G2Cdb::Gene report

Gene id
G00002462
Gene symbol
RPL13A (HGNC)
Species
Homo sapiens
Description
ribosomal protein L13a
Orthologue
G00001213 (Mus musculus)

Databases (7)

Curated Gene
OTTHUMG00000071679 (Vega human gene)
Gene
ENSG00000142541 (Ensembl human gene)
23521 (Entrez Gene)
112 (G2Cdb plasticity & disease)
RPL13A (GeneCards)
Marker Symbol
HGNC:10304 (HGNC)
Protein Sequence
P40429 (UniProt)

Synonyms (1)

  • L13A

Literature (18)

Pubmed - other

  • Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome.

    Maggi LB, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR, Pandolfi PP and Weber JD

    Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, Missouri 63110, USA.

    Nucleophosmin (NPM) (B23) is an essential protein in mouse development and cell growth; however, it has been assigned numerous roles in very diverse cellular processes. Here, we present a unified mechanism for NPM's role in cell growth; NPM directs the nuclear export of both 40S and 60S ribosomal subunits. NPM interacts with rRNA and large and small ribosomal subunit proteins and also colocalizes with large and small ribosomal subunit proteins in the nucleolus, nucleus, and cytoplasm. The transduction of NPM shuttling-defective mutants or the loss of Npm1 inhibited the nuclear export of both the 40S and 60S ribosomal subunits, reduced the available pool of cytoplasmic polysomes, and diminished overall protein synthesis without affecting rRNA processing or ribosome assembly. While the inhibition of NPM shuttling can block cellular proliferation, the dramatic effects on ribosome export occur prior to cell cycle inhibition. Modest increases in NPM expression amplified the export of newly synthesized rRNAs, resulting in increased rates of protein synthesis and indicating that NPM is rate limiting in this pathway. These results support the idea that NPM-regulated ribosome export is a fundamental process in cell growth.

    Funded by: NCRR NIH HHS: P41 RR000954, P41RR000954

    Molecular and cellular biology 2008;28;23;7050-65

  • Human ribosomal protein L13a is dispensable for canonical ribosome function but indispensable for efficient rRNA methylation.

    Chaudhuri S, Vyas K, Kapasi P, Komar AA, Dinman JD, Barik S and Mazumder B

    Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA.

    Previously, we demonstrated that treatment of monocytic cells with IFN-gamma causes release of ribosomal protein L13a from the 60S ribosome and subsequent translational silencing of Ceruloplasmin (Cp) mRNA. Here, evidence using cultured cells demonstrates that Cp mRNA silencing is dependent on L13a and that L13a-deficient ribosomes are competent for global translational activity. Human monocytic U937 cells were stably transfected with two different shRNA sequences for L13a and clonally selected for more than 98% abrogation of total L13a expression. Metabolic labeling of these cells showed rescue of Cp translation from the IFN-gamma mediated translational silencing activity. Depletion of L13a caused significant reduction of methylation of ribosomal RNA and of cap-independent translation mediated by Internal Ribosome Entry Site (IRES) elements derived from p27, p53, and SNAT2 mRNAs. However, no significant differences in the ribosomal RNA processing, polysome formation, global translational activity, translational fidelity, and cell proliferation were observed between L13a-deficient and wild-type control cells. These results support the notion that ribosome can serve as a depot for releasable translation-regulatory factors unrelated to its basal polypeptide synthetic function. Unlike mammalian cells, the L13a homolog in yeast is indispensable for growth. Thus, L13a may have evolved from an essential ribosomal protein in lower eukaryotes to having a role as a dispensable extra-ribosomal function in higher eukaryotes.

    Funded by: NHLBI NIH HHS: HL79164, R01 HL079164; NIAID NIH HHS: AI059267, R01 AI059267; NIGMS NIH HHS: GM058859, R01 GM058859

    RNA (New York, N.Y.) 2007;13;12;2224-37

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • Nucleolar proteome dynamics.

    Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI and Mann M

    Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230 Odense M, Denmark.

    The nucleolus is a key organelle that coordinates the synthesis and assembly of ribosomal subunits and forms in the nucleus around the repeated ribosomal gene clusters. Because the production of ribosomes is a major metabolic activity, the function of the nucleolus is tightly linked to cell growth and proliferation, and recent data suggest that the nucleolus also plays an important role in cell-cycle regulation, senescence and stress responses. Here, using mass-spectrometry-based organellar proteomics and stable isotope labelling, we perform a quantitative analysis of the proteome of human nucleoli. In vivo fluorescent imaging techniques are directly compared to endogenous protein changes measured by proteomics. We characterize the flux of 489 endogenous nucleolar proteins in response to three different metabolic inhibitors that each affect nucleolar morphology. Proteins that are stably associated, such as RNA polymerase I subunits and small nuclear ribonucleoprotein particle complexes, exit from or accumulate in the nucleolus with similar kinetics, whereas protein components of the large and small ribosomal subunits leave the nucleolus with markedly different kinetics. The data establish a quantitative proteomic approach for the temporal characterization of protein flux through cellular organelles and demonstrate that the nucleolar proteome changes significantly over time in response to changes in cellular growth conditions.

