G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
eukaryotic translation initiation factor 4A2
G00000956 (Mus musculus)

Databases (7)

ENSG00000156976 (Ensembl human gene)
1974 (Entrez Gene)
900 (G2Cdb plasticity & disease)
EIF4A2 (GeneCards)
601102 (OMIM)
Marker Symbol
HGNC:3284 (HGNC)
Protein Sequence
Q14240 (UniProt)

Synonyms (3)

  • BM-010
  • DDX2B
  • EIF4A

Literature (20)

Pubmed - other

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIDDK NIH HHS: K01 DK098285; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC, Maccarrone G, Turck CW and Dias-Neto E

    Laboratório de Neurociências, Faculdade de Medicina da USP, Instituto de Psiquiatria, Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, No 785, s/n Consolação, São Paulo, SP, CEP 05403-010, Brazil. danms90@gmail.com

    Global proteomic analysis of post-mortem anterior temporal lobe samples from schizophrenia patients and non-schizophrenia individuals was performed using stable isotope labeling and shotgun proteomics. Our analysis resulted in the identification of 479 proteins, 37 of which showed statistically significant differential expression. Pathways affected by differential protein expression include transport, signal transduction, energy pathways, cell growth and maintenance and protein metabolism. The collection of protein alterations identified here reinforces the importance of myelin/oligodendrocyte and calcium homeostasis in schizophrenia, and reveals a number of new potential markers that may contribute to the understanding of the pathogenesis of this complex disease.

    Journal of neural transmission (Vienna, Austria : 1996) 2009;116;3;275-89

  • c-Myc and eIF4F are components of a feedforward loop that links transcription and translation.

    Lin CJ, Cencic R, Mills JR, Robert F and Pelletier J

    Department of Biochemistry, McGill University, Montreal, Quebec, Canada.

    The Myc/Max/Mad family of transcription factors and the eukaryotic initiation factor 4F (eIF4F) complex play fundamental roles in regulating cell growth, proliferation, differentiation, and oncogenic transformation. eIF4F is involved in the recruitment of ribosomes to mRNAs and is thought to generally be the rate-limiting phase of translation. Here, we show that c-Myc directly activates transcription of the three subunits of eIF4F (eIF4E, eIF4AI, and eIF4GI). These transcriptional effects are mediated through canonical E-boxes (5'CACGTG3') present in the promoters of these genes. In addition, the c-Myc antagonist Mad1 down-regulates the expression of eIF4F subunits. We also show that MycER activation stimulates protein synthesis at the level of translation initiation. Increased eIF4F levels result in stimulation of c-Myc mRNA translation specifically, as assessed by quantitative reverse transcription-PCR. We use a murine model of lymphomagenesis to show the expression of eIF4F subunits is also up-regulated by c-Myc in vivo. Our results suggest the presence of a feedforward loop involving c-Myc and eIF4F that serves to link transcription and translation and that could contribute to the effects of c-Myc on cell proliferation and neoplastic growth.

    Cancer research 2008;68;13;5326-34

  • Eukaryotic translation initiation factor 4F architectural alterations accompany translation initiation factor redistribution in poxvirus-infected cells.

    Walsh D, Arias C, Perez C, Halladin D, Escandon M, Ueda T, Watanabe-Fukunaga R, Fukunaga R and Mohr I

    Department of Microbiology-MSB214, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA.

    Despite their self-sufficient ability to generate capped mRNAs from cytosolic DNA genomes, poxviruses must commandeer the critical eukaryotic translation initiation factor 4F (eIF4F) to recruit ribosomes. While eIF4F integrates signals to control translation, precisely how poxviruses manipulate the multisubunit eIF4F, composed of the cap-binding eIF4E and the RNA helicase eIF4A assembled onto an eIF4G platform, remains obscure. Here, we establish that the poxvirus infection of normal, primary human cells destroys the translational repressor eIF4E binding protein (4E-BP) and promotes eIF4E assembly into an active eIF4F complex bound to the cellular polyadenylate-binding protein (PABP). Stimulation of the eIF4G-associated kinase Mnk1 promotes eIF4E phosphorylation and enhances viral replication and protein synthesis. Remarkably, these eIF4F architectural alterations are accompanied by the concentration of eIF4E and eIF4G within cytosolic viral replication compartments surrounded by PABP. This demonstrates that poxvirus infection redistributes, assembles, and modifies core and associated components of eIF4F and concentrates them within discrete subcellular compartments. Furthermore, it suggests that the subcellular distribution of eIF4F components may potentiate the complex assembly.

