G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
phospholipase C, gamma 1
G00000916 (Mus musculus)

Databases (9)

Curated Gene
OTTHUMG00000033082 (Vega human gene)
ENSG00000124181 (Ensembl human gene)
5335 (Entrez Gene)
9 (G2Cdb plasticity & disease)
PLCG1 (GeneCards)
172420 (OMIM)
Marker Symbol
HGNC:9065 (HGNC)
Protein Expression
4277 (human protein atlas)
Protein Sequence
P19174 (UniProt)

Synonyms (4)

  • NCKAP3
  • PLC-II
  • PLC148
  • PLCgamma1

Literature (230)

Pubmed - other

  • Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-gamma1-driven activation of mTOR/p70S6-kinase pathway.

    Markova B, Albers C, Breitenbuecher F, Melo JV, Brümmendorf TH, Heidel F, Lipka D, Duyster J, Huber C and Fischer T

    Department of Medicine (Cancer Research), West German Cancer Center, University Hospital, Essen, Germany.

    In chronic myeloid leukemia, activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway is crucial for survival and proliferation of leukemic cells. Essential downstream molecules involve mammalian target of rapamycin (mTOR) and S6-kinase. Here, we present a comprehensive analysis of the molecular events involved in activation of these key signaling pathways. We provide evidence for a previously unrecognized phospholipase C-gamma1 (PLC-gamma1)-controlled mechanism of mTOR/p70S6-kinase activation, which operates in parallel to the classical Akt-dependent machinery. Short-term imatinib treatment of Bcr-Abl-positive cells caused dephosphorylation of p70S6-K and S6-protein without inactivation of Akt. Suppression of Akt activity alone did not affect phosphorylation of p70-S6K and S6. These results suggested the existence of an alternative mechanism for mTOR/p70S6-K activation. In Bcr-Abl-expressing cells, we detected strong PLC-gamma1 activation, which was suppressed by imatinib. Pharmacological inhibition and siRNA knockdown of PLC-gamma1 blocked p70S6-K and S6 phosphorylation. By inhibiting the Ca-signaling, CaMK and PKCs we demonstrated participation of these molecules in the pathway. Suppression of PLC-gamma1 led to inhibition of cell proliferation and enhanced apoptosis. The novel pathway proved to be essential for survival and proliferation of leukemic cells and almost complete cell death was observed upon combined PLC-gamma1 and Bcr-Abl inhibition. The pivotal role of PLC-gamma1 was further confirmed in a mouse leukemogenesis model.

    Oncogene 2010;29;5;739-51

  • Phospholipase C-gamma1 is involved in signaling the activation by high NaCl of the osmoprotective transcription factor TonEBP/OREBP.

    Irarrazabal CE, Gallazzini M, Schnetz MP, Kunin M, Simons BL, Williams CK, Burg MB and Ferraris JD

    Department of Health and Human Services, Laboratory of Kidney and Electrolyte Metabolism, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1603, USA.

    High NaCl elevates activity of the osmoprotective transcription factor TonEBP/OREBP by increasing its phosphorylation, transactivating activity, and localization to the nucleus. We investigated the possible role in this activation of phospholipase C-gamma1 (PLC-gamma1), which has a predicted binding site at TonEBP/OREBP-phospho-Y143. We find the following. (i) Activation of TonEBP/OREBP transcriptional activity by high NaCl is reduced in PLC-gamma1 null cells and in HEK293 cells in which PLC-gamma1 is knocked down by a specific siRNA. (ii) High NaCl increases phosphorylation of TonEBP/OREBP at Y143. (iii) Wild-type PLC-gamma1 coimmunoprecipitates with wild-type TonEBP/OREBP but not TonEBP/OREBP-Y143A, and the coimmunoprecipitation is increased by high NaCl. (iv) PLC-gamma1 is part of the protein complex that associates with TonEBP/OREBP at its DNA binding site. (v) Knockdown of PLC-gamma1 or overexpression of a PLC-gamma1-SH3 deletion mutant reduces high NaCl-dependent TonEBP/OREBP transactivating activity. (vi) Nuclear localization of PLC-gamma1 is increased by high NaCl. (vii) High NaCl-induced nuclear localization of TonEBP/OREBP is reduced if cells lack PLC-gamma1, if PLC-gamma1 mutated in its SH2C domain is overexpressed, or if Y143 in TonEBP/OREBP is mutated to alanine. (viii) Expression of recombinant PLC-gamma1 restores nuclear localization of wild-type TonEBP/OREBP in PLC-gamma1 null cells but not of TonEBP/OREBP-Y143A. (ix) The PLC-gamma1 phospholipase inhibitor U72133 inhibits nuclear localization of TonEBP/OREBP but not the increase of its transactivating activity. We conclude that, when NaCl is elevated, TonEBP/OREBP becomes phosphorylated at Y143, resulting in binding of PLC-gamma1 to that site, which contributes to TonEBP/OREBP transcriptional activity, transactivating activity, and nuclear localization.

    Proceedings of the National Academy of Sciences of the United States of America 2010;107;2;906-11

  • A phosphoinositide 3-kinase/phospholipase Cgamma1 pathway regulates fibroblast growth factor-induced capillary tube formation.

    Maffucci T, Raimondi C, Abu-Hayyeh S, Dominguez V, Sala G, Zachary I and Falasca M

    Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute of Cell and Molecular Science, Centre for Diabetes, Inositide Signalling Group, London, United Kingdom.

    Background: The fibroblast growth factors (FGFs) are key regulators of embryonic development, tissue homeostasis and tumour angiogenesis. Binding of FGFs to their receptor(s) results in activation of several intracellular signalling cascades including phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC)gamma1. Here we investigated the basic FGF (FGF-2)-mediated activation of these enzymes in human umbilical vein endothelial cells (HUVECs) and defined their role in FGF-2-dependent cellular functions.

    We show that FGF-2 activates PLCgamma1 in HUVECs measured by analysis of total inositol phosphates production upon metabolic labelling of cells and intracellular calcium increase. We further demonstrate that FGF-2 activates PI3K, assessed by analysing accumulation of its lipid product phosphatidylinositol-3,4,5-P(3) using TLC and confocal microscopy analysis. PI3K activity is required for FGF-2-induced PLCgamma1 activation and the PI3K/PLCgamma1 pathway is involved in FGF-2-dependent cell migration, determined using Transwell assay, and in FGF-2-induced capillary tube formation (tubulogenesis assays in vitro). Finally we show that PI3K-dependent PLCgamma1 activation regulates FGF-2-mediated phosphorylation of Akt at its residue Ser473, determined by Western blotting analysis. This occurs through protein kinase C (PKC)alpha activation since dowregulation of PKCalpha expression using specific siRNA or blockade of its activity using chemical inhibition affects the FGF-2-dependent Ser473 Akt phosphorylation. Furthermore inhibition of PKCalpha blocks FGF-2-dependent cell migration.

    These data elucidate the role of PLCgamma1 in FGF-2 signalling in HUVECs demonstrating its key role in FGF-2-dependent tubulogenesis. Furthermore these data unveil a novel role for PLCgamma1 as a mediator of PI3K-dependent Akt activation and as a novel key regulator of different Akt-dependent processes.

    Funded by: British Heart Foundation: PG/04/033/16906, PG/06/022/20348, RG/06/003/21131

    PloS one 2009;4;12;e8285

  • Cell invasion of Yersinia pseudotuberculosis by invasin and YadA requires protein kinase C, phospholipase C-gamma1 and Akt kinase.

    Uliczka F, Kornprobst T, Eitel J, Schneider D and Dersch P

    Institut für Mikrobiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany.

    The outer membrane proteins YadA and invasin of Yersinia pseudotuberculosis promote invasion into mammalian cells through beta(1)-integrins and trigger the production of interleukin (IL)-8. FAK, c-Src and the PI3 kinase were previously found to be important for both YadA- and invasin-promoted uptake. Here, we demonstrate that two different downstream effectors of PI3 kinase, Akt and phospholipase Cgamma1 are required for efficient cell invasion. Inhibition of Akt or phospholipase C-gamma (PLC-gamma)1 by pharmaceutical agents as well as reduced expression of the isoforms Akt1 and Akt2, and of PLC-gamma1 by RNA interference decreased entry of YadA- and Inv-expressing bacteria significantly. In addition, we report that the conventional protein kinases C (PKC)alpha and -beta, positioned downstream of PLC-gamma1, are activated upon Inv- or YadA-promoted cell entry. They colocalize with intracellular bacteria and their depletion by siRNA treatment also resulted in a strong reduction of cell entry. In contrast, neither Akt nor PLC-gamma1, and the PKCs are essential for YadA- and Inv-mediated IL-8 synthesis and release. We conclude that YadA and invasin of Y. pseudotuberculosis both trigger similar signal transduction pathways during integrin-mediated phagocytosis into epithelial cells, which lead to the activation of Akt, PLC-gamma1, PKCalpha and -beta downstream of PI3 kinase, separate from the MAPK-dependent pathway that triggers IL-8 production.

    Cellular microbiology 2009;11;12;1782-801

  • Semaphorin 4D signaling requires the recruitment of phospholipase C gamma into the plexin-B1 receptor complex.

    Swiercz JM, Worzfeld T and Offermanns S

    Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany. jakub.swiercz@mpi-bn.mpg.de

    The semaphorin 4D (Sema4D) receptor plexin-B1 constitutively interacts with particular Rho guanine nucleotide exchange factors (RhoGEFs) and thereby mediates Sema4D-induced RhoA activation, a process which involves the tyrosine phosphorylation of plexin-B1 by ErbB-2. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGEF activity. We show here that activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation creates docking sites for the SH2 domains of phospholipase Cgamma (PLCgamma). PLCgamma is thereby recruited into the plexin-B1 receptor complex and via its SH3 domain activates the Rho guanine nucleotide exchange factor PDZ-RhoGEF. PLCgamma-dependent RhoGEF activation is independent of its lipase activity. The recruitment of PLCgamma has no effect on the R-Ras GTPase-activating protein activity of plexin-B1 but is required for Sema4D-induced axonal growth cone collapse as well as for the promigratory effects of Sema4D on cancer cells. These data demonstrate a novel nonenzymatic function of PLCgamma as an important mechanism of plexin-mediated signaling which links tyrosine phosphorylation of plexin-B1 to the regulation of a RhoGEF protein and downstream cellular processes.

