G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
N-ethylmaleimide-sensitive factor attachment protein, gamma
G00000987 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000068173 (Vega human gene)
ENSG00000134265 (Ensembl human gene)
8774 (Entrez Gene)
1110 (G2Cdb plasticity & disease)
NAPG (GeneCards)
603216 (OMIM)
Marker Symbol
HGNC:7642 (HGNC)
Protein Sequence
Q99747 (UniProt)

Literature (19)

Pubmed - other

  • Case-control association study of 65 candidate genes revealed a possible association of a SNP of HTR5A to be a factor susceptible to bipolar disease in Bulgarian population.

    Yosifova A, Mushiroda T, Stoianov D, Vazharova R, Dimova I, Karachanak S, Zaharieva I, Milanova V, Madjirova N, Gerdjikov I, Tolev T, Velkova S, Kirov G, Owen MJ, O'Donovan MC, Toncheva D and Nakamura Y

    Laboratory for International Alliance, RIKEN Center for Genomic Medicine, Tsurumi-ku, Yokohama, Japan.

    Background: Bipolar affective disorder (BAD) is a psychiatric illness characterized by episodes of mania and depression. Although the etiology is not clear, epidemiological studies suggest it is a result of an interaction of genetic and environmental factors. Despite of enormous efforts and abundant studies conducted, none has yet been identified definitively a gene susceptible to bipolar disorder.

    Methods: Ninety-four Bulgarian patients diagnosed with bipolar disorder and 184 Bulgarian healthy individuals, were used for genotyping of 191 single nucleotide polymorphisms (SNPs) by TaqMan and/or Invader assays. Seventeen SNPs that revealed P value less than 0.05 in the first screening were genotyped using an additional independent set of samples, consisting of 78 BAD cases and 372 controls.

    Results: After applying the Bonferonni correction on genotyping results of 172 cases and 556 controls, only one SNP, rs1800883, in the HTR5A gene revealed a significant level of P value (P=0.000097; odds ratio=1.80 (95%CI, 1.27-2.54); corrected P=0.017).

    Conclusions: Our findings suggest that HTR5A gene could play an important role in the pathogenesis of bipolar disorder in our population. However these findings should be viewed with caution and replication studies in other populations are necessary in support of these findings.

    Funded by: Medical Research Council: G0800509

    Journal of affective disorders 2009;117;1-2;87-97

  • Association study on the NAPG gene and bipolar disorder in the Chinese Han population.

    Li X, Zhang J, Wang Y, Ji J, Yang F, Wan C, Wang P, Feng G, Lindpaintner K, He L and He G

    Bio-X Center, Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University,1954 Hushan Road, Shanghai 200030, PR China.

    Background: Bipolar disorder is a mental health problem throughout the world. Chromosome 18p11 has been identified by several studies as a susceptiblilty region for bipolar disorder and NAPG, located on 18p11, has been suggested as being associated with bipolar disorder in European population.

    Methods: Our study employed five SNPs (rs2290279, rs495484, rs510110, rs617040 and rs473938) to investigate the role of NAPG in the Chinese Han population based on a sample of 465 controls vs. 499 bipolar patients.

    Results: Rs617040 was excluded from further analysis because of deviation from Hardy-Weinberg equilibrium. Rs473938 and rs2290279 showed significant association in both allele and genotype frequencies (rs473938: allele p=0.0028 after 100,000 permutations, genotype p=0.0018; rs2290279: allele p=0.0042 after 100,000 permutations, genotype p=0.0028). Several combinations of haplotype were found to be associated with bipolar disorder. Haplotype T-A-T of rs473938-rs2290279-rs495484 was defined by confidence intervals algorithm and had a p value of 0.0038 after 100,000 permutations.

    Conclusions: Our study supports NAPG as a candidate for susceptibility to bipolar disorder.