    Funded by: NCRR NIH HHS: S10 RR017970; NIAID NIH HHS: 2 P30 AI027742, P30 AI027742, R01 AI073898, T32 AI007180; NIGMS NIH HHS: GM056927, R01 GM056927

    Molecular and cellular biology 2008;28;8;2648-58

  • Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme.

    Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Thérien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH and Coulombe B

    Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada.

    We have performed a survey of soluble human protein complexes containing components of the transcription and RNA processing machineries using protein affinity purification coupled to mass spectrometry. Thirty-two tagged polypeptides yielded a network of 805 high-confidence interactions. Remarkably, the network is significantly enriched in proteins that regulate the formation of protein complexes, including a number of previously uncharacterized proteins for which we have inferred functions. The RNA polymerase II (RNAP II)-associated proteins (RPAPs) are physically and functionally associated with RNAP II, forming an interface between the enzyme and chaperone/scaffolding proteins. BCDIN3 is the 7SK snRNA methylphosphate capping enzyme (MePCE) present in an snRNP complex containing both RNA processing and transcription factors, including the elongation factor P-TEFb. Our results define a high-density protein interaction network for the mammalian transcription machinery and uncover multiple regulatory factors that target the transcription machinery.

    Funded by: Canadian Institutes of Health Research: 14309-3, 82851-1

    Molecular cell 2007;27;2;262-74

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • EIF4A2 is a positional candidate gene at the 3q27 locus linked to type 2 diabetes in French families.

    Cheyssac C, Dina C, Leprêtre F, Vasseur-Delannoy V, Dechaume A, Lobbens S, Balkau B, Ruiz J, Charpentier G, Pattou F, Joly E, Prentki M, Hansen T, Pedersen O, Vaxillaire M and Froguel P

    CNRS UMR 8090, Biology Institute & Pasteur Institute of Lille, 1 rue du Professeur Calmette, BP 245, 59019 Lille, France.

    One of the most replicated loci influencing type 2 diabetes-related quantitative traits (quantitative trait loci [QTL]) is on chromosome 3q27 and modulates both type 2 diabetes-and metabolic syndrome-associated phenotypes. A QTL for type 2 diabetes age of onset (logarithm of odds [LOD] score = 3.01 at D3S3686, P = 0.0001) was identified in a set of French families. To assess genetic variation underlying both age-of-onset QTL and our previous type 2 diabetes linkage in a 3.87-Mb interval, we explored 36 single nucleotide polymorphisms (SNPs) in two biologically relevant candidate genes for glucose homeostasis, kininogen (KNG1), and eukaryotic translation initiation factor 4alpha2 (EIF4A2). Analysis of 148 families showed significant association of a frequent SNP, rs266714, located 2.47 kb upstream of EIF4A2, with familial type 2 diabetes (family-based association test, P = 0.0008) and early age of onset (P = 0.0008). This SNP also contributes to both age-of-onset QTL (1.13 LOD score decrease P = 0.02) and type 2 diabetes linkage (genotype identical-by-descent sharing test, P = 0.02). However, no association was observed in three independent European diabetic cohorts. EIF4A2 controls specific mRNA translation and protein synthesis rate in pancreatic beta-cells, and our data indicates that EIF4A2 is downregulated by high glucose in rat beta-INS832/13 cells. The potential role of EIF4A2 in glucose homeostasis and its putative contribution to type 2 diabetes in the presence of metabolic stress will require further investigation.

    Diabetes 2006;55;4;1171-6

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • mRNA decay during herpes simplex virus (HSV) infections: protein-protein interactions involving the HSV virion host shutoff protein and translation factors eIF4H and eIF4A.

    Feng P, Everly DN and Read GS

    School of Biological Sciences, University of Missouri-Kansas City, 64110, USA.