    Molecular and cellular biology 2009;29;23;6321-34

  • Inhibition and activation by CD244 depends on CD2 and phospholipase C-gamma1.

    Clarkson NG and Brown MH

    Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.

    Regulation by the NK and T cell surface receptor CD244 in mice and humans depends both on engagement at the cell surface by CD48 and intracellular interactions with SAP and EAT-2. Relevance to human disease by manipulating CD244 in mouse models is complicated by rodent CD2 also binding CD48. We distinguish between contributions of mouse CD244 and CD2 on engagement of CD48 in a mouse T cell hybridoma. CD2 and CD244 both contribute positively to the immune response as mutation of proline-rich motifs or tyrosine motifs in the tails of CD2 and CD244, respectively, result in a decrease in antigen-specific interleukin-2 production. Inhibitory effects of mouse CD244 are accounted for by competition with CD2 at the cell surface for CD48. In humans CD2 and CD244 are engaged separately at the cell surface but biochemical data suggest a potential conserved intracellular link between the two receptors through FYN kinase. We identify a novel signaling mechanism for CD244 through its potential to recruit phospholipase C-gamma1 via the conserved phosphorylated tyrosine motif in the tail of the adaptor protein EAT-2, which we show is important for function.

    Funded by: Medical Research Council: G0400808, G0400808(71652)

    The Journal of biological chemistry 2009;284;37;24725-34

  • Identification of new putative susceptibility genes for several psychiatric disorders by association analysis of regulatory and non-synonymous SNPs of 306 genes involved in neurotransmission and neurodevelopment.

    Gratacòs M, Costas J, de Cid R, Bayés M, González JR, Baca-García E, de Diego Y, Fernández-Aranda F, Fernández-Piqueras J, Guitart M, Martín-Santos R, Martorell L, Menchón JM, Roca M, Sáiz-Ruiz J, Sanjuán J, Torrens M, Urretavizcaya M, Valero J, Vilella E, Estivill X, Carracedo A and Psychiatric Genetics Network Group

    CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.

    A fundamental difficulty in human genetics research is the identification of the spectrum of genetic variants that contribute to the susceptibility to common/complex disorders. We tested here the hypothesis that functional genetic variants may confer susceptibility to several related common disorders. We analyzed five main psychiatric diagnostic categories (substance-abuse, anxiety, eating, psychotic, and mood disorders) and two different control groups, representing a total of 3,214 samples, for 748 promoter and non-synonymous single nucleotide polymorphisms (SNPs) at 306 genes involved in neurotransmission and/or neurodevelopment. We identified strong associations to individual disorders, such as growth hormone releasing hormone (GHRH) with anxiety disorders, prolactin regulatory element (PREB) with eating disorders, ionotropic kainate glutamate receptor 5 (GRIK5) with bipolar disorder and several SNPs associated to several disorders, that may represent individual and related disease susceptibility factors. Remarkably, a functional SNP, rs945032, located in the promoter region of the bradykinin receptor B2 gene (BDKRB2) was associated to three disorders (panic disorder, substance abuse, and bipolar disorder), and two additional BDKRB2 SNPs to obsessive-compulsive disorder and major depression, providing evidence for common variants of susceptibility to several related psychiatric disorders. The association of BDKRB2 (odd ratios between 1.65 and 3.06) to several psychiatric disorders supports the view that a common genetic variant could confer susceptibility to clinically related phenotypes, and defines a new functional hint in the pathophysiology of psychiatric diseases.

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2009;150B;6;808-16

  • Parkin deficiency disrupts calcium homeostasis by modulating phospholipase C signalling.

    Sandebring A, Dehvari N, Perez-Manso M, Thomas KJ, Karpilovski E, Cookson MR, Cowburn RF and Cedazo-Mínguez A

    Karolinska Institutet, Department of NVS, KI-Alzheimer's Disease Research Center, Stockholm, Sweden.

    Mutations in the E3 ubiquitin ligase parkin cause early-onset, autosomal-recessive juvenile parkinsonism (AJRP), presumably as a result of a lack of function that alters the level, activity, aggregation or localization of its substrates. Recently, we have reported that phospholipase Cgamma1 is a substrate for parkin. In this article, we show that parkin mutants and siRNA parkin knockdown cells possess enhanced levels of phospholipase Cgamma1 phosphorylation, basal phosphoinositide hydrolysis and intracellular Ca2+ concentration. The protein levels of Ca2+-regulated protein kinase Calpha were decreased in AJRP parkin mutant cells. Neomycin and dantrolene both decreased the intracellular Ca2+ levels in parkin mutants in comparison with those seen in wild-type parkin cells, suggesting that the differences were a consequence of altered phospholipase C activity. The protection of wild-type parkin against 6-hydroxydopamine (6OHDA) toxicity was also established in ARJP mutants on pretreatment with dantrolene, implying that a balancing Ca2+ release from ryanodine-sensitive stores decreases the toxic effects of 6OHDA. Our findings suggest that parkin is an important factor for maintaining Ca2+ homeostasis and that parkin deficiency leads to a phospholipase C-dependent increase in intracellular Ca2+ levels, which make cells more vulnerable to neurotoxins, such as 6OHDA.

    Funded by: Intramural NIH HHS: ZIA AG000938-02

    The FEBS journal 2009;276;18;5041-52

  • Parkin-mediated ubiquitination regulates phospholipase C-gamma1.

    Dehvari N, Sandebring A, Flores-Morales A, Mateos L, Chuan YC, Goldberg MS, Cookson MR, Cowburn RF and Cedazo-Mínguez A

    Department of NVS, Karolinska Institutet, KI-Alzheimer's Disease Research Center, Stockholm, Sweden.

    Mutations in parkin cause autosomal recessive forms of Parkinson's disease (PD), with an early age of onset and similar pathological phenotype to the idiopathic disease. Parkin has been identified as an E3 ubiquitin ligase that mediates different types of ubiquitination, which has made the search for substrates an intriguing possibility to identify pathological mechanisms linked to PD. In this study, we present PLCgamma1 as a novel substrate for parkin. This association was found in non-transfected human neuroblastoma SH-SY5Y cells as well as in stable cell lines expressing parkin WT and familial mutants R42P and G328E. Analysis of cortical, striatal and nigral human brain homogenates revealed that the interaction between parkin and PLCgamma1 is consistent throughout these regions, suggesting that the interaction is likely to have a physiological relevance for humans. Unlike many of the previously identified substrates, we could also show that the steady-state levels of PLCgamma1 is significantly higher in parkin KO mice and lower in parkin WT human neuroblastoma cells, suggesting that parkin ubiquitination of PLCgamma1 is required for proteasomal degradation. In line with this idea, we show that the ability to ubiquitinate PLCgamma1 in vitro differs significantly between WT and familial mutant parkin. In this study, we demonstrate that parkin interacts with PLCgamma1, affecting PLCgamma1 steady state protein levels in human and murine models with manipulated parkin function and expression levels. This finding could be of relevance for finding novel pathogenic mechanisms leading to PD.

    Funded by: Intramural NIH HHS: Z01 AG000938-01, Z01 AG000953-07

    Journal of cellular and molecular medicine 2009;13;9B;3061-8

  • SH2D4A regulates cell proliferation via the ERalpha/PLC-gamma/PKC pathway.

    Li T, Li W, Lu J, Liu H, Li Y and Zhao Y

    Department of Medical Genetics, China Medical University, Shenyang 110001, China.

    SH2D4A, comprising a single SH2 domain, is a novel protein of the SH2 signaling protein family. We have previously demonstrated SH2D4A is expressed ubiquitously in various tissues and is located in the cytoplasm. In this study we investigated the function of SH2D4A in human embryonic kidney (HEK) 293 cells using interaction analysis, cell proliferation assays, and kinase activity detection. SH2D4A was found to directly bind to estrogen receptor alpha (ERalpha), and prevent the recruitment of phospholipase C-gamma (PLC-gamma) to ERalpha. Moreover, we observed its inhibitory effects on estrogen-induced cell proliferation, involving the protein kinase C (PKC) signaling pathway. Together, these findings suggested that SH2D4A inhibited cell proliferation by suppression of the ERalpha/PLC-gamma/PKC signaling pathway. SH2D4A may be useful for the development of a new anti-cancer drug acting as an ER signaling modulator.

    BMB reports 2009;42;8;516-22

  • Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways.

    Xiong Y, Huo Y, Chen C, Zeng H, Lu X, Wei C, Ruan C, Zhang X, Hu Z, Shibuya M and Luo J

    Laboratory of Vascular Biology, Institute of Molecular Medicine, Peking University, Beijing 10087, China.

    There is increasing evidence that vascular endothelial growth factor (VEGF) contributes to inflammation independent of its angiogenic functions. Targeting some of the components in endothelial Weibel-Palade bodies (WPBs) effectively inhibits VEGF-induced inflammation, but little is known about how VEGF regulates WPB exocytosis. In this study, we showed that VEGF receptor-2 (VEGFR2), but not VEGFR1, is responsible for VEGF-induced release of von Willebrand factor (vWF), a major marker of WPBs. This is in good contrast to VEGF-stimulated interleukin-6 release from endothelium, which is selectively mediated through VEGFR1. We further demonstrated that VEGFR2-initiated phospholipase C-gamma1 (PLCgamma1)/calcium signaling is important but insufficient for full vWF release, suggesting the possible participation of another effector pathway. We found that cAMP/protein kinase A (PKA) signaling is required for full vWF release. Importantly, a single mutation of Tyr(1175) in the C terminus of VEGFR2, a tyrosine residue crucial for embryonic vasculogenesis, abolished vWF release, concomitant with defective activations of both PLCgamma1 and PKA. These data suggest that Tyr(1175) mediates both PLCgamma1-dependent and PKA-dependent signaling pathways. Taken together, our results not only reveal a novel Tyr(1175)-mediated signaling pathway but also highlight a potentially new therapeutic target for the management of vascular inflammation.