    Neuroscience letters 2009;457;3;159-62

  • Analysis of variations in the NAPG gene on chromosome 18p11 in bipolar disorder.

    Weller AE, Dahl JP, Lohoff FW, Ferraro TN and Berrettini WH

    Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

    Objective: A number of studies have implicated the chromosome 18p11 region as a susceptibility region for bipolar disorder. The gene encoding gamma-SNAP (NAPG), one of three soluble N-ethylmaleimide-sensitive fusion (NSF)-attachment proteins (SNAPs), is located in the 18p11 region and is thought to play a role in cellular processes required for neurotransmission in the central nervous system. The purpose of this study is to investigate whether polymorphisms in the human NAPG gene contribute to the etiology of bipolar disorder.

    Methods: To test this hypothesis, we used a case-control design in which the genotype and allele frequencies for five single-nucleotide polymorphisms in the human NAPG gene were compared between individuals with a diagnosis of type I bipolar disorder (n=460) and control individuals (n=191).

    Results: The genotype results indicate that three of the single-nucleotide polymorphisms in the NAPG gene, rs2290279 (P=0.027), rs495484 (P=0.044) and rs510110 (P=0.046), show a nominal, statistically significant association with bipolar disorder at the genotype frequency level.

    Conclusions: The results of this study suggest that polymorphisms in the human NAPG gene may represent risk factors for the development of bipolar disorder, but before such a role can be established, the results of this study must be confirmed in additional populations of bipolar disorder patients and controls.

    Funded by: NIMH NIH HHS: R01 MH 59553, R01 MH 63876

    Psychiatric genetics 2006;16;1;3-8

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Mapping of functional domains of gamma-SNAP.

    Tani K, Shibata M, Kawase K, Kawashima H, Hatsuzawa K, Nagahama M and Tagaya M

    School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan.

    gamma-Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (gamma-SNAP) is capable of stabilizing a 20 S complex consisting of NSF, alpha-SNAP, and SNAP receptors (SNAREs), but its function in vesicular transport is not fully understood. Our two-hybrid analysis revealed that gamma-SNAP, unlike alpha-SNAP, interacts directly with NSF, as well as Gaf-1/Rip11, but not with SNAREs. Gaf-1/Rip11 is a gamma-SNAP-associated factor that belongs to the Rab11-interacting protein family. To gain insight into the molecular basis for the interactions of gamma-SNAP with NSF and Gaf-1/Rip11, we determined the regions of the three proteins involved in protein-protein interactions. gamma-SNAP bound to NSF via its extreme C-terminal region, and the full-length NSF was needed to interact with gamma-SNAP. Both the N-terminal and C-terminal regions of gamma-SNAP were required for the binding to Gaf-1/Rip11. Gaf-1/Rip11 bound to gamma-SNAP via its C-terminal domain comprising a putative coiled-coil region. Although the C-terminal domain of Gaf-1/Rip11 also interacts with Rab11, the binding of gamma-SNAP and Rab11 to Gaf-1/Rip11 was not mutually exclusive. Rather, Gaf-1/Rip11 was capable of serving a link between gamma-SNAP and Rab11. A complex comprising gamma-SNAP and Gaf-1/Rip11 was disassembled in a process coupled to NSF-mediated ATP hydrolysis, suggesting that the interaction between gamma-SNAP and Gaf-1/Rip11 is of functional significance.

    The Journal of biological chemistry 2003;278;15;13531-8

  • Gaf-1, a gamma -SNAP-binding protein associated with the mitochondria.

    Chen D, Xu W, He P, Medrano EE and Whiteheart SW

    Department of Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.