    During lytic infections, the virion host shutoff (Vhs) protein of herpes simplex virus accelerates the degradation of both host and viral mRNAs. In so doing, it helps redirect the cell from host to viral protein synthesis and facilitates the sequential expression of different viral genes. Vhs interacts with the cellular translation initiation factor eIF4H, and several point mutations that abolish its mRNA degradative activity also abrogate its ability to bind eIF4H. In addition, a complex containing bacterially expressed Vhs and a glutathione S-transferase (GST)-eIF4H fusion protein has RNase activity. eIF4H shares a region of sequence homology with eIF4B, and it appears to be functionally similar in that both stimulate the RNA helicase activity of eIF4A, a component of the mRNA cap-binding complex eIF4F. We show that eIF4H interacts physically with eIF4A in the yeast two-hybrid system and in GST pull-down assays and that the two proteins can be coimmunoprecipitated from mammalian cells. Vhs also interacts with eIF4A in GST pull-down and coimmunoprecipitation assays. Site-directed mutagenesis of Vhs and eIF4H revealed residues of each that are important for their mutual interaction, but not for their interaction with eIF4A. Thus, Vhs, eIF4H, and eIF4A comprise a group of proteins, each of which is able to interact directly with the other two. Whether they interact simultaneously as a tripartite complex or sequentially is unclear. The data suggest a mechanism for linking the degradation of an mRNA to its translation and for targeting Vhs to mRNAs and to regions of translation initiation.

    Funded by: NIAID NIH HHS: R01 AI-21501, R01 AI021501

    Journal of virology 2005;79;15;9651-64

  • Upregulation of human mitochondrial NADH dehydrogenase subunit 5 in intestinal epithelial cells is modulated by Vibrio cholerae pathogenesis.

    Sarkar M, Das S, Bandyopadhaya A, Ray K and Chaudhuri K

    Human Genetics & Genomics Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700 032, India.

    Cholera still remains an important global predicament especially in India and other developing countries. Vibrio cholerae, the etiologic agent of cholera, colonizes the small intestine and produces an enterotoxin that is largely responsible for the watery diarrheal symptoms of the disease. Using RNA arbitrarily primed PCR, ND5 a mitochondria encoded subunit of complex I of the mitochondrial respiratory chain was found to be upregulated in the human intestinal epithelial cell line Int407 following exposure to V. cholerae. The upregulation of ND5 was not observed when Int407 was infected with Escherichia coli strains. Incubation with heat-killed V. cholerae or cholera toxin or culture supernatant also showed no such upregulation indicating the involvement of live bacteria in the process. Infection of the monolayer with aflagellate non-motile mutant of V. cholerae O395 showed a very significant (59-fold) downregulation of ND5. In contrast, a remarkable upregulation of ND5 expression (200-fold) was observed in a hyperadherent icmF insertion mutant with reduced motility. V. cholerae cheY4 null mutant defective in adherence and motility also resulted in significantly reduced levels of ND5 expression while mutant with the cheY4 gene duplicated showing increased adherence and motility resulted in increased expression of ND5. These results clearly indicate that both motility and adherence to intestinal epithelial cells are possible triggering factors contributing to ND5 mRNA expression by V. cholerae. Interestingly infection with insertion mutant in the gene coding for ToxR, the master regulator of virulence in V. cholerae resulted in significant downregulation of ND5 expression. However, infection with ctxA or toxT insertion mutants did not show any significant changes in ND5 expression compared to wild-type. Almost no expression of ND5 was observed in case of mutation in the gene coding for OmpU, a ToxR activated protein. Thus, infection of Int407 with virulence mutant strains of V. cholerae revealed that the ND5 expression is modulated by the virulence of V. cholerae in a ToxT independent manner. Although no difference in the mitochondrial copy number could be detected between infected and uninfected cells, the modulation of the expression of other mitochondrial genes were also observed. Incidentally, upon V. cholerae infection, complex I activity was found to increase about 3-folds after 6 h. This is the first report of alteration in mitochondrial gene expression upon infection of a non-invasive enteric bacterium like V. cholerae showing its modulation with adherence, motility and virulence of the organism.

    FEBS letters 2005;579;16;3449-60

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region.

    Sampath P, Mazumder B, Seshadri V and Fox PL

    Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.