    The Journal of biological chemistry 2009;284;35;23217-24

  • Basic fibroblast growth factor increases intracellular magnesium concentration through the specific signaling pathways.

    Hong BZ, Park SA, Kim HN, Ma TZ, Kim HG, Kang HS, Kim HG and Kwak YG

    Department of Pharmacology, Chonbuk National University Medical School, Jeonju 560-182, Korea.

    Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. Mg(2+) is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular Mg(2+) concentration ([Mg(2+)](i)) in human umbilical vein endothelial cells (HUVECs). bFGF increased [Mg(2+)](i) in a dose-dependent manner, independent of extracellular Mg(2+). This bFGF-induced [Mg(2+)](i) increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase Cgamma (PLCgamma) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced [Mg(2+)](i) increase. These results suggest that bFGF increases the [Mg(2+)](i) from the intracellular Mg(2+) stores through the tyrosine kinase/PI3K/PLCgamma-dependent signaling pathways.

    Molecules and cells 2009;28;1;13-7

  • Phosphorylation of Nephrin Triggers Ca2+ Signaling by Recruitment and Activation of Phospholipase C-{gamma}1.

    Harita Y, Kurihara H, Kosako H, Tezuka T, Sekine T, Igarashi T, Ohsawa I, Ohta S and Hattori S

    Division of Cellular Proteomics (BML) and Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

    A specialized intercellular junction between podocytes, known as the slit diaphragm (SD), forms the essential structural frame-work for glomerular filtration in the kidney. In addition, mounting evidence demonstrates that the SD also plays a crucial role as a signaling platform in physiological and pathological states. Nephrin, the major component of the SD, is tyrosine-phosphorylated by a Src family tyrosine kinase, Fyn, in developing or injured podocytes, recruiting Nck to Nephrin via its Src homology 2 domain to regulate dynamic actin remodeling. Dysregulated Ca(2+) homeostasis has also been implicated in podocyte damage, but the mechanism of how podocytes respond to injury is largely unknown. Here we have identified phospholipase C-gamma1 (PLC-gamma1) as a novel phospho-Nephrin-binding protein. When HEK293T cells expressing a chimeric protein consisting of CD8 and Nephrin cytoplasmic domain (CD) were treated with anti-CD8 and anti-mouse antibodies, clustering of Nephrin and phosphorylation of Nephrin-CD were induced. Upon this clustering, PLC-gamma1 was bound to phosphorylated Nephrin Tyr-1204, which induced translocation of PLC-gamma1 from cytoplasm to the CD8/Nephrin cluster on the plasma membrane. The recruitment of PLC-gamma1 to Nephrin activated PLC-gamma1, as detected by phosphorylation of PLC-gamma1 Tyr-783 and increase in inositol 1,4,5-trisphosphate level. We also found that Nephrin Tyr-1204 phosphorylation triggers the Ca(2+) response in a PLC-gamma1-dependent fashion. Furthermore, PLC-gamma1 is significantly phosphorylated in injured podocytes in vivo. Given the profound effect of PLC-gamma in diverse cellular functions, regulation of the Ca(2+) signaling by Nephrin may be important in modulating the glomerular filtration barrier function.

    The Journal of biological chemistry 2009;284;13;8951-62

  • Memo is a cofilin-interacting protein that influences PLCgamma1 and cofilin activities, and is essential for maintaining directionality during ErbB2-induced tumor-cell migration.

    Meira M, Masson R, Stagljar I, Lienhard S, Maurer F, Boulay A and Hynes NE

    Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.

    Heregulin (HRG) activates ErbB2-ErbB3 heterodimers thereby stimulating many cellular responses, including motility. Memo and PLCgamma1 interact with ErbB2 autophosphorylation sites and are essential for HRG-induced chemotaxis. By tracing HRG-stimulated cell migration in Dunn chambers, we found that Memo- or PLCgamma1 knockdown (KD) strongly impairs cell directionality. Memo has no obvious enzymatic activity and was discovered via its ability to complex with ErbB2. Using the yeast two-hybrid approach to gain insight into Memo function, an interaction between Memo and cofilin, a regulator of actin dynamics, was uncovered. The interaction was confirmed in vitro using recombinant proteins and in vivo in co-immunoprecipitation experiments where Memo was detected in complexes with cofilin, ErbB2 and PLCgamma1. Interestingly, in Memo KD cells, HRG-induced PLCgamma1 phosphorylation was decreased, suggesting that Memo regulates PLCgamma1 activation. Furthermore, HRG-induced recruitment of GFP-cofilin to lamellipodia is impaired in Memo and in PLCgamma1 KD cells, suggesting that both proteins lie upstream of cofilin in models of ErbB2-driven tumor-cell migration. Finally, in vitro F-actin binding and depolymerization assays showed that Memo enhances cofilin depolymerizing and severing activity. In summary, these data indicate that Memo also regulates actin dynamics by interacting with cofilin and enhancing its function.

    Journal of cell science 2009;122;Pt 6;787-97

  • Phospholipase Cgamma1 is required for metastasis development and progression.

    Sala G, Dituri F, Raimondi C, Previdi S, Maffucci T, Mazzoletti M, Rossi C, Iezzi M, Lattanzio R, Piantelli M, Iacobelli S, Broggini M and Falasca M

    Inositide Signalling Group, Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom.

    Cell motility and invasion play an essential role in the development of metastasis. Evidence suggests that the enzyme phospholipase Cgamma1 (PLCgamma1) may be involved in tumor progression and possibly development of metastasis. In this study, we show that down-regulation of PLCgamma1 expression severely impairs activation of the small GTP-binding protein Rac and cell invasion in breast cancer cell lines and U87 in vitro. Experimental metastasis assays in nude mice show that inducible knockdown of PLCgamma1 strongly inhibits development of MDA-MB-231-derived lung metastasis and reverts metastasis formation. In addition, analysis of 60 breast cancer patients' tissues revealed an increase of PLCgamma1 expression in metastasis compared with the primary tumor in 50% of tissues analyzed. These data show a critical role of PLCgamma1 in the metastatic potential of cancer cells, and they further indicate that PLCgamma1 inhibition has a therapeutic potential in the treatment of metastasis dissemination.

    Cancer research 2008;68;24;10187-96

  • Differential expression and molecular associations of Syk in systemic lupus erythematosus T cells.

    Krishnan S, Juang YT, Chowdhury B, Magilavy A, Fisher CU, Nguyen H, Nambiar MP, Kyttaris V, Weinstein A, Bahjat R, Pine P, Rus V and Tsokos GC

    Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.

    Diminished expression of TCR zeta and reciprocal up-regulation and association of FcRgamma with the TCR/CD3 complex is a hallmark of systemic lupus erythematosus (SLE) T cells. In this study we explored whether differential molecular associations of the spleen tyrosine kinase Syk that preferentially binds to FcRgamma contribute to pathological amplification of signals downstream of this "rewired TCR" in SLE. We detected higher amounts of Syk expression and activity in SLE compared with normal T cells. Selective inhibition of the activity of Syk reduced the strength of TCR-induced calcium responses and slowed the rapid kinetics of actin polymerization exclusively in SLE T cells. Syk and ZAP-70 also associated differently with key molecules involved in cytoskeletal and calcium signaling in SLE T cells. Thus, while Vav-1 and LAT preferentially bound to Syk, phospholipase C-gamma1 bound to both Syk and ZAP-70. Our results show that differential associations of Syk family kinases contribute to the enhanced TCR-induced signaling responses in SLE T cells. Thus, we propose molecular targeting of Syk as a measure to control abnormal T cell responses in SLE.

    Funded by: NIAID NIH HHS: R01 AI042269, R01 AI042269-12A1, R01 AI42269; NIAMS NIH HHS: K23 AR055672, K23 AR055672-01A1

    Journal of immunology (Baltimore, Md. : 1950) 2008;181;11;8145-52

  • Phospholipid scramblase 1 modulates a selected set of IgE receptor-mediated mast cell responses through LAT-dependent pathway.

    Amir-Moazami O, Alexia C, Charles N, Launay P, Monteiro RC and Benhamou M

    INSERM U699, and Faculté de Médecine Xavier Bichat, Université Paris 7, 16 Rue Henri Huchard, Paris, France.

    Engagement of the IgE receptor (FcepsilonRI) on mast cells leads to the release of preformed and newly formed mediators as well as of cytokines. The signaling pathways responsible for these responses involve tyrosine phosphorylation of multiple proteins. We previously reported the phosphorylation on tyrosine of phospholipid scramblase 1 (PLSCR1) after FcepsilonRI aggregation. Here, PLSCR1 expression was knocked down in the RBL-2H3 mast cell line using short hairpin RNA. Knocking down PLSCR1 expression resulted in significantly impaired degranulation responses after FcepsilonRI aggregation and release of vascular endothelial growth factor, whereas release of MCP-1 was minimally affected. The release of neither leukotriene C4 nor prostaglandin D2 was altered by knocking down of PLSCR1. Analysis of FcepsilonRI-dependent signaling pathways revealed that whereas tyrosine phosphorylation of ERK and Akt was unaffected, tyrosine phosphorylation of LAT was significantly reduced in PLSCR1 knocked down cells. Tyrosine phosphorylation of phospholipase Cgamma1 and consequently the mobilization of calcium were also significantly reduced in these cells. In nonactivated mast cells, PLSCR1 was found in part in lipid rafts where it was further recruited after cell activation and was constitutively associated with Lyn and Syk but not with LAT or Fyn. Altogether, these data identify PLSCR1 as a novel amplifier of FcepsilonRI signaling that acts selectively on the Lyn-initiated LAT/phospholipase Cgamma1/calcium axis, resulting in potentiation of a selected set of mast cell responses.

