G2Cdb::Gene report

Gene id
G00002425
Gene symbol
STOML2 (HGNC)
Species
Homo sapiens
Description
stomatin (EPB72)-like 2
Orthologue
G00001176 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000019851 (Vega human gene)
Gene
ENSG00000165283 (Ensembl human gene)
30968 (Entrez Gene)
1129 (G2Cdb plasticity & disease)
STOML2 (GeneCards)
Literature
608292 (OMIM)
Marker Symbol
HGNC:14559 (HGNC)
Protein Sequence
Q9UJZ1 (UniProt)

Synonyms (2)

  • HSPC108
  • SLP-2

Literature (19)

Pubmed - other

  • Association of a dominantly inherited hyperphosphorylated paraprotein target with sporadic and familial multiple myeloma and monoclonal gammopathy of undetermined significance: a case-control study.

    Grass S, Preuss KD, Ahlgrimm M, Fadle N, Regitz E, Pfoehler C, Murawski N and Pfreundschuh M

    José Carreras Center for Immunotherapy and Gene Therapy, Department of Internal Medicine I, Saarland University Medical School, Homburg (Saar), Germany.

    Background: Chronic antigenic stimulation might have a role in the pathogenesis of monoclonal gammopathy of unknown significance (MGUS) and multiple myeloma. The aim of this study was to search for factors underlying the autoimmunogenicity of paratarg-7, a frequent antigenic target of paraproteins in MGUS and multiple myeloma.

    Methods: Between January, 2005, and February, 2009, serum and peripheral blood cells were obtained from consecutive patients with MGUS or multiple myeloma and healthy blood donors, and paratarg-7 was analysed by DNA sequencing, SDS-PAGE, isoelectric focusing, and western blotting.

    Findings: Mutations or polymorphisms of paratarg-7 were not noted, but hyperphosphorylation was detected in 35 (13.9%) of 252 patients with MGUS or multiple myeloma, all of whom had an anti-paratarg-7-specific paraprotein. Analysis of eight families showed that hyperphosphorylated paratarg-7 is inherited in a dominant fashion, and that carriers of hyperphosphorylated paratarg-7 have an increased risk of developing MGUS and multiple myeloma (odds ratio [OR] 7.9, 95% CI 2.8-22.6; p=0.0001).

    Interpretation: Familial MGUS and multiple myeloma were associated with a dominant inheritance of hyperphosphorylated paratarg-7, enabling family members at increased risk for MGUS or multiple myeloma to be identified. That only patients with MGUS or multiple myeloma who are carriers of hyperphosphorylated paratarg-7 had a paratarg-7-specific paraprotein suggests that the hyperphosphorylation of paratarg-7 induces auto-immunity and is involved in the pathogenesis of MGUS and multiple myeloma; for example, by chronic antigenic stimulation.

    Funding: Förderverein Krebsforschung Saar-Pfalz-Mosel e.V. (eingetragener Verein: officially registered charity) and HOMFOR (the research programme of the Saarland University Faculty of Medicine).

    The Lancet. Oncology 2009;10;10;950-6

  • Modulation of T cell activation by stomatin-like protein 2.

    Kirchhof MG, Chau LA, Lemke CD, Vardhana S, Darlington PJ, Márquez ME, Taylor R, Rizkalla K, Blanca I, Dustin ML and Madrenas J

    FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, and Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.

    T cell activation through the Ag receptor (TCR) requires sustained signaling from signalosomes within lipid raft microdomains in the plasma membrane. In a proteomic analysis of lipid rafts from human T cells, we identified stomatin-like protein (SLP)-2 as a candidate molecule involved in T cell activation through the Ag receptor. In this study, we show that SLP-2 expression in human primary lymphocytes is up-regulated following in vivo and ex vivo activation. In activated T cells, SLP-2 interacts with components of TCR signalosomes and with polymerized actin. More importantly, up-regulation of SLP-2 expression in human T cell lines and primary peripheral blood T cells increases effector responses, whereas down-regulation of SLP-2 expression correlates with loss of sustained TCR signaling and decreased T cell activation. Our data suggest that SLP-2 is an important player in T cell activation by ensuring sustained TCR signaling, which is required for full effector T cell differentiation, and point to SLP-2 as a potential target for immunomodulation.