    Transcript-selective translational control of eukaryotic gene expression is often directed by a structural element in the 3' untranslated region (3'-UTR) of the mRNA. In the case of ceruloplasmin (Cp), induced synthesis of the protein by gamma interferon (IFN-gamma) in U937 monocytic cells is halted by a delayed translational silencing mechanism requiring the binding of a cytosolic inhibitor to the Cp 3'-UTR. Silencing requires the essential elements of mRNA circularization, i.e., eukaryotic initiation factor 4G, poly(A)-binding protein, and poly(A) tail. We here determined the minimal silencing element in the Cp 3'-UTR by progressive deletions from both termini. A minimal, 29-nucleotide (nt) element was determined by gel shift assay to be sufficient for maximal binding of the IFN-gamma-activated inhibitor of translation (GAIT), an as-yet-unidentified protein or complex. The interaction was shown to be functional by an in vitro translation assay in which the GAIT element was used as a decoy to overcome translational silencing. Mutation analysis showed that the GAIT element contained a 5-nt terminal loop, a weak 3-bp helix, an asymmetric internal bulge, and a proximal 6-bp helical stem. Two invariant loop residues essential for binding activity were identified. Ligation of the GAIT element immediately downstream of a luciferase reporter conferred the translational silencing response to the heterologous transcript in vitro and in vivo; a construct containing a nonbinding, mutated GAIT element was ineffective. Translational silencing of Cp, and possibly other transcripts, mediated by the GAIT element may contribute to the resolution of the local inflammatory response following cytokine activation of macrophages.

    Funded by: NHLBI NIH HHS: HL29582, HL67725, P01 HL029582, R01 HL067725

    Molecular and cellular biology 2003;23;5;1509-19

  • Human eukaryotic initiation factor 4AII associates with hepatitis C virus NS5B protein in vitro.

    Kyono K, Miyashiro M and Taguchi I

    Discovery Research Laboratory, Tanabe Seiyaku Company, Ltd., 16-89 Kashima 3-chome, Yodogawa-ku, Osaka 532-8505, Japan. k-kyono@tanabe.co.jp

    Hepatitis C virus (HCV) NS5B protein has been shown to have RNA-dependent RNA polymerase (RdRp) activity by itself and is a key enzyme involved in viral replication. Using analyses with the yeast two-hybrid system and in vitro binding assay, we found that human eukaryotic initiation factor 4AII (heIF4AII), which is a component of the eIF4F complex and RNA-dependent ATPase/helicase, interacted with NS5B protein. These two proteins were shown to be partially colocalized in the perinuclear region. The binding site in HCV NS5B protein was localized within amino acid residues 495 to 537 near the C terminus. Since eIF4A has a helicase activity and functions in a bidirectional manner, the binding of HCV NS5B protein to heIF4AII raises the possibility that heIF4AII facilitates the genomic RNA synthesis of NS5B protein by unwinding the secondary structure of the HCV genome and is a host component of viral replication complex.

    Biochemical and biophysical research communications 2002;292;3;659-66

  • Eukaryotic initiation factors 4A (eIF4A) and 4G (eIF4G) mutually interact in a 1:1 ratio in vivo.

    Li W, Belsham GJ and Proud CG

    Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.

    mRNA translation in eukaryotic cells involves a set of proteins termed translation initiation factors (eIFs), several of which are involved in the binding of ribosomes to mRNA. These include eIF4G, a modular scaffolding protein, and eIF4A, an RNA helicase, of which two closely related forms are known in mammals, eIF4A(I) and eIF4A(II). In mammals, eIF4G possesses two independent sites for binding eIF4A, whereas in other eukaryotes (e.g. yeast) only one site appears to be present, thus raising the issue of the stoichiometry of eIF4G.eIF4A complexes in different eukaryotes. We show that in human embryonic kidney cells eIF4G is associated with eIF4A(I) or eIF4A(II) but not with both simultaneously, suggesting a stoichiometry of 1:1 rather than 1:2. To confirm this, eIF4A(I) or eIF4A(II) was expressed in a tagged form in these cells, and complexes with eIF4G were again isolated. Complexes containing tagged eIF4A(I) or eIF4A(II) contained no endogenous eIF4A, supporting the notion that eIF4G binds only one molecule of eIF4A. Each binding site in eIF4G can bind either eIF4A(I) or eIF4A(II). The data imply that the second binding site in mammalian eIF4A does not bind an additional eIF4A molecule and that initiation factor complexes in different eukaryotes contain one eIF4A per eIF4G.