    The Journal of biological chemistry 2008;283;37;25514-23

  • Combined inhibition of PLC{gamma}-1 and c-Src abrogates epidermal growth factor receptor-mediated head and neck squamous cell carcinoma invasion.

    Nozawa H, Howell G, Suzuki S, Zhang Q, Qi Y, Klein-Seetharaman J, Wells A, Grandis JR and Thomas SM

    Department of Oral and Maxillofacial Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan.

    Purpose: Mortality from head and neck squamous cell carcinoma (HNSCC) is usually associated with locoregional invasion of the tumor into vital organs, including the airway. Understanding the signaling mechanisms that abrogate HNSCC invasion may reveal novel therapeutic targets for intervention. The purpose of this study was to investigate the efficacy of combined inhibition of c-Src and PLCgamma-1 in the abrogation of HNSCC invasion.

    PLCgamma-1 and c-Src inhibition was achieved by a combination of small molecule inhibitors and dominant negative approaches. The effect of inhibition of PLCgamma-1 and c-Src on invasion of HNSCC cells was assessed in an in vitro Matrigel-coated transwell invasion assay. In addition, the immunoprecipitation reactions and in silico database mining was used to examine the interactions between PLCgamma-1 and c-Src.

    Results: Here, we show that inhibition of PLCgamma-1 or c-Src with the PLC inhibitor U73122 or the Src family inhibitor AZD0530 or using dominant-negative constructs attenuated epidermal growth factor (EGF)-stimulated HNSCC invasion. Furthermore, EGF stimulation increased the association between PLCgamma-1 and c-Src in HNSCC cells. Combined inhibition of PLCgamma-1 and c-Src resulted in further attenuation of HNSCC cell invasion in vitro.

    Conclusions: These cumulative results suggest that PLCgamma-1 and c-Src activation contribute to HNSCC invasion downstream of EGF receptor and that targeting these pathways may be a novel strategy to prevent tumor invasion in HNSCC.

    Funded by: NCI NIH HHS: P50 CA097190, P50CA097190, P50CA097190-01A1, R01 CA077308, R01 CA77308

    Clinical cancer research : an official journal of the American Association for Cancer Research 2008;14;13;4336-44

  • Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases.

    Reynolds CH, Garwood CJ, Wray S, Price C, Kellie S, Perera T, Zvelebil M, Yang A, Sheppard PW, Varndell IM, Hanger DP and Anderton BH

    The MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK. h.reynolds@iop.kcl.ac.uk

    The microtubule-associated protein tau can associate with various other proteins in addition to tubulin, including the SH3 domains of Src family tyrosine kinases. Tau is well known to aggregate to form hyperphosphorylated filamentous deposits in several neurodegenerative diseases (tauopathies) including Alzheimer disease. We now report that tau can bind to SH3 domains derived from the p85alpha subunit of phosphatidylinositol 3-kinase, phospholipase Cgamma1, and the N-terminal (but not the C-terminal) SH3 of Grb2 as well as to the kinases Fyn, cSrc, and Fgr. However, the short inserts found in neuron-specific isoforms of Src prevented the binding of tau. The experimentally determined binding of tau peptides is well accounted for when modeled into the peptide binding cleft in the SH3 domain of Fyn. After phosphorylation in vitro or in transfected cells, tau showed reduced binding to SH3 domains; no binding was detected with hyperphosphorylated tau isolated from Alzheimer brain, but SH3 binding was restored by phosphatase treatment. Tau mutants with serines and threonines replaced by glutamate, to mimic phosphorylation, showed reduced SH3 binding. These results strongly suggest that tau has a potential role in cell signaling in addition to its accepted role in cytoskeletal assembly, with regulation by phosphorylation that may be disrupted in the tauopathies including Alzheimer disease.

    Funded by: Medical Research Council: G0300408

    The Journal of biological chemistry 2008;283;26;18177-86

  • Phospholipase C gamma 1 regulates the Rap GEF1-Rap1 signalling axis in the control of human prostate carcinoma cell adhesion.

    Peak JC, Jones NP, Hobbs S, Katan M and Eccles SA

    Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK.

    Phospholipase Cgamma1 (PLCgamma1) is activated downstream of a variety of extracellular stimuli and has previously been implicated in the regulation of motility responses central to tumour cell invasion. In this study, we used a novel RNAi vector system to achieve conditional PLCgamma1 knockdown in PC3LN3 human prostate carcinoma cells for further evaluation of PLCgamma1 in tumour cell biology. Using this approach, we revealed a role for PLCgamma1 in the regulation of PC3LN3 cell adhesion that appears to be independent of its effects on tumour cell chemotactic migration and spreading in response to extracellular matrix. Subsequent microarray analysis of PLCgamma1-knockdown cells revealed Rap GEF1 mRNA to be decreased in response to PLCgamma1 loss. This translated into a decrease in Rap GEF1 protein levels and a significant loss of Rap1 activity in PLCgamma1-knockdown cells. Transient knockdown of Rap GEF1 caused a reduction in PC3LN3 adhesion while overexpression of Rap GEF1 rescued the PLCgamma1 knockdown-induced adhesion defect. These data highlight control of the Rap GEF1-Rap1 molecular switch as a specific requirement for PLCgamma1-mediated tumour cell adhesion.

    Funded by: Cancer Research UK

    Oncogene 2008;27;20;2823-32

  • A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas.

    Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E and Buggy JJ

    Department of Cancer Biology, Pharmacyclics Inc., Sunnyvale, CA 94085, USA. sriram@pcyc.com

    We have developed a potent, histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 with >200-fold selectivity over the other HDAC isoforms. PCI-34051 induces caspase-dependent apoptosis in cell lines derived from T-cell lymphomas or leukemias, but not in other hematopoietic or solid tumor lines. Unlike broad-spectrum HDAC inhibitors, PCI-34051 does not cause detectable histone or tubulin acetylation. Cells defective in T-cell receptor signaling were still sensitive to PCI-34051-induced apoptosis, whereas a phospholipase C-gamma1 (PLCgamma1)-defective line was resistant. Jurkat cells showed a dose-dependent decrease in PCI-34051-induced apoptosis upon treatment with a PLC inhibitor U73122, but not with an inactive analog. We found that rapid intracellular calcium mobilization from endoplasmic reticulum (ER) and later cytochrome c release from mitochondria are essential for the apoptotic mechanism. The rapid Ca(2+) flux was dependent on PCI-34051 concentration, and was blocked by the PLC inhibitor U73122. Further, apoptosis was blocked by Ca(2+) chelators (BAPTA) and enhanced by Ca(2+) effectors (thapsigargin), supporting this model. These studies show that HDAC8-selective inhibitors have a unique mechanism of action involving PLCgamma1 activation and calcium-induced apoptosis, and could offer benefits including a greater therapeutic index for treating T-cell malignancies.

    Leukemia 2008;22;5;1026-34

  • Role of phospholipase Cgamma-induced activation of protein kinase Cepsilon (PKCepsilon) and PKCbetaI in epidermal growth factor-mediated protection of tight junctions from acetaldehyde in Caco-2 cell monolayers.

    Suzuki T, Seth A and Rao R

    Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.

    Epidermal growth factor (EGF) protects the intestinal epithelial tight junctions from acetaldehyde-induced insult. The role of phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) isoforms in the mechanism of EGF-mediated protection of tight junction from acetaldehyde was evaluated in Caco-2 cell monolayers. EGF-mediated prevention of acetaldehyde-induced decrease in transepithelial electrical resistance and an increase in inulin permeability, and subcellular redistribution of occludin and ZO-1 was attenuated by reduced expression of PLCgamma1 by short hairpin RNA. EGF induced a rapid activation of PLCgamma1 and PLC-dependent membrane translocation of PKCepsilon and PKCbetaI. Inhibition of PKC activity or selective interference of membrane translocation of PKCepsilon and PKCbetaI by RACK interference peptides attenuated EGF-mediated prevention of acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. BAPTA-AM and thapsigargin blocked EGF-induced membrane translocation of PKCbetaI and attenuated EGF-mediated prevention of acetaldehyde-induced disruption of tight junctions. EGF-induced translocation of PKCepsilon and PKCbetaI was associated with organization of F-actin near the perijunctional region. This study shows that PLCgamma-mediated activation of PKCepsilon and PKCbetaI and intracellular calcium is involved in EGF-mediated protection of tight junctions from acetaldehyde-induced insult.

    Funded by: NIAAA NIH HHS: R01 AA012307, R01-AA12307; NIDDK NIH HHS: R01 DK055532, R01-DK55532

    The Journal of biological chemistry 2008;283;6;3574-83

  • Protein kinase Cepsilon may act as EGF-inducible scaffold protein for phospholipase Cgamma1.

    Valkova C, Maerz S, Imhof D and Liebmann C

    Institut für Biochemie und Biophysik, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany.