    Funded by: Wellcome Trust: 073980

    Nature 2005;433;7021;77-83

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • The molecular mechanics of eukaryotic translation.

    Kapp LD and Lorsch JR

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA. lkapp@jhmi.edu

    Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.

    Annual review of biochemistry 2004;73;657-704

  • Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control.

    Mazumder B, Sampath P, Seshadri V, Maitra RK, DiCorleto PE and Fox PL

    Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.

    Transcript-specific translational control is generally directed by binding of trans-acting proteins to structural elements in the untranslated region (UTR) of the target mRNA. Here, we elucidate a translational silencing mechanism involving regulated release of an integral ribosomal protein and subsequent binding to its target mRNA. Human ribosomal protein L13a was identified as a candidate interferon-Gamma-Activated Inhibitor of Translation (GAIT) of ceruloplasmin (Cp) mRNA by a genetic screen for Cp 3'-UTR binding proteins. In vitro activity of L13a was shown by inhibition of target mRNA translation by recombinant protein. In response to interferon-gamma in vivo, the entire cellular pool of L13a was phosphorylated and released from the 60S ribosomal subunit. Released L13a specifically bound the 3'-UTR GAIT element of Cp mRNA and silenced translation. We propose a model in which the ribosome functions not only as a protein synthesis machine, but also as a depot for regulatory proteins that modulate translation.

    Funded by: NHLBI NIH HHS: HL29582, HL67725

    Cell 2003;115;2;187-98

  • Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing.

    Odintsova TI, Müller EC, Ivanov AV, Egorov TA, Bienert R, Vladimirov SN, Kostka S, Otto A, Wittmann-Liebold B and Karpova GG

    Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation.

    The 60S ribosomal proteins were isolated from ribosomes of human placenta and separated by reversed phase HPLC. The fractions obtained were subjected to trypsin and Glu-C digestion and analyzed by mass fingerprinting (MALDI-TOF), MS/MS (ESI), and Edman sequencing. Forty-six large subunit proteins were found, 22 of which showed masses in accordance with the SwissProt database (June 2002) masses (proteins L6, L7, L9, L13, L15, L17, L18, L21, L22, L24, L26, L27, L30, L32, L34, L35, L36, L37, L37A, L38, L39, L41). Eleven (proteins L7, L10A, L11, L12, L13A, L23, L23A, L27A, L28, L29, and P0) resulted in mass changes that are consistent with N-terminal loss of methionine, acetylation, internal methylation, or hydroxylation. A loss of methionine without acetylation was found for protein L8 and L17. For nine proteins (L3, L4, L5, L7A, L10, L14, L19, L31, and L40), the molecular masses could not be determined. Proteins P1 and protein L3-like were not identified by the methods applied.

    Journal of protein chemistry 2003;22;3;249-58

  • Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region.

    Sampath P, Mazumder B, Seshadri V and Fox PL

    Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.

    Transcript-selective translational control of eukaryotic gene expression is often directed by a structural element in the 3' untranslated region (3'-UTR) of the mRNA. In the case of ceruloplasmin (Cp), induced synthesis of the protein by gamma interferon (IFN-gamma) in U937 monocytic cells is halted by a delayed translational silencing mechanism requiring the binding of a cytosolic inhibitor to the Cp 3'-UTR. Silencing requires the essential elements of mRNA circularization, i.e., eukaryotic initiation factor 4G, poly(A)-binding protein, and poly(A) tail. We here determined the minimal silencing element in the Cp 3'-UTR by progressive deletions from both termini. A minimal, 29-nucleotide (nt) element was determined by gel shift assay to be sufficient for maximal binding of the IFN-gamma-activated inhibitor of translation (GAIT), an as-yet-unidentified protein or complex. The interaction was shown to be functional by an in vitro translation assay in which the GAIT element was used as a decoy to overcome translational silencing. Mutation analysis showed that the GAIT element contained a 5-nt terminal loop, a weak 3-bp helix, an asymmetric internal bulge, and a proximal 6-bp helical stem. Two invariant loop residues essential for binding activity were identified. Ligation of the GAIT element immediately downstream of a luciferase reporter conferred the translational silencing response to the heterologous transcript in vitro and in vivo; a construct containing a nonbinding, mutated GAIT element was ineffective. Translational silencing of Cp, and possibly other transcripts, mediated by the GAIT element may contribute to the resolution of the local inflammatory response following cytokine activation of macrophages.