    Funded by: NIAID NIH HHS: R01-AI43549, R37 AI043542, R37 AI043542-09A2, R37 AI043542-10; NIGMS NIH HHS: T32 GM007308, T32-GM07308

    Journal of immunology (Baltimore, Md. : 1950) 2008;181;3;1927-36

  • Slipins: ancient origin, duplication and diversification of the stomatin protein family.

    Green JB and Young JP

    Department of Biology, University of York, UK. jbg501@york.ac.uk

    Background: Stomatin is a membrane protein that was first isolated from human red blood cells. Since then, a number of stomatin-like proteins have been identified in all three domains of life. The conservation among these proteins is remarkable, with bacterial and human homologs sharing 50 % identity. Despite being associated with a variety of diseases such as cancer, kidney failure and anaemia, precise functions of these proteins remain unclear.

    Results: We have constructed a comprehensive phylogeny of all 'stomatin-like' sequences that share a 150 amino acid domain. We show these proteins comprise an ancient family that arose early in prokaryotic evolution, and we propose a new nomenclature that reflects their phylogeny, based on the name "slipin" (stomatin-like protein). Within prokaryotes there are two distinct subfamilies that account for the two different origins of the eight eukaryotic stomatin subfamilies, one of which gave rise to eukaryotic SLP-2, renamed here "paraslipin". This was apparently acquired through the mitochondrial endosymbiosis and is widely distributed amongst the major kingdoms. The other prokaryotic subfamily gave rise to the ancestor of the remaining seven eukaryotic subfamilies. The highly diverged "alloslipin" subfamily is represented only by fungal, viral and ciliate sequences. The remaining six subfamilies, collectively termed "slipins", are confined to metazoa. Protostome stomatin, as well as a newly reported arthropod subfamily slipin-4, are restricted to invertebrate groups, whilst slipin-1 (previously SLP-1) is present in nematodes and higher metazoa. In vertebrates, the stomatin family expanded considerably, with at least two duplication events giving rise to podocin and slipin-3 subfamilies (previously SLP-3), with the retained ancestral sequence giving rise to vertebrate stomatin.

    Conclusion: Stomatin-like proteins have their origin in an ancient duplication event that occurred early on in the evolution of prokaryotes. By constructing a phylogeny of this family, we have identified and named a number of orthologous groups: these can now be used to infer function of stomatin subfamilies in a meaningful way.

    BMC evolutionary biology 2008;8;44

  • High-level SLP-2 expression and HER-2/neu protein expression are associated with decreased breast cancer patient survival.

    Cao W, Zhang B, Liu Y, Li H, Zhang S, Fu L, Niu Y, Ning L, Cao X, Liu Z and Sun B

    The Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

    There is sufficient evidence that human stomatin-like protein 2 (SLP-2) is a novel cancer-related gene. Its protein is overexpressed in many human cancers. SLP-2 can contribute to the promotion of cell growth, cell adhesion, and tumorigenesis in esophageal squamous cell carcinoma and lymph node metastasis in laryngeal squamous cell carcinoma. Immunohistochemical detection of SLP-2, estrogen and progesterone receptors, and HER-2/neu were performed on 263 cases of primary invasive breast cancer with a tissue microarray. Of 263 cases, 138 (52.5%) showed high expression of SLP-2 protein, and 125 (47.5%) showed low or absent expression. In addition, there were significant positive associations between tumor stage and size (P = .020), lymph node metastasis (P < .001), clinical stage (P < .001), distant metastasis (P = .002), and HER-2/neu protein expression (P = .037) and high-level SLP-2 expression. High-level SLP-2 expression was associated with decreased overall survival (P = .011) and was more often found in patients with tumors larger than 20 mm, lymph node metastasis, advanced clinical stage, distant metastasis, and HER-2/neu protein-positive expression. More important, lymph node metastasis, HER-2/neu-positive expression, and high-level SLP-2 expression were associated with significantly decreased survival.