    Phospholipase Cgamma1 (PLCgamma1) represents a major downstream signalling component of the epidermal growth factor (EGF) receptor (EGFR) and is activated by tyrosine phosphorylation. Here we show for the first time that cellular knockdown of protein kinase Cepsilon (PKCepsilon) leads to decreased activation of PLCgamma1 by EGF and that EGF induces tyrosine phosphorylation of PKCepsilon as well as association of PKCepsilon with both EGFR and PLCgamma1. Using several mutants, co-immunoprecipitation and phosphopeptide-based pull-down experiments we found that in dependency on c-Src and EGF-stimulation PKCepsilon may bind to the c-Src-specific phosphorylation site pY845-EGFR. Furthermore, we identified a single tyrosine residue, PKCepsilon-Y573, within a consensus binding sequence of the C-terminal SH2 domain of PLCgamma1 which is critical for both tyrosine phosphorylation of PKCepsilon and its association with PLCgamma1. Thus, in particular cells and independent of the kinase activity PKCepsilon may form a signalling module with EGFR and PLCgamma1. Thereby the tyrosine phosphorylation of PLCgamma1 via the EGFR may be facilitated. This is a novel function of PKCepsilon upstream of PLCgamma1 and a novel paradigm for the EGF-induced formation of multi-protein complexes.

    Cellular signalling 2007;19;9;1830-43

  • Role of phospholipase Cgamma1 in cell spreading requires association with a beta-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1.

    Jones NP and Katan M

    Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom.

    The significance of multiprotein signaling complexes in cell motility is becoming increasingly important. We have previously shown that phospholipase Cgamma1 (PLCgamma1) is critical for integrin-mediated cell spreading and motility (N. Jones et al., J. Cell Sci. 118:2695-2706, 2005). In the current study we show that, on a basement membrane-type matrix, PLCgamma1 associates with the adaptor protein GIT1 and the Rac1/Cdc42 guanine exchange factor beta-Pix; GIT1 and beta-Pix form tight complexes independently of PLCgamma1. The association of PLCgamma1 with the complex requires both GIT1 and beta-Pix and the specific array region (gammaSA) of PLCgamma1. Mutations of PLCgamma1 within the gammaSA region reveal that association with this complex is essential for the phosphorylation of PLCgamma1 and the progression to an elongated morphology after integrin engagement. Short interfering RNA (siRNA) depletion of either beta-Pix or GIT1 inhibited cell spreading in a fashion similar to that seen with siRNA against PLCgamma1. Furthermore, siRNA depletion of PLCgamma1, beta-Pix, or GIT1 inhibited Cdc42 and Rac1 activation, while constitutively active forms of Cdc42 or Rac1, but not RhoA, were able to rescue the elongation of these cells. Signaling of the PLCgamma1/GIT1/beta-Pix complex to Cdc42/Rac1 was found to involve the activation of calpains, calcium-dependent proteases. Therefore, we propose that the association of PLCgamma1 with complexes containing GIT1 and beta-Pix is essential for its role in integrin-mediated cell spreading and motility. As a component of this complex, PLCgamma1 is also involved in the activation of Cdc42 and Rac1.

    Molecular and cellular biology 2007;27;16;5790-805

  • Sustained phosphorylation of mutated FGFR3 is a crucial feature of genetic dwarfism and induces apoptosis in the ATDC5 chondrogenic cell line via PLCgamma-activated STAT1.

    Harada D, Yamanaka Y, Ueda K, Nishimura R, Morishima T, Seino Y and Tanaka H

    Department of Pediatrics, Okayama University, Graduate School of Medicine and Dentistry, 2-5-1 Shikata-Cho, Okayama 700-8558, Japan.

    The most frequent type of rhizomelic dwarfism, achondroplasia (ACH), is caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Mutations in FGFR3 result in skeletal dysplasias of variable severity, including mild phenotypic effects in hypochondroplasia (HCH), severe phenotypic effects in thanatophoric dysplasia types I (TDI) and II (TDII), and severe but survivable phenotypic effects in severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN). To explore the molecular mechanisms that result in the different phenotypes, we investigated the kinetics of mutated versions of FGFR3. First, we assayed the phosphorylation states of the mutated FGFR3s and found that the level of phosphorylation in TDI-FGFR3 was lower than in ACH-FGFR3, although the other mutants were phosphorylated according to phenotypic severity. Second, we analyzed the duration of the phosphorylation. TDI-FGFR3 was not highly phosphorylated under ligand-free conditions, but the peak phosphorylation levels of TDI-FGFR3 and ACH-FGFR3 were maintained for 30 min after stimulation with FGF-1. Moreover, ligand-dependent phosphorylation of TDI-FGFR3, but not ACH-FGFR3, lasted for more than 8 h after FGF-1 administration. The other mutant proteins showed sustained phosphorylation independent of ligand presence. Third, we investigated the intracellular localization of the mutant proteins. Immunofluorescence analysis showed accumulations of TDII-FGFR3, SADDAN-FGFR3, and a portion of TDI-FGFR3 in the endoplasmic reticulum (ER). Based on these data, we concluded that sustained phosphorylation of FGFR3 causes chondrodysplasia, and the phenotypic severity depends on the proportion of ER-localized mutant FGFR3. In FGFR3 signaling, the transcription factor, signal transducer and activator of transcription 1 (STAT1) inhibit proliferation and induce apoptosis of chondrocytes. Here we reveal that phospholipase C gamma (PLCgamma) mediates FGFR3-induced STAT1 activation. Both PLCgamma and STAT1 were activated by FGFR3 signaling, but a dominant-negative form of PLCgamma (DN-PLCgamma) remarkably reduced STAT1 phosphorylation. Apoptosis assays revealed that the constitutively active forms of FGFR3 (TDII-FGFR3) and STAT1 (STAT1-C) induce apoptosis of chondrogenic ATDC5 cells via caspase activity. DN-PLCgamma reduced the apoptosis of ATDC5 cells expressing TDII-FGFR3, but over-expression of both DN-PLCgamma and STAT1-C induced apoptosis. Therefore, we conclude that a PLCgamma-STAT1 pathway mediates apoptotic signaling by FGFR3.

    Bone 2007;41;2;273-81

  • Systematic identification of SH3 domain-mediated human protein-protein interactions by peptide array target screening.

    Wu C, Ma MH, Brown KR, Geisler M, Li L, Tzeng E, Jia CY, Jurisica I and Li SS

    Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.

    Systematic identification of direct protein-protein interactions is often hampered by difficulties in expressing and purifying the corresponding full-length proteins. By taking advantage of the modular nature of many regulatory proteins, we attempted to simplify protein-protein interactions to the corresponding domain-ligand recognition and employed peptide arrays to identify such binding events. A group of 12 Src homology (SH) 3 domains from eight human proteins (Swiss-Prot ID: SRC, PLCG1, P85A, NCK1, GRB2, FYN, CRK) were used to screen a peptide target array composed of 1536 potential ligands, which led to the identification of 921 binary interactions between these proteins and 284 targets. To assess the efficiency of the peptide array target screening (PATS) method in identifying authentic protein-protein interactions, we examined a set of interactions mediated by the PLCgamma1 SH3 domain by coimmunoprecipitation and/or affinity pull-downs using full-length proteins and achieved a 75% success rate. Furthermore, we characterized a novel interaction between PLCgamma1 and hematopoietic progenitor kinase 1 (HPK1) identified by PATS and demonstrated that the PLCgamma1 SH3 domain negatively regulated HPK1 kinase activity. Compared to protein interactions listed in the online predicted human interaction protein database (OPHID), the majority of interactions identified by PATS are novel, suggesting that, when extended to the large number of peptide interaction domains encoded by the human genome, PATS should aid in the mapping of the human interactome.

    Proteomics 2007;7;11;1775-85

  • Nuclear phospholipase C gamma: punctate distribution and association with the promyelocytic leukemia protein.

    Ferguson BJ, Dovey CL, Lilley K, Wyllie AH and Rich T

    The marriage between transducers of cell stress stimuli and their nuclear targets is likely to be achieved in part by some spatial-temporal compartmentalization of the relevant effectors. A candidate compartment for these events is the promyelocytic leukemia nuclear domain (PML-ND), within which are found numerous effectors of damage recognition, repair, and cell death. We predicted that the identification of PML-ND cargo proteins would clarify those biochemical pathways that straddle the recognition of cellular damage and cell fate. We now use mass spectrometry of peptides eluted from PML coprecipitates to demonstrate that the gamma 1 (gamma1) isoform of PLC associates with nuclear PML. Though thought to act primarily in the cytoplasm, we use biochemical fractionation combined with immunocytochemistry to verify the nuclear expression of PLC-gamma1 and its interaction with PML. These are the first data to show an interaction between endogenous levels of a phosphoinositide metabolizing protein and the biophysically labile PML-ND by mass spectrometry and add weight to the view that PML-NDs may act as tumor suppressors by sequestering mitogenic effectors.

    Journal of proteome research 2007;6;5;2027-32

  • Evidence of LAT as a dual substrate for Lck and Syk in T lymphocytes.

    Jiang Y and Cheng H

    Department of Medicine and Pennstate Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, United States.

    LAT is a linker protein essential for activation of T lymphocytes. Its rapid tyrosine-phosphorylation upon T cell receptor (TCR) stimulation recruits downstream signaling molecules for membrane targeting and activation. LAT is physically concentrated in cholesterol-enriched membrane microdomains and is known a substrate for Syk/Zap70 kinase. In this study, we demonstrate that LAT serves as a dual substrate for both Lck and Syk kinases. LAT phosphorylation is absent in Lck-deficient J.CaM1.6 cells and Lck is co-precipitated with LAT in pervanadate-activated Jurkat cells. Further, the in vitro kinase assay using purified Lck and LAT shows that Lck directly phosphorylates LAT. Both Lck and Syk, phosphorylate the ITAM-like motifs on LAT at Y171Y191, which is essential for induction of the interaction of LAT with downstream signaling molecules such as Grb2, PLC-gamma1 and c-Cbl, and for activation of MAPK-ERK. Collectively, our data indicate that LAT is an immediate substrate for Lck in one of the earliest events of T cell activation.

    Funded by: NIAID NIH HHS: P30 AI2774

    Leukemia research 2007;31;4;541-5

  • A critical role for the E3-ligase activity of c-Cbl in VEGFR-2-mediated PLCgamma1 activation and angiogenesis.

