtis I

    Cell Adhesion Unit, Department of Molecular Biology and Functional Genomics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.

    Rac3 is one of the three known Rac GTPases in vertebrates. Rac3 shows high sequence homology to Rac1, and its transcript is specifically expressed in the developing nervous system, where its localization and function are unknown. By using Rac3-specific antibodies, we show that the endogenous Rac3 protein is differentially expressed during mouse brain development, with a peak of expression at times of neuronal maturation and synaptogenesis. Comparison with Rac1 shows clear-cut differences in the overall distribution of the two GTPases in the developing brain, and in their subcellular distribution in regions of the brain where both proteins are expressed. At P7, Rac3 staining is particularly marked in the deep cerebellar nuclei and in the pons, where it shows a discontinuous distribution around the neuronal cell bodies, in contrast with the diffuse staining of Rac1. Rac3 does not evidently co-localize with pre- and post-synaptic markers, nor with GFAP-positive astrocytes, but it clearly co-localizes with actin filaments, and with the terminal portions of calbindin-positive Purkinje cell axons in the deep cerebellar nuclei. Our data implicate Rac3 in neuronal differentiation, and support a specific role of this GTPase in actin-mediated remodelling of Purkinje cell neuritic terminals at time of synaptogenesis.

    Funded by: Telethon: GGP02190

    The European journal of neuroscience 2003;18;9;2417-24

Gene lists (6)

Gene List Source Species Name Description Gene count
L00000001 G2C Mus musculus Mouse PSD Mouse PSD adapted from Collins et al (2006) 1080
L00000008 G2C Mus musculus Mouse PSP Mouse PSP adapted from Collins et al (2006) 1121
L00000060 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus (ortho) 748
L00000062 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus 984
L00000070 G2C Mus musculus BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list (ortho) 1461
L00000072 G2C Mus musculus BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.