    The Journal of biological chemistry 2001;276;31;29111-5

  • A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery.

    Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU and Burley SK

    Laboratories of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA.

    The X-ray structure of the phylogenetically conserved middle portion of human eukaryotic initiation factor (eIF) 4GII has been determined at 2.4 A resolution, revealing a crescent-shaped domain consisting of ten alpha helices arranged as five HEAT repeats. Together with the ATP-dependent RNA helicase eIF4A, this HEAT domain suffices for 48S ribosomal complex formation with a picornaviral RNA internal ribosome entry site (IRES). Structure-based site-directed mutagenesis was used to identify two adjacent features on the surface of this essential component of the translation initiation machinery that, respectively, bind eIF4A and a picornaviral IRES. The structural and biochemical results provide mechanistic insights into both cap-dependent and cap-independent translation initiation.

    Funded by: NIGMS NIH HHS: GM61262

    Molecular cell 2001;7;1;193-203

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Isolation and mapping of the human EIF4A2 gene homologous to the murine protein synthesis initiation factor 4A-II gene Eif4a2.

    Sudo K, Takahashi E and Nakamura Y

    Department of Biochemistry, Cancer Institute, Tokyo, Japan.

    We report isolation of human cDNA highly homologous to murine Eif4a2, a gene for one of the protein-synthesis initiation factors involved in the binding of mRNA to the ribosome. This cDNA, which encodes a 407-amino-acid protein, belongs to a highly-conserved gene family, the DEAD-box gene family. The human homologue of Eif4a2 was expressed in all normal tissues examined, but in variable amounts, being highly expressed in skeletal muscle and ovary, and less abundantly in liver, kidney, and pancreas. Furthermore, we have localized the human EIF4A2 to chromosome 18p11.2 by fluorescent in situ hybridization.

    Cytogenetics and cell genetics 1995;71;4;385-8

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A.

    Yoder-Hill J, Pause A, Sonenberg N and Merrick WC

    Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106.

    The p46 subunit of eukaryotic initiation factor (eIF)-4F purified from rabbit reticulocyte lysate has previously been found to be composed of eIF-4AI and eIF-4AII in a 4:1 ratio, respectively, whereas the free form of rabbit eIF-4A is composed solely of eIF-4AI. Using sucrose gradient centrifugation and an m7GTP-Sepharose 4B assay, it was shown that eIF-4A exchanges with the p46 subunit of eIF-4F. Incubation of [14C]eIF-4A and eIF-4F resulted in the incorporation of [14C] eIF-4A into the eIF-4F complex. Conversely, the [14C] p46 subunit of [14C]eIF-4F was shown to dissociate from the [14C]eIF-4F complex in the presence of eIF-4A, presumably due to the incorporation of unlabeled eIF-4A. Similar experiments were conducted in which 14C-labeled initiation factors were incubated with rabbit reticulocyte lysate. When [14C]eIF-4A was incubated with lysate, [14C]eIF-4A became incorporated into the eIF-4F complex present in the lysate. Additionally, when [14C]eIF-4F was incubated with lysate, the [14C]p46 subunit of [14C]eIF-4F dissociated from the [14C]eIF-4F complex, most likely due to the exchange of unlabeled eIF-4A (present in the lysate) with the [14C]p46 subunit. The exchange of mouse eIF-4AI and eIF-4AII expressed in Escherichia coli was also investigated in the presence of eIF-4F and rabbit reticulocyte lysate. Both the sucrose gradient experiments and m7GTP-Sepharose 4B assays demonstrated that the [14C]p46 subunit of [14C]eIF-4F was displaced in the presence of eIF-4AI or eIF-4AII and that mouse [14C]eIF-4AI or [14C]eIF-4AII became incorporated into the eIF-4F complex in the same manner as rabbit reticulocyte eIF-4A.

    Funded by: NIGMS NIH HHS: GM-26796

    The Journal of biological chemistry 1993;268;8;5566-73

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.