    Singh AJ, Meyer RD, Navruzbekov G, Shelke R, Duan L, Band H, Leeman SE and Rahimi N

    Department of Periodontology, Boston University Medical School, Boston, MA 02118, USA.

    Activation of phospholipase Cgamma1 (PLCgamma1) by vascular endothelial growth factor receptor-2 (VEGFR-2) in endothelial cells in part is responsible for angiogenesis in vivo. The cellular mechanisms exerting negative control over PLCgamma1 activation, however, remain unaddressed. Here by using in vitro and in vivo binding assays, we show that the Casitas B-lineage lymphoma (c-Cbl) E3 ubiquitin ligase constitutively associates with PLCgamma1 via its C-terminal domain and conditionally interacts with VEGFR-2 via the N-terminal/TKB domain. Site-directed mutagenesis of VEGFR-2 showed that full activation of c-Cbl requires its direct association with phospho-tyrosines 1052 and 1057 of VEGFR-2 via its TKB domain and indirect association with phospho-tyrosine 1173 of VEGFR-2 via PLCgamma1. The tertiary complex formation between VEGFR-2, PLCgamma1 and c-Cbl selectively promotes ubiquitylation and suppression of tyrosine phosphorylation of PLCgamma1 by a proteolysis-independent mechanism. Further analysis showed that association of c-Cbl with VEGFR-2 does not impact ubiquitylation, down-regulation, or tyrosine phosphorylation of VEGFR-2. Silencing of c-Cbl by siRNA revealed that endogenous c-Cbl plays an inhibitory role in angiogenesis. Our data demonstrate that corecruitment of c-Cbl and PLCgamma1 to VEGFR-2 serves as a mechanism to fine-tune the angiogenic signal relay of VEGFR-2.

    Funded by: NCI NIH HHS: CA87986, CA99163, CA99900, R01 CA087986, R01 CA099163, R01 CA099900; NEI NIH HHS: EY012997, EY013706, R01 EY012997

    Proceedings of the National Academy of Sciences of the United States of America 2007;104;13;5413-8

  • The recruitment of phosphatidylinositol 3-kinase to the E-cadherin-catenin complex at the plasma membrane is required for calcium-induced phospholipase C-gamma1 activation and human keratinocyte differentiation.

    Xie Z and Bikle DD

    Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education and University of California, San Francisco, California 94121, USA. Zhongjian.Xie@ucsf.edu

    Calcium induces epidermal keratinocyte differentiation, but the mechanism is not completely understood. We have previously demonstrated that calcium-induced human keratinocyte differentiation requires an intracellular calcium rise caused by phosphatidylinositol 3-kinase (PI3K)-dependent activation of phospholipase C-gamma1. In this study we sought to identify the upstream signaling pathway necessary for calcium activation of PI3K and its subsequent activation of phospholipase C-gamma1. We found that calcium induces the recruitment of PI3K to the E-cadherin-catenin complex at the plasma membrane of human keratinocytes. Knocking-down E-cadherin, beta-catenin, or p120-catenin expression blocked calcium activation of PI3K and phospholipase C-gamma1 and calcium-induced keratinocyte differentiation. However, knocking-down gamma-catenin expression had no effect. Calcium-induced PI3K recruitment to E-cadherin stabilized by p120-catenin at the plasma membrane requires beta-catenin but not gamma-catenin. These data indicate that the recruitment of PI3K to the E-cadherin/beta-catenin/p120-catenin complex via beta-catenin at the plasma membrane is required for calcium-induced phospholipase C-gamma1 activation and, ultimately, keratinocyte differentiation.

    Funded by: NIAMS NIH HHS: P01AR39448, R01 AR038386

    The Journal of biological chemistry 2007;282;12;8695-703

  • Dual role of SLP-76 in mediating T cell receptor-induced activation of phospholipase C-gamma1.

    Beach D, Gonen R, Bogin Y, Reischl IG and Yablonski D

    Rappaport Family Institute for Research in the Medical Sciences, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.

    Phospholipase C-gamma1 (PLC-gamma1) activation depends on a heterotrimeric complex of adaptor proteins composed of LAT, Gads, and SLP-76. Upon T cell receptor stimulation, a portion of PLC-gamma1 is recruited to a detergent-resistant membrane fraction known as the glycosphingolipid-enriched membrane microdomains (GEMs), or lipid rafts, to which LAT is constitutively localized. In addition to LAT, PLC-gamma1 GEM recruitment depended on SLP-76, and, in particular, required the Gads-binding domain of SLP-76. The N-terminal tyrosine phosphorylation sites and P-I region of SLP-76 were not required for PLC-gamma1 GEM recruitment, but were required for PLC-gamma1 phosphorylation at Tyr(783). Thus, GEM recruitment can be insufficient for full activation of PLC-gamma1 in the absence of a second SLP-76-mediated event. Indeed, a GEM-targeted derivative of PLC-gamma1 depended on SLP-76 for T cell receptor-induced phosphorylation at Tyr783 and subsequent NFAT activation. On a biochemical level, SLP-76 inducibly associated with both Vav and catalytically active ITK, which efficiently phosphorylated a PLC-gamma1 fragment at Tyr783 in vitro. Both associations were disrupted upon mutation of the N-terminal tyrosine phosphorylation sites of SLP-76. The P-I region deletion disrupted Vav association and reduced SLP-76-associated kinase activity. A smaller deletion within the P-I region, which does not impair PLC-gamma1 activation, did not impair the association with Vav, but reduced SLP-76-associated kinase activity. These results provide new insight into the multiple roles of SLP-76 and the functional importance of its interactions with other signaling proteins.

    The Journal of biological chemistry 2007;282;5;2937-46

  • On/off-regulation of phospholipase C-gamma 1-mediated signal transduction.

    Choi JH, Ryu SH and Suh PG

    National Research Laboratory of Signaling Network, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea.

    Advances in enzyme regulation 2007;47;104-16

  • Requirement of biphasic calcium release from the endoplasmic reticulum for Fas-mediated apoptosis.

    Wozniak AL, Wang X, Stieren ES, Scarbrough SG, Elferink CJ and Boehning D

    Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.

    Fas receptor is a member of the tumor necrosis factor-alpha family of death receptors that mediate physiologic apoptotic signaling. To investigate the molecular mechanisms regulating calcium mobilization during Fas-mediated apoptosis, we have analyzed the sequential steps leading to altered calcium homeostasis and cell death in response to activation of the Fas receptor. We show that Fas-mediated apoptosis requires endoplasmic reticulum-mediated calcium release in a mechanism dependent on phospholipase C-gamma1 (PLC-gamma1) activation and Ca2+ release from inositol 1,4,5-trisphosphate receptor (IP3R) channels. The kinetics of Ca2+ release were biphasic, demonstrating a rapid elevation caused by PLC-gamma1 activation and a delayed and sustained increase caused by cytochrome c binding to IP3R. Blocking either phase of Ca2+ mobilization was cytoprotective, highlighting PLC-gamma1 and IP3R as possible therapeutic targets for disorders associated with Fas signaling.

    Funded by: NIEHS NIH HHS: R01 ES012018, R01ES012018

    The Journal of cell biology 2006;175;5;709-14

  • Expression and role of phosphatidylcholine-specific phospholipase C in human NK and T lymphocyte subsets.

    Spadaro F, Cecchetti S, Sanchez M, Ausiello CM, Podo F and Ramoni C

    Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.

    We recently reported evidence of phosphatidylcholine-specific phospholipase C (PC-PLC) involvement in NK cell-mediated cytotoxicity and in lytic granule exocytosis. In the present study, different subpopulations of human PBL were investigated in relation to PC-PLC enzyme expression. While a substantial intracellular amount of PC-PLC was detected in all lymphoid subsets, expression of this enzyme on the outer membrane surface reached high levels only in NK cells, was present at low levels in B lymphocytes and in some TCR gamma/delta T cells and was practically absent in CD4(+) and CD8(+ )T lymphocytes. Moreover, in NK cells two different subpopulations were identified, CD56(dim) PC-PLC(bright) and CD56(bright) PC-PLC(low/-) cells, corresponding to distinct subsets with cytolytic and immunoregulatory functions, respectively. Interestingly, the PC-PLC expression level on the NK membrane surface correlated closely with that of the CD16 receptor, suggesting a possible relationship between enzyme externalization and NK cell maturation. In summary, our results suggest that a high PC-PLC expression on the cell membrane surface of PBL is a peculiarity of NK cytolytic cells, in which the enzyme is apparently involved in the ability of this subset to lyse sensitive target cells.

    European journal of immunology 2006;36;12;3277-87

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • Interaction of phospholipase C-gamma1 with villin regulates epithelial cell migration.

    Tomar A, George S, Kansal P, Wang Y and Khurana S

    Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.

    Tyrosine-phosphorylated villin regulates actin dynamics, cell morphology, and cell migration. Previously, we identified four tyrosine phosphorylation sites in the amino-terminal domain of villin. In this study we report six new sites in the carboxyl-terminal region of the villin core. With this study we document all phosphorylatable tyrosine residues in villin and map them to functions of villin. In this study, we identify for the first time the functional relevance of the carboxyl-terminal domains of the villin core. Expression of the carboxyl-terminal phosphorylation site mutant, as well as the villin truncation mutant S1-S3, inhibited cell migration in HeLa and Madin-Darby canine kidney Tet-Off cells, confirming the role of the carboxyl-terminal phosphorylation sites in villin-induced cell migration. The carboxyl-terminal phosphorylation sites were found to be critical for the interaction of villin with its ligand phospholipase C-gamma1 and for its localization to the developing lamellipodia in a motile cell. The results presented here elucidate the molecular basis for tyrosine-phosphorylated villin-induced changes in cell motility.

    Funded by: NIDDK NIH HHS: DK-54755, DK-65006

    The Journal of biological chemistry 2006;281;42;31972-86

  • Action of TFII-I outside the nucleus as an inhibitor of agonist-induced calcium entry.