    The role of alpha/beta-SNAP (Soluble NSF Attachment Protein) in vesicular trafficking is well established; however, the function of the ubiquitously expressed gamma-SNAP remains unclear. To further characterize the cellular role of this enigmatic protein, a two-hybrid screen was used to identify new, gamma-SNAP-binding proteins and to uncover potentially novel functions for gamma-SNAP. One such SNAP-binding protein, termed Gaf-1 (gamma-SNAP associate factor-1) specifically binds gamma- but not alpha-SNAP. The full-length Gaf-1 (75 kDa) is ubiquitously expressed and is found stoichiometrically associated with gamma-SNAP in cellular extracts. This binding is distinct from other SNAP interactions since no alpha-SNAP or NSF coprecipitated with Gaf-1. Subcellular fractionation and immunofluorescence analysis show that Gaf-1 is peripherally associated with the outer mitochondrial membrane. Only a fraction of gamma-SNAP was mitochondrial with the balance being either cytosolic or associated with other membrane fractions. GFP-gamma-SNAP and the C-terminal domain of Gaf-1 both show a reticular distribution in HEK-293 cells. This reticular structure colocalizes with Gaf-1 and mitochondria as well as with microtubules but not with other cytoskeletal elements. These data identify a class of gamma-SNAP interactions that is distinct from other members of the SNAP family and point to a potential role for gamma-SNAP in mitochondrial dynamics.

    Funded by: NHLBI NIH HHS: HL56652; NIA NIH HHS: AG-3663

    The Journal of biological chemistry 2001;276;16;13127-35

  • Preferential association of syntaxin 8 with the early endosome.

    Subramaniam VN, Loh E, Horstmann H, Habermann A, Xu Y, Coe J, Griffiths G and Hong W

    Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore.

    Members of the syntaxin family play a fundamental role in vesicle docking and fusion of diverse transport events. We have molecularly characterized syntaxin 8, a novel member of the syntaxin family. The nucleotide sequence of cloned rat cDNA predicts a polypeptide of 236 residues with a carboxyl-terminal 18-residue hydrophobic domain that may function as a membrane anchor. Characteristic of syntaxins, syntaxin 8 also contain regions that have the potential to form coiled-coil structures. Among the known syntaxins, syntaxin 8 is most homologous to syntaxin 6 which is predominantly associated with the trans-Golgi network (TGN). The syntaxin 8 transcript is detected in all rat tissues examined by northern blot. Antibodies against recombinant syntaxin 8 recognize a 27 kDa protein that is enriched in membrane fractions containing the Golgi apparatus and the endosomal/lysosomal compartments. Syntaxin 8 in membrane extract could be incorporated into a 20S protein complex in a way that is dependent on the soluble N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein ((alpha)-SNAP), suggesting that syntaxin 8 is indeed a SNAP receptor (SNARE). Indirect immunofluorescence microscopy reveals that the majority of syntaxin 8 is localized to the early endosome marked by Rab5. This is corroborated by immunogold labeling experiments showing enrichment of syntaxin 8 in the early endosome and its co-labeling with Rab5.

    Journal of cell science 2000;113 ( Pt 6);997-1008

  • Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery.

    Lemons PP, Chen D, Bernstein AM, Bennett MK and Whiteheart SW

    Department of Biochemistry, University of Kentucky College of Medicine, Lexington 40536, USA.

    To further characterize the molecular mechanisms of platelet function, we have sought to identify some of the proteins that mediate the secretory events of the platelet release reaction. We report that platelets contain the general elements of the membrane transport apparatus: N-ethylmaleimide sensitive fusion protein (NSF), p115/transcytosis-associated protein (p115/TAP), and the soluble NSF attachment proteins (alpha- and, gamma-SNAP). The cDNAs encoding two of these proteins, alpha- and gamma-SNAP, have been cloned from a human platelet-derived cDNA library. Platelet membrane extracts possess SNAP receptor (SNARE) activity, suggesting that the class of proteins (SNAREs) proposed to provide the specificity for vesicle docking and membrane fusion are present in platelets. To identify these proteins, we have used specific antibodies against known SNAREs to probe platelet extracts. Syntaxin 2 and 4 can be readily detected in platelet membrane preparations and are shown to participate in 20 S complex formation. Syntaxin 1, 3, and 5 could not be detected. Other known SNARE and SNARE-associated proteins such as vesicle-associated membrane protein (VAMP)/synaptobrevin 2, SNAP-25, synaptophysin, or synaptotagmin I could not be immunochemically detected in platelet membrane preparations. The presence of both the general transport proteins (NSF and SNAPs) and specific transport proteins (syntaxin 2 and 4) indicates that platelet exocytosis uses a molecular mechanism similar to other secretory cells such as neurons. However, the subcellular concentrations of these proteins suggest that, unlike neuronal secretion, granule-to plasma membrane docking may be the limiting step in platelet exocytosis.