    American journal of clinical pathology 2007;128;3;430-6

  • Stomatin-like protein 2 is overexpressed and related to cell growth in human endometrial adenocarcinoma.

    Cui Z, Zhang L, Hua Z, Cao W, Feng W and Liu Z

    Department of Obstetrics and Gynecology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, P.R. China.

    Stomatin-like protein 2 (SLP-2) is a novel and unusual stomatin homologue of unknown functions. It was first identified to be overexpressed and involved in regulating cell growth and cell adhesion in human esophageal squamous cell carcinoma. We show herein the involvement of SLP-2 in human endometrial adenocarcinoma, and the effects of SLP-2 on endometrial adenocarcinoma cell growth. The expression of SLP-2 was evaluated in human endometrial adenocarcinoma by semi-quantitative RT-PCR, Westernblotting and immunohistochemistry. Sense and antisense SLP-2 eukaryotic expression plasmids were transfected into the human endometrial adenocarcinoma cell line HEC-1B. MTT assay and flow cytometry assay were performed to investigate the roles of the SLP-2 gene. SLP-2 was overexpressed in endometrial adenocarcinoma compared with their normal counterparts (P<or=0.05). Immunohistochemistry showed that SLP-2 was mainly localized in the cytoplasm with some distribution on the membrane. HEC-1B cells transfected with antisense SLP-2 showed decreased cell growth, whereas the cell growth increased with the sense transfection. SLP-2 was first identified as a novel cancer-related gene overexpressed in human endometrial adenocarcinoma. Cell growth changes with the sense and antisense transfection revealed that SLP-2 might be important in endometrial tumorigenesis.

    Oncology reports 2007;17;4;829-33

  • Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2.

    Hájek P, Chomyn A and Attardi G

    Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.

    A reverse genetics approach was utilized to discover new proteins that interact with the mitochondrial fusion mediator mitofusin 2 (Mfn2) and that may participate in mitochondrial fusion. In particular, in vivo formaldehyde cross-linking of whole HeLa cells and immunoprecipitation with purified Mfn2 antibodies of SDS cell lysates were used to detect an approximately 42-kDa protein. This protein was identified by liquid chromatography and tandem mass spectrometry as stomatin-like protein 2 (Stoml2), previously described as a peripheral plasma membrane protein of unknown function associated with the cytoskeleton of erythrocytes (Wang, Y., and Morrow, J. S. (2000) J. Biol. Chem. 275, 8062-8071). Immunoblot analysis with anti-Stoml2 antibodies showed that Stoml2 could be immunoprecipitated specifically with Mfn2 antibody either from formaldehyde-cross-linked and SDS-lysed cells or from cells lysed with digitonin. Subsequent immunocytochemistry and cell fractionation experiments fully supported the conclusion that Stoml2 is indeed a mitochondrial protein. Furthermore, demonstration of mitochondrial membrane potential-dependent import of Stoml2 accompanied by proteolytic processing, together with the results of sublocalization experiments, suggested that Stoml2 is associated with the inner mitochondrial membrane and faces the intermembrane space. Notably, formaldehyde cross-linking revealed a "ladder" of high molecular weight protein species, indicating the presence of high molecular weight Stoml2-Mfn2 hetero-oligomers. Knockdown of Stoml2 by the short interfering RNA approach showed a reduction of the mitochondrial membrane potential, without, however, any obvious changes in mitochondrial morphology.

    Funded by: NIGMS NIH HHS: GM11726

    The Journal of biological chemistry 2007;282;8;5670-81

  • Mass spectrometrical verification of stomatin-like protein 2 (SLP-2) primary structure.