    Caraveo G, van Rossum DB, Patterson RL, Snyder SH and Desiderio S

    Department of Molecular Biology and Genetics, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

    TFII-I is a transcription factor and a target of phosphorylation by Bruton's tyrosine kinase. In humans, deletions spanning the TFII-I locus are associated with a cognitive defect, the Williams-Beuren cognitive profile. We report an unanticipated role of TFII-I outside the nucleus as a negative regulator of agonist-induced calcium entry (ACE) that suppresses surface accumulation of TRPC3 (transient receptor potential C3) channels. Inhibition of ACE by TFII-I requires phosphotyrosine residues that engage the SH2 (Src-homology 2) domains of phospholipase C-g (PLC-g) and an interrupted, pleckstrin homology (PH)-like domain that binds the split PH domain of PLC-g. Our observations suggest a model in which TFII-I suppresses ACE by competing with TRPC3 for binding to PLC-g.

    Science (New York, N.Y.) 2006;314;5796;122-5

  • Coding region polymorphisms in T cell signal transduction genes. Prevalence and association to development of multiple sclerosis.

    Harbo HF, Ekstrøm PO, Lorentzen AR, Sundvold-Gjerstad V, Celius EG, Sawcer S and Spurkland A

    Institute of Immunology, University of Oslo, Oslo, Norway. h.f.harbo@medisin.uio.no

    We systematically assessed 53 genes involved in T cell signaling, among which 72 SNPs in 32 genes were reported in databases as causing non-synonymous amino acid substitutions. Screening of 41 of these SNPs in DNA pools from 4000 Norwegian controls showed that only 12 SNPs (29%) were polymorphic. These were tested for association to MS in DNA pools from 364 Norwegian MS patients. To eliminate sources of variance introduced by DNA pooling, the SNPs in the best-ranked PLCG1 as well as the PTPN22 gene were thereafter genotyped in individual MS and control samples, however, without finding evidence for association to MS.

    Journal of neuroimmunology 2006;177;1-2;40-5

  • Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia.

    Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH, Bakshi K, Kamins J, Borgmann-Winter KE, Siegel SJ, Gallop RJ and Arnold SE

    Cellular and Molecular Neuropathology Program, Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. hahnc@mail.med.upenn.edu

    Recent molecular genetics studies implicate neuregulin 1 (NRG1) and its receptor erbB in the pathophysiology of schizophrenia. Among NRG1 receptors, erbB4 is of particular interest because of its crucial roles in neurodevelopment and in the modulation of N-methyl-D-aspartate (NMDA) receptor signaling. Here, using a new postmortem tissue-stimulation approach, we show a marked increase in NRG1-induced activation of erbB4 in the prefrontal cortex in schizophrenia. Levels of NRG1 and erbB4, however, did not differ between schizophrenia and control groups. To evaluate possible causes for this hyperactivation of erbB4 signaling, we examined the association of erbB4 with PSD-95 (postsynaptic density protein of 95 kDa), as this association has been shown to facilitate activation of erbB4. Schizophrenia subjects showed substantial increases in erbB4-PSD-95 interactions. We found that NRG1 stimulation suppresses NMDA receptor activation in the human prefrontal cortex, as previously reported in the rodent cortex. NRG1-induced suppression of NMDA receptor activation was more pronounced in schizophrenia subjects than in controls, consistent with enhanced NRG1-erbB4 signaling seen in this illness. Therefore, these findings suggest that enhanced NRG1 signaling may contribute to NMDA hypofunction in schizophrenia.

    Funded by: NIMH NIH HHS: MH63946, MH64045

    Nature medicine 2006;12;7;824-8

  • Recruitment and activation of PLCgamma1 in T cells: a new insight into old domains.

    Braiman A, Barda-Saad M, Sommers CL and Samelson LE

    Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4254, USA.

    Engagement of the T-cell antigen receptor leads to recruitment of phospholipase Cgamma1 (PLCgamma1) to the LAT-nucleated signaling complex and to PLCgamma1 activation in a tyrosine phosphorylation-dependent manner. The mechanism of PLCgamma1 recruitment and the role of PLCgamma1 Src homology (SH) domains in this process remain incompletely understood. Using a combination of biochemical methods and real-time fluorescent imaging, we show here that the N-terminal SH2 domain of PLCgamma1 is necessary but not sufficient for its recruitment. Either the SH3 or C-terminal SH2 domain of PLCgamma1, with the participation of Vav1, c-Cbl and Slp76, are required to stabilize PLCgamma1 recruitment. All three PLCgamma1 SH domains are required for phosphorylation of PLCgamma1 Y783, which is critical for enzyme activation. These novel findings entailed revision of the currently accepted model of PLCgamma1 recruitment and activation in T lymphocytes.

    Funded by: Intramural NIH HHS

    The EMBO journal 2006;25;4;774-84

  • NF-kappaB and Hsp70 are involved in the phospholipase Cgamma1 signaling pathway in colorectal cancer cells.

    Li X, Hua L, Deng F, Bai X, Zeng W, Lu D, Su Y and Luo S

    Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China.

    The majority of deaths from colorectal cancer are due to tumor invasion and metastasis. Induced migration of tumor cell is generally considered to be one critical step in cancer progression to the invasive and metastatic stage. Phospholipase Cgamma1 (PLCgamma1) is a key molecular switch in the process. But, the mechanism and function of PLCgamma1 in colorectal cancer motility are unclear. We showed first in this report that epidermal growth factor (EGF) stimulated the phosphorylation of PLCgamma1 in human colorectal cancer cell line LoVo. Inhibition of PLCgamma1 with the pharmacologic agent U73122 decreased the migration of LoVo cells in a dose-dependent manner while EGF treatment reversed it partially. PLCgamma1 signaling pathway also upregulated the activity of NF-kappaB. Furthermore, expression of Hsp70 was increased by treatment with U73122 or pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor. These data indicated that PLCgamma1 played a pivotal role in the migration of human colorectal cancer cell and first demonstrated that upregulation of NF-kappaB binding activity and downregulation of Hsp70 expression were PLCgamma1-dependent in LoVo cells.

    Life sciences 2005;77;22;2794-803

  • p42(IP4)/centaurin alpha1, a brain-specific PtdIns(3,4,5)P3/Ins(1,3,4,5)P4-binding protein: membrane trafficking induced by epidermal growth factor is inhibited by stimulation of phospholipase C-coupled thrombin receptor.

    Sedehizade F, von Klot C, Hanck T and Reiser G

    Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.

    The brain-specific 42-kDa protein, p42(IP4), contains a N-terminal zinc finger (ZF) motif and a tandem of two pleckstrin homology (PH) domains. p42(IP4) binds in vitro the second messengers phosphatidylinositol(3,4,5)trisphosphate (PtdIns(3,4,5)P3) and inositol(1,3,4,5)tetrakisphosphate (Ins(1,3,4,5)P4). We observed by confocal microscopy in live HEK 293 cells the GFP-p42(IP4), a chimera of human p42(IP4) and green fluorescence protein (GFP). There, we studied the influence of thrombin, which raises Ins(1,3,4,5)P4, on membrane translocation of GFP-p42(IP4), induced by epidermal growth factor (EGF). Thrombin in the presence of LiCl inhibited the EGF-induced membrane recruitment of GFP-p42(IP4). In the absence of LiCl, thrombin weakened the EGF-mediated membrane recruitment of GFP-p42(IP4). Furthermore, the participation of p42(IP4) protein domains on the EGF-mediated membrane translocation was analyzed. We used several p42(IP4) variants, in which one of the domains was deleted. Alternatively, single p42(IP4) domain-GFP fusion proteins were generated. Only the p42(IP4) variant lacking the ZF domain showed a very weak membrane translocation in response to EGF stimulation, but all the other p42(IP4) variants did not translocate. Thus, we conclude that the combination of both PH domains with ZF is required for membrane translocation of p42(IP4).

    Neurochemical research 2005;30;10;1319-30

  • Erythropoietin receptor Y479 couples to ERK1/2 activation via recruitment of phospholipase Cgamma.

    Halupa A, Chohan M, Stickle NH, Beattie BK, Miller BA and Barber DL

    Division of Stem Cell and Developmetal Biology, Ontario Cancer Institute, University of Toronto, Toronto, Ontario, Canada M5G 2M9.

    Red blood cell development is primarily controlled by erythropoietin (EPO). Several studies have revealed the importance of EPO-R Y343 and Y479 for erythroid cell growth, differentiation, and survival. In order to isolate critical signaling proteins that bind to EPO-R, we initiated a Cloning of Ligand Target (COLT) screen using a murine embryonic day 16 phage library and a biotinylated EPO-R Y343 phosphopeptide. One of the clones isolated encodes Phospholipase C (PLC)gamma1. PLCgamma1 is rapidly tyrosine phosphorylated upon EPO stimulation and associates with EPO-R in an SH2-domain-dependent manner. Although PLCgamma1 bound EPO-R Y343, Y401, Y429, Y431, and Y479 in the COLT screen, PLCgamma1 required Y479 for association with EPO-R in Ba/F3-EPO-R cells. Studies have identified EPO-R Y479 as important for ERK activation. Since PI3-kinase binds EPO-R Y479, one group has suggested that ERK activation downstream of PI3-kinase accounts for the importance of this residue in EPO signaling. However, we show that inhibition of PI3-kinase does not abolish ERK activation. Furthermore, we demonstrate interaction of PLCgamma1 with Grb2 and SOS2. Hence, we have identified a novel adapter function for PLCgamma1 in EPO signaling in which recruitment of PLCgamma1 to EPO-R may lead to activation of the ERK pathway.

    Experimental cell research 2005;309;1;1-11

  • Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.

    Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA and White FM

    Biological Engineering Division, Massachusetts Institute of Technnology, Cambridge, Massachusetts 02139, USA.