    Funded by: NHLBI NIH HHS: HL 56652

    Blood 1997;90;4;1490-500

  • Association of N-ethylmaleimide sensitive fusion (NSF) protein and soluble NSF attachment proteins-alpha and -gamma with glucose transporter-4-containing vesicles in primary rat adipocytes.

    Mastick CC and Falick AL

    Department of Cell Biology, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan 48105, USA. masticc@aa.wl.com

    To investigate the role of N-ethylmaleimide sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAP)-containing fusion complexes in glucose transporter-4 (GLUT4) membrane trafficking, the subcellular distributions of NSF, alpha-SNAP, and gamma-SNAP in primary rat adipocytes were determined. A large fraction of the NSF and SNAPs were associated with intracellular membranes, distributed between the low-density microsomes (LDM) and high-density microsomes. Very little of the NSF and SNAPs were associated with the plasma membrane fraction. This distribution did not change after insulin stimulation. Approximately 75% of the NSF and SNAPs in the LDM fraction were coimmunoprecipitated with 85% of the GLUT4 and 60% of the vesicle associated membrane proteins (VAMPs; synaptobrevins) VAMP-2 and cellubrevin in anti-GLUT4 immunoadsorptions. In contrast to NSF and the SNAPs, the beta-coatomer protein (beta-COP) found in the LDM fraction was excluded from GLUT4 vesicles. When LDM fractions were solubilized with Thesit (octaethylene glycol dodecyl ether) or Triton X-100, approximately 40% of the alpha-SNAP was colocalized with NSF on glycerol gradients in large (approximately 20S), ATP-sensitive complexes. VAMP-2 and cellubrevin are concentrated in the LDM fractions and in GLUT4 vesicles; both were excluded from these complexes. These data suggest that the steady state association of NSF and the SNAPs with GLUT4 vesicles and cell membranes is independent of the formation of fusion complexes.

    Endocrinology 1997;138;6;2391-7

  • Large-scale concatenation cDNA sequencing.

    Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G and Gibbs RA

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7-2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (> 20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (> or = 98% identity), and 16 clones generated nonexact matches (57%-97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching.

    Funded by: NHGRI NIH HHS: 1F32 HG00169-01, F32 HG000169, F33 HG000210, P30 HG00210-05, R01 HG00823, U54 HG003273

    Genome research 1997;7;4;353-8

  • A "double adaptor" method for improved shotgun library construction.

    Andersson B, Wentland MA, Ricafrente JY, Liu W and Gibbs RA

    Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA.

    The efficiency of shotgun DNA sequencing depends to a great extent on the quality of the random-subclone libraries used. We here describe a novel "double adaptor" strategy for efficient construction of high-quality shotgun libraries. In this method, randomly sheared and end-repaired fragments are ligated to oligonucleotide adaptors creating 12-base overhangs. Nonphosphorylated oligonucleotides are used, which prevents formation of adaptor dimers and ensures efficient ligation of insert to adaptor. The vector is prepared from a modified M13 vector, by KpnI/PstI digestion followed by ligation to oligonucleotides with ends complementary to the overhangs created in the digest. These adaptors create 5'-overhangs complementary to those on the inserts. Following annealing of insert to vector, the DNA is directly used for transformation without a ligation step. This protocol is robust and shows three- to fivefold higher yield of clones compared to previous protocols. No chimeric clones can be detected and the background of clones without an insert is <1%. The procedure is rapid and shows potential for automation.