    Funded by: NHLBI NIH HHS: HL29582, HL67725, P01 HL029582, R01 HL067725

    Molecular and cellular biology 2003;23;5;1509-19

  • Directed proteomic analysis of the human nucleolus.

    Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M and Lamond AI

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.

    Background: The nucleolus is a subnuclear organelle containing the ribosomal RNA gene clusters and ribosome biogenesis factors. Recent studies suggest it may also have roles in RNA transport, RNA modification, and cell cycle regulation. Despite over 150 years of research into nucleoli, many aspects of their structure and function remain uncharacterized.

    Results: We report a proteomic analysis of human nucleoli. Using a combination of mass spectrometry (MS) and sequence database searches, including online analysis of the draft human genome sequence, 271 proteins were identified. Over 30% of the nucleolar proteins were encoded by novel or uncharacterized genes, while the known proteins included several unexpected factors with no previously known nucleolar functions. MS analysis of nucleoli isolated from HeLa cells in which transcription had been inhibited showed that a subset of proteins was enriched. These data highlight the dynamic nature of the nucleolar proteome and show that proteins can either associate with nucleoli transiently or accumulate only under specific metabolic conditions.

    Conclusions: This extensive proteomic analysis shows that nucleoli have a surprisingly large protein complexity. The many novel factors and separate classes of proteins identified support the view that the nucleolus may perform additional functions beyond its known role in ribosome subunit biogenesis. The data also show that the protein composition of nucleoli is not static and can alter significantly in response to the metabolic state of the cell.

    Current biology : CB 2002;12;1;1-11

  • Gene organization and sequence of the region containing the ribosomal protein genes RPL13A and RPS11 in the human genome and conserved features in the mouse genome.

    Higa S, Yoshihama M, Tanaka T and Kenmochi N

    Department of Biochemistry, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, Japan.

    We have determined the organization and sequence of the region containing two ribosomal protein (rp) genes in the human and mouse genomes. The two genes, human RPL13A and RPS11, and mouse Rpl13a and Rps11, are tandemly located in both genomes with an interval of only 4.6kb in the case of the human genes and 1.6kb in the case of the mouse genes. The human RPL13A and RPS11 are 4236bp and 3254bp in length and comprise eight and five exons respectively, whereas the mouse Rps11 is 1951bp long and has five exons. Structural comparison of these genes, including previously reported mouse Rpl13a, revealed a significant conservation of sequences in the promoter regions. Although most rp genes are dispersed throughout the human genome, the conserved features and adjacent localization indicate possible coordinate transcription of the two genes. Furthermore, we have found that four small nucleolar RNA (snoRNA) genes are located in the introns of the two rp genes, both human and mouse. U32, U33, and U34 snoRNAs are encoded in introns 2, 4, and 5 of RPL13A respectively, and U35 in the sixth intron of RPL13A and the third intron of RPS11. The same organization of these snoRNA genes was also observed in the case of the mouse genes.

    Gene 1999;240;2;371-7

  • A map of 75 human ribosomal protein genes.

    Kenmochi N, Kawaguchi T, Rozen S, Davis E, Goodman N, Hudson TJ, Tanaka T and Page DC

    Howard Hughes Medical Institute, Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. kenmochi@med.u-ryuku.ac.jp

    We mapped 75 genes that collectively encode >90% of the proteins found in human ribosomes. Because localization of ribosomal protein genes (rp genes) is complicated by the existence of processed pseudogenes, multiple strategies were devised to identify PCR-detectable sequence-tagged sites (STSs) at introns. In some cases we exploited specific, pre-existing information about the intron/exon structure of a given human rp gene or its homolog in another vertebrate. When such information was unavailable, selection of PCR primer pairs was guided by general insights gleaned from analysis of all mammalian rp genes whose intron/exon structures have been published. For many genes, PCR amplification of introns was facilitated by use of YAC pool DNAs rather than total human genomic DNA as templates. We then assigned the rp gene STSs to individual human chromosomes by typing human-rodent hybrid cell lines. The genes were placed more precisely on the physical map of the human genome by typing of radiation hybrids or screening YAC libraries. Fifty-one previously unmapped rp genes were localized, and 24 previously reported rp gene localizations were confirmed, refined, or corrected. Though functionally related and coordinately expressed, the 75 mapped genes are widely dispersed: Both sex chromosomes and at least 20 of the 22 autosomes carry one or more rp genes. Chromosome 19, known to have a high gene density, contains an unusually large number of rp genes (12). This map provides a foundation for the study of the possible roles of ribosomal protein deficiencies in chromosomal and Mendelian disorders.

    Genome research 1998;8;5;509-23

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs.