    John JP, Anrather D, Pollak A and Lubec G

    Department of Pediatrics, Medical University of Vienna, Vienna, Austria.

    Stomatin-like protein 2 (SLP-2) (syn.: EPB72-like 2 [NP_038470], HSPC108 [AAF29073]), a protein of unknown function, has been described in several tissues and cells but its primary structure is still not completely elucidated. Moreover, sequence conflicts appear in several databases. It was the aim of the study to further describe SLP-2 primary sequence and to solve existing sequence conflicts. For this purpose a protein extract was run on two-dimensional gel electrophoresis and SLP-2 was identified by MALDI-TOF/TOF. SLP-2 was digested with trypsin, chymotrypsin, Lys-C, and de novo sequencing studies as well as Nano-HPLC-ESI-MS/MS analysis were carried out. By the use of several proteases sequence coverage of 90% was obtained but the N-terminal 34 amino acids harbouring database conflict 1 were not covered. The presence of Leucine 129 (sequence conflict 2) and Alanine 202 (sequence conflict 3) was verified by three independent approaches. High sequence coverage resulting from multiple proteolytic cleavage, MALDI-TOF/TOF, Nano-HPLC-ESI-MS/MS and de novo sequencing completed unambiguous analysis of SLP-2 primary structure of approximately = 90% of sequence coverage. In addition, methodology used was able to solve so far pending sequence conflicts in databases and literature. SLP-2 is a high abundance protein in several tissues and cells and may play an important biological role and therefore characterization of its primary structure is of importance.

    Proteins 2006;64;2;543-51

  • Stomatin-like protein 2 is overexpressed in cancer and involved in regulating cell growth and cell adhesion in human esophageal squamous cell carcinoma.

    Zhang L, Ding F, Cao W, Liu Z, Liu W, Yu Z, Wu Y, Li W, Li Y and Liu Z

    National Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

    Purpose: Stomatin-like protein 2 (SLP-2) is a novel and unusual stomatin homologue of unknown functions. It has been implicated in interaction with erythrocyte cytoskeleton and presumably other integral membrane proteins, but not directly with the membrane bilayer. We show here the involvement of SLP-2 in human esophageal squamous cell carcinoma (ESCC), lung cancer, laryngeal cancer, and endometrial adenocarcinoma and the effects of SLP-2 on ESCC cells.

    Previous work of cDNA microarray in our laboratory revealed that SLP-2 was significantly up-regulated in ESCC. The expression of SLP-2 was further evaluated in human ESCC, lung cancer, laryngeal cancer, and endometrial adenocarcinoma by semiquantitative reverse transcription-PCR, Western blot, and immunohistochemistry. Mutation detection of SLP-2 exons was done by PCR and automated sequencing. Antisense SLP-2 eukaryotic expression plasmids were constructed and transfected into human ESCC cell line KYSE450. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, clonogenecity assay, flow cytometry assay, nude mice tumorigenetic assay, and cell attachment assay were done to investigate the roles of SLP-2 gene.

    Results: All tumor types we tested showed overexpression of SLP-2 compared with their normal counterparts (P < or = 0.05). Moreover, immunohistochemistry analysis of mild dysplasia, severe dysplasia, and ESCC showed that overexpression of SLP-2 occurred in premalignant lesions. Mutation analysis indicated that no mutation was found in SLP-2 exons. KYSE450 cells transfected with antisense SLP-2 showed decreased cell growth, proliferation, tumorigenecity, and cell adhesion.

    Conclusions: SLP-2 was first identified as a novel cancer-related gene overexpressed in human ESCC, lung cancer, laryngeal cancer, and endometrial adenocarcinoma. Decreased cell growth, cell adhesion, and tumorigenesis in the antisense transfectants revealed that SLP-2 may be important in tumorigenesis.

    Clinical cancer research : an official journal of the American Association for Cancer Research 2006;12;5;1639-46

  • Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress.