    Funded by: NHGRI NIH HHS: R01 HG00823

    Analytical biochemistry 1996;236;1;107-13

  • SNAP family of NSF attachment proteins includes a brain-specific isoform.

    Whiteheart SW, Griff IC, Brunner M, Clary DO, Mayer T, Buhrow SA and Rothman JE

    Rockefeller Research Laboratory, Memorial Sloan-Kettering Cancer Center, New York, New York 10021.

    The soluble NSF attachment proteins (SNAPs) enable N-ethyl-maleimide-sensitive fusion protein (NSF) to bind to target membranes. Here we report the cloning and sequencing of complementary DNAs encoding alpha-, beta- and gamma-SNAPs. Two of these proteins, alpha and gamma, are found in a wide range of tissues, and act synergistically in intra-Golgi transport. The third, beta, is a brain-specific isoform of alpha-SNAP. Thus, NSF and SNAPs appear to be general components of the intracellular membrane fusion apparatus, and their action at specific sites of fusion must be controlled by SNAP receptors particular to the membranes being fused, as described in the accompanying article.

    Nature 1993;362;6418;353-5

  • Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) bind to a multi-SNAP receptor complex in Golgi membranes.

    Whiteheart SW, Brunner M, Wilson DW, Wiedmann M and Rothman JE

    Program of Cellular Biochemistry and Biophysics, Rockefeller Research Laboratories, Sloan-Kettering Institute, New York, New York 10021.

    Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) are required for the binding of N-ethylmaleimide-sensitive fusion protein (NSF) to Golgi membranes and are, therefore, required for intra-Golgi transport. We report the existence of distinct alpha/beta-SNAP and gamma-SNAP-binding sites in Golgi membranes that appear to be part of the same receptor complex. Cross-linking studies with alpha-SNAP demonstrate that an integral membrane protein of between 30-40 kDa is the alpha-SNAP binding component of the multi-SNAP receptor complex. These data suggest that SNAPs function by independently binding to a multi-SNAP membrane-receptor complex, thereby activating them to serve as adaptors for the targeting of NSF.

    Funded by: NIDDK NIH HHS: DK27044

    The Journal of biological chemistry 1992;267;17;12239-43

  • A multisubunit particle implicated in membrane fusion.

    Wilson DW, Whiteheart SW, Wiedmann M, Brunner M and Rothman JE

    Program in Cellular Biochemistry and Biophysics, Rockefeller Research Laboratory, Sloan-Kettering Institute, New York 10021.

    The N-ethylmaleimide sensitive fusion protein (NSF) is required for fusion of lipid bilayers at many locations within eukaryotic cells. Binding of NSF to Golgi membranes is known to require an integral membrane receptor and one or more members of a family of related soluble NSF attachment proteins (alpha-, beta-, and gamma-SNAPs). Here we demonstrate the direct interaction of NSF, SNAPs and an integral membrane component in a detergent solubilized system. We show that NSF only binds to SNAPs in the presence of the integral receptor, resulting in the formation of a multisubunit protein complex with a sedimentation coefficient of 20S. Particle assembly reveals striking differences between members of the SNAP protein family; gamma-SNAP associates with the complex via a binding site distinct from that used by alpha- and beta-SNAPs, which are themselves equivalent, alternative subunits of the particle. Once formed, the 20S particle is subsequently able to disassemble in a process coupled to the hydrolysis of ATP. We suggest how cycles of complex assembly and disassembly could help confer specificity to the generalized NSF-dependent fusion apparatus.

    Funded by: NIDDK NIH HHS: DK27044

    The Journal of cell biology 1992;117;3;531-8

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.