    Nicoloso M, Qu LH, Michot B and Bachellerie JP

    Laboratoire de Biologie Moléculaire Eucaryote du C.N.R.S., Université Paul-Sabatier, Toulouse, France.

    A growing number of small nucleolar RNAs (snoRNAs) are intron-encoded, contain the characteristic box C (UGAUGA) and box D (CUGA) motifs and exhibit long complementarities to conserved sequences in mature rRNAs. We have identified nine additional members of this family, U32 to U40. All but one are encoded in introns of ribosomal protein genes in vertebrates: U32 to U35 in rpL13a, U36 in rpL7a and U38 to U40 in rpS8. By contrast, U37 is encoded in elongation factor 2 gene. Interestingly, U32 and U36 each contain two complementarities (one to 18 S and the other to 28 S rRNA). U32 to U40 are fibrillarin-associated, devoid of a 5'-trimethyl-cap and display an exclusively nucleolar localization. They are all metabolically stable and roughly as abundant as previously reported members of this family. Characterization of their homologs in distant species shows that their 10 to 14 nt long rRNA complementarities are conserved. A clue on the function of this snoRNA family is provided by the comparative analysis of the largely expanded collection of their conserved duplexes with rRNA. Not only does each duplex span at least one site of 2'-O-ribose methylation in the rRNA but the modification site is always at the same position in the duplex, paired to the fifth nucleotide upstream from a box D motif in the snoRNA. Consistent with the notion that each snoRNA of this family guides one particular methylation along the rRNA sequence, we have detected several pairs of snoRNAs with overlapping complementarities to rRNA tracts with vicinal sites of ribose methylations. In each case, the two overlapping complementarities are shifted from each other by a distance equal to the spacing between the methylated sites which are thus found at the same position within each of the mutually exclusive duplexes. Finally, we have also identified, within three previously known snoRNAs, novel antisense elements able to form a canonical duplex around ribose-methylated sites in rRNA, which further supports the conclusion that the duplex structure provides the 2'-O-methyltransferase with the appropriate site-specificity on the substrate.

    Journal of molecular biology 1996;260;2;178-95

  • Structure and evolution of mammalian ribosomal proteins.

    Wool IG, Chan YL and Glück A

    Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA.

    Mammalian (rat) ribosomes have 80 proteins; the sequence of amino acids in 75 have been determined. What has been learned of the structure of the rat ribosomal proteins is reviewed with particular attention to their evolution and to amino acid sequence motifs. The latter include: clusters of basic or acidic residues; sequence repeats or shared sequences; zinc finger domains; bZIP elements; and nuclear localization signals. The occurrence and the possible significance of phosphorylated residues and of ubiquitin extensions is noted. The characteristics of the mRNAs that encode the proteins are summarized. The relationship of the rat ribosomal proteins to the proteins in ribosomes from humans, yeast, archaebacteria, and Escherichia coli is collated.

    Biochemistry and cell biology = Biochimie et biologie cellulaire 1995;73;11-12;933-47

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Conservation of a 23-kDa human transplantation antigen in mammalian species.

    Price SR, Nightingale MS, Bobak DA, Tsuchiya M, Moss J and Vaughan M

    Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

    A group of transplantation antigens, referred to as tum- antigens, were identified in mouse tumor cells that had been mutagenized to produce variant cells and were recognized by clonal cytolytic T lymphocytes (CTL). Alterations in these variant cells that were recognized by CTL resulted from point mutations in the genes of specific proteins. We have isolated human and bovine cDNA clones that encode the homologs of the mouse tum- antigen P198. This 23.6-kDa protein is highly basic with a predicted pI of 11.55. p23/P198 is highly conserved across mammalian species, with > 94% identity (97% including conservative substitutions) among the human, bovine, and mouse deduced amino acid sequences. The nucleotide sequences of both the coding and 5'- and 3'-untranslated regions from human, bovine, and mouse are also highly conserved with > 88% identity in the coding regions. Hybridization of poly(A)+ RNA from various mammalian sources with cDNA and oligonucleotides specific for the coding region identified two mRNAs of 1.2 and 0.8 kb, whereas probes specific for the 3'-untranslated region between two consensus polyadenylation signals hybridized with the 1.2-kb, but not the 0.8-kb, mRNA. The abundance of the 1.2-kb mRNA relative to that of the 0.8-kb species varied depending upon the cell type. A single predominant transcription initiation site was mapped by primer extension. These studies indicate that this highly basic 23.6-kDa protein is encoded by two major mRNA species that differ only in the length of their 3'-untranslated regions and that the mechanism that gives rise to these two mRNAs, utilization of alternative polyadenylation sites, is conserved across species.(ABSTRACT TRUNCATED AT 250 WORDS)

    Genomics 1992;14;4;959-64

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.