    Guo D, Han J, Adam BL, Colburn NH, Wang MH, Dong Z, Eizirik DL, She JX and Wang CY

    Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, CA4098, Augusta, GA 30912, USA.

    The substrates of SUMO4, a novel member for the SUMO gene family, were characterized in HEK293 cells cultured under serum starvation by proteomic analysis. We identified 90 SUMO4 substrates including anti-stress proteins such as antioxidant enzymes and molecular chaperones or co-chaperones. The substrates also include proteins involved in the regulation of DNA repair and synthesis, RNA processing, protein degradation, and glucose metabolism. Several SUMO4-associated transcription factors were characterized by Western blot analyses. AP-1 was selected for in vitro conjugation assays to confirm SUMO4 sumoylation of these transcription factors. Further functional analyses of the transcription factors suggested that SUMO4 sumoylation represses AP-1 and AP-2alpha transcriptional activity, but enhances GR DNA binding capacity. These results demonstrate that SUMO4 sumoylation may play an important role in the regulation of intracellular stress.

    Biochemical and biophysical research communications 2005;337;4;1308-18

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • DNA sequence and analysis of human chromosome 9.

    Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RI, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JG, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ES, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blöcker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J and Dunham I

    The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. sjh@sanger.ac.uk

    Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.

    Nature 2004;429;6990;369-74

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • A novel member of the STOMATIN/EPB72/mec-2 family, stomatin-like 2 (STOML2), is ubiquitously expressed and localizes to HSA chromosome 9p13.1.

    Owczarek CM, Treutlein HR, Portbury KJ, Gulluyan LM, Kola I and Hertzog PJ

    Centre for Functional Genomics and Human Disease, Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia. catherine.owczarek@med.monash.edu.au

    A cDNA encoding a novel second member of the Band7/stomatin-like/SPFH domain family in humans designated stomatin-like 2 (STOML2) has been isolated using the technique of cDNA Representational Difference Analysis. The STOML2 cDNA encoded a 356 amino acid residue polypeptide with a predicted molecular weight of 38.5 kDa. The predicted polypeptide sequence of STOML2 could be delineated into three major domains: an N-terminal alpha-helical region; a domain with significant similarity to a 172 amino acid region of the HSA stomatin polypeptide, composed of an alternating alpha-helical and beta-sheet structure and a C-terminal domain that was mostly alpha-helical. The stomatin-like domain was observed in 51 other proteins with potentially diverse functions. Based on its homology to stomatin, STOML2 was predicted to be cytoplasmically located. However, unlike most of the other proteins containing stomatin-like domains, the predicted STOML2 polypeptide does not contain a transmembrane region although the presence of N-myristoylation sites suggest that it has the potential to be membrane-associated. Northern blot analysis of a panel of poly(A)(+) mRNA from normal human adult tissues showed that a single 1.3-kb mRNA transcript encoding STOML2 was ubiquitously expressed, with relatively higher levels in skeletal muscle and heart compared to other tissues. Comparison of the STOML2 cDNA sequence with human genomic DNA indicated that the gene encoding STOML2 was 3,250 bp long and consisted of ten exons interrupted by nine introns. We have mapped STOML2 to HSA chromosome 9p13.1, a region that is rearranged in some cancers and thought to contain the gene responsible for acromesomelic dysplasia.

    Cytogenetics and cell genetics 2001;92;3-4;196-203

  • Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells.

    Zhang QH, Ye M, Wu XY, Ren SX, Zhao M, Zhao CJ, Fu G, Shen Y, Fan HY, Lu G, Zhong M, Xu XR, Han ZG, Zhang JW, Tao J, Huang QH, Zhou J, Hu GX, Gu J, Chen SJ and Chen Z

    Shanghai Institute of Hematology (SIH), Rui Jin Hospital affiliated with Shanghai Second Medical University, Shanghai 200025, China.

    Three hundred cDNAs containing putatively entire open reading frames (ORFs) for previously undefined genes were obtained from CD34+ hematopoietic stem/progenitor cells (HSPCs), based on EST cataloging, clone sequencing, in silico cloning, and rapid amplification of cDNA ends (RACE). The cDNA sizes ranged from 360 to 3496 bp and their ORFs coded for peptides of 58-752 amino acids. Public database search indicated that 225 cDNAs exhibited sequence similarities to genes identified across a variety of species. Homology analysis led to the recognition of 50 basic structural motifs/domains among these cDNAs. Genomic exon-intron organization could be established in 243 genes by integration of cDNA data with genome sequence information. Interestingly, a new gene named as HSPC070 on 3p was found to share a sequence of 105bp in 3' UTR with RAF gene in reversed transcription orientation. Chromosomal localizations were obtained using electronic mapping for 192 genes and with radiation hybrid (RH) for 38 genes. Macroarray technique was applied to screen the gene expression patterns in five hematopoietic cell lines (NB4, HL60, U937, K562, and Jurkat) and a number of genes with differential expression were found. The resource work has provided a wide range of information useful not only for expression genomics and annotation of genomic DNA sequence, but also for further research on the function of genes involved in hematopoietic development and differentiation.

    Genome research 2000;10;10;1546-60

  • Identification and characterization of human SLP-2, a novel homologue of stomatin (band 7.2b) present in erythrocytes and other tissues.

    Wang Y and Morrow JS

    Department of Pathology Yale University School of Medicine, New Haven, Connecticut 06510, USA.

    Human stomatin (band 7.2b) is a 31-kDa erythrocyte membrane protein of unknown function but implicated in the control of ion channel permeability, mechanoreception, and lipid domain organization. Although absent in erythrocytes from patients with hereditary stomatocytosis, stomatin is not linked to this disorder. A second stomatin homologue, termed SLP-1, has been identified in nonerythroid tissues, and other stomatin related proteins are found in Drosophila, Caenorhabditis elegans, and plants. We now report the cloning and characterization of a new and unusual stomatin homologue, human SLP-2 (stomatin-like protein 2). SLP-2 is encoded by an approximately 1.5-kilobase mRNA (GenBank(TM) accession no. AF190167). The gene for human SLP-2, HUSLP2, is present on chromosome 9p13. Its derived amino acid sequence predicts a 38,537-kDa protein that is overall approximately 20% similar to human stomatin. Northern and Western blots for SLP-1 and SLP-2 reveal a wide but incompletely overlapping tissue distribution. Unlike SLP-1, SLP-2 is also present in mature human erythrocytes ( approximately 4,000 +/- 5,600 (+/- 2 S.D.) copies/cell). SLP-2 lacks a characteristic NH(2)-terminal hydrophobic domain found in other stomatin homologues and (unlike stomatin) is fully extractable from erythrocyte membranes by NaOH, pH 11. SLP-2 partitions into both Triton X-100-soluble and -insoluble pools in erythrocyte ghost membranes or when expressed in cultured COS cells and migrates anomalously on SDS-polyacrylamide gel electrophoresis analysis with apparent mobilities of approximately 45,500, 44,600, and 34,300 M(r). The smallest of these protein bands is believed to represent the product of alternative translation initiated at AUGs beginning with nt 217 or 391, although this point has not been rigorously proven. Collectively, these findings identify a novel and unusual member of the stomatin gene superfamily that interacts with the peripheral erythrocyte cytoskeleton and presumably other integral membrane proteins but not directly with the membrane bilayer. We hypothesize that SLP-2 may link stomatin or other integral membrane proteins to the peripheral cytoskeleton and thereby play a role in regulating ion channel conductances or the organization of sphingolipid and cholesterol-rich lipid rafts.

    Funded by: NHLBI NIH HHS: F32-HL09977

    The Journal of biological chemistry 2000;275;11;8062-71

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.