    Ligand binding to cell surface receptors initiates a cascade of signaling events regulated by dynamic phosphorylation events on a multitude of pathway proteins. Quantitative features, including intensity, timing, and duration of phosphorylation of particular residues, may play a role in determining cellular response, but experimental data required for analysis of these features have not previously been available. To understand the dynamic operation of signaling cascades, we have developed a method enabling the simultaneous quantification of tyrosine phosphorylation of specific residues on dozens of key proteins in a time-resolved manner, downstream of epidermal growth factor receptor (EGFR) activation. Tryptic peptides from four different EGFR stimulation time points were labeled with four isoforms of the iTRAQ reagent to enable downstream quantification. After mixing of the labeled samples, tyrosine-phosphorylated peptides were immunoprecipitated with an anti-phosphotyrosine antibody and further enriched by IMAC before LC/MS/MS analysis. Database searching and manual confirmation of peptide phosphorylation site assignments led to the identification of 78 tyrosine phosphorylation sites on 58 proteins from a single analysis. Replicate analyses of a separate biological sample provided both validation of this first data set and identification of 26 additional tyrosine phosphorylation sites and 18 additional proteins. iTRAQ fragment ion ratios provided time course phosphorylation profiles for each site. The data set of quantitative temporal phosphorylation profiles was further characterized by self-organizing maps, which resulted in identification of several cohorts of tyrosine residues exhibiting self-similar temporal phosphorylation profiles, operationally defining dynamic modules in the EGFR signaling network consistent with particular cellular processes. The presence of novel proteins and associated tyrosine phosphorylation sites within these modules indicates additional components of this network and potentially localizes the topological action of these proteins. Additional analysis and modeling of the data generated in this study are likely to yield more sophisticated models of receptor tyrosine kinase-initiated signal transduction, trafficking, and regulation.

    Funded by: NCI NIH HHS: CA96504; NIDDK NIH HHS: DK070172, DK42816; NIGMS NIH HHS: GM68762

    Molecular & cellular proteomics : MCP 2005;4;9;1240-50

  • Direct phosphorylation of proliferative and survival pathway proteins by RET.

    Panta GR, Du L, Nwariaku FE and Kim LT

    Central Arkansas Veterans Healthcare System, Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA.

    Background: Gain-of-function mutations in the RET tyrosine kinase receptor cause the multiple endocrine neoplasia syndromes type 2a and 2b, and medullary thyroid cancer. We have previously shown that RET signals through focal adhesion kinase (FAK) in medullary thyroid cancer cells and that extracellular signal-regulated kinase (ERK) activity can be blocked by pp2, an inhibitor of both Src and RET. We hypothesized that RET could directly phosphorylate FAK and ERK.

    Methods: RET and ERK kinase activity were measured with the use of an in vitro kinase assay. The relative contribution of RET in phosphorylation of ERK was tested by treating cells with PD98059, an inhibitor of MEK, and the RET inhibitor PP2, then measuring ERK activity.

    Results: Immunoprecipitated, mutant RET from cells or the recombinant RET kinase domain was able to directly phosphorylate tyrosine residues on FAK. Specifically Y576/577, Y861, and Y925, but not the autophosphorylation site Y397 of FAK, were phosphorylated by RET. Similarly ERK 2 could be phosphorylated at Y187 (Y204 in ERK1). Inhibition of both MEK (upstream of ERK) and RET was more potent than inhibition of either alone in decreasing ERK activity. Furthermore, tyrosine residues in DOK1, the p85 subunit of phosphatidylinositol 3' kinase, JNK 1 and 2, P-38, and phospholipase-gamma were directly phosphorylated by RET.

    Conclusions: RET directly phosphorylates tyrosine residues on FAK, ERK 1/2, DOK1, the p85 subunit of of phosphatidylinositol 3' kinase, JNK 1 and 2, P-38, and phospholipase-gamma. These data indicate a direct interaction between RET and a broad range of effector molecules that may contribute to tumor pathogenesis.

    Surgery 2005;138;2;269-74

  • The isoforms of phospholipase C-gamma are differentially used by distinct human NK activating receptors.

    Upshaw JL, Schoon RA, Dick CJ, Billadeau DD and Leibson PJ

    Department of Immunology, and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.

    The two isoforms of phospholipase C (PLC)-gamma couple immune recognition receptors to important calcium- and protein kinase C-dependent cellular functions. It has been assumed that PLC-gamma1 and PLC-gamma2 have redundant functions and that the receptors can use whichever PLC-gamma isoform is preferentially expressed in a cell of a given hemopoietic lineage. In this study, we demonstrate that ITAM-containing immune recognition receptors can use either PLC-gamma1 or PLC-gamma2, whereas the novel NK cell-activating receptor NKG2D preferentially couples to PLC-gamma2. Experimental models evaluating signals from either endogenous receptors (FcR vs NKG2D-DAP10) or ectopically expressed chimeric receptors (with ITAM-containing cytoplasmic tails vs DAP10-containing cytoplasmic tails) demonstrate that PLC-gamma1 and PLC-gamma2 both regulate the functions of ITAM-containing receptors, whereas only PLC-gamma2 regulates the function of DAP10-coupled receptors. These data suggest that specific immune recognition receptors can differentially couple to the two isoforms of PLC-gamma. More broadly, these observations reveal a basis for selectively targeting the functions initiated by distinct immune recognition receptors.

    Funded by: NCI NIH HHS: CA47752

    Journal of immunology (Baltimore, Md. : 1950) 2005;175;1;213-8

  • Molecular cloning and characterization of a novel phospholipase C, PLC-eta.

    Hwang JI, Oh YS, Shin KJ, Kim H, Ryu SH and Suh PG

    Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea.

    PLC (phospholipase C) plays an important role in intracellular signal transduction by hydrolysing phosphatidylinositol 4,5-bisphosphate, a membrane phospholipid. To date, 12 members of the mammalian PLC isoforms have been identified and classified into five isotypes beta, gamma, delta, epsilon and zeta, which are regulated by distinct mechanisms. In the present study, we describe the identification of a novel PLC isoform in the brains of human and mouse, named PLC-eta, which contains the conserved pleckstrin homology domain, X and Y domains for catalytic activity and the C2 domain. The first identified gene encoded 1002 (human) or 1003 (mouse) amino acids with an estimated molecular mass of 115 kDa. The purified recombinant PLC-eta exhibited Ca2+-dependent catalytic activity on phosphatidylinositol 4,5-bisphosphate. Furthermore, molecular biological analysis revealed that the PLC-eta gene was transcribed to several splicing variants. Although some transcripts were detected in most of the tissues we examined, the transcript encoding 115 kDa was restricted to the brain and lung. In addition, the expression of the 115 kDa protein was defined in only nerve tissues such as the brain and spinal cord. In situ hybridization analysis with brain revealed that PLC-eta was abundantly expressed in various regions including cerebral cortex, hippocampus, zona incerta and cerebellar Purkinje cell layer, which are neuronal cell-enriched regions. These results suggest that PLC-eta may perform fundamental roles in the brain.

    The Biochemical journal 2005;389;Pt 1;181-6

  • Calcium-induced human keratinocyte differentiation requires src- and fyn-mediated phosphatidylinositol 3-kinase-dependent activation of phospholipase C-gamma1.

    Xie Z, Singleton PA, Bourguignon LY and Bikle DD

    Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education and University of California-San Francisco, San Francisco, CA 94121, USA. zjxie@itsa.ucsf.edu

    We have previously demonstrated that phospholipase C (PLC)-gamma1 is required for calcium-induced human keratinocyte differentiation. In the present study, we investigated whether the activation of PLC-gamma1 by nonreceptor kinases such as src and fyn plays a role in mediating this process. Our results showed that the combination of dominant negative src and fyn blocked calcium-stimulated PLC-gamma1 activity and human keratinocyte differentiation, whereas each separately has little effect. However, unlike the activation of PLC-gamma1 by epidermal growth factor, calcium-induced activation of PLC-gamma1 was not a result of direct tyrosine phosphorylation. Therefore, we examined an alternative mechanism, in particular phosphatidylinositol 3,4,5-triphosphate (PIP3) formed as a product of phosphatidylinositol 3-kinase (PI3K) activity. PIP3 binds to and activates PLC-gamma1. The combination of dominant negative src and fyn blocked calcium-induced tyrosine phosphorylation of the regulatory subunit of PI3K, p85alpha, and the activity of the catalytic subunit of PI3K. PI3K inhibitors blocked calcium activation of PLC-gamma1 as well as the induction of keratinocyte differentiation markers involucrin and transglutaminase. These data indicate that calcium activates PLC-gamma1 via increased PIP3 formation mediated by c-src- and fyn-activated PI3K. This activation is required for calcium-induced human keratinocyte differentiation.

    Molecular biology of the cell 2005;16;7;3236-46

  • PLCgamma1 is essential for early events in integrin signalling required for cell motility.

    Jones NP, Peak J, Brader S, Eccles SA and Katan M

    Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK.

    Cell motility is a critical event in many processes and is underlined by complex signalling interactions. Although many components have been implicated in different forms of cell migration, identification of early key mediators of these events has proved difficult. One potential signalling intermediate, PLCgamma1, has previously been implicated in growth-factor-mediated chemotaxis but its position and roles in more-complex motility events remain poorly understood. This study links PLCgamma1 to early, integrin-regulated changes leading to cell motility. The key role of PLCgamma1 was supported by findings that specific depletion of PLCgamma1 by small interfering (si)RNA, or by pharmacological inhibition, or the absence of this isoform in PLCgamma1(-/-) cells resulted in the failure to form cell protrusions and undergo cell spreading and elongation in response to integrin engagement. This integrin-PLCgamma1 pathway was shown to underlie motility processes involved in morphogenesis of endothelial cells on basement membranes and invasion of cancer cells into such three-dimensional matrices. By combining cellular and biochemical approaches, we have further characterized this signalling pathway. Upstream of PLCgamma1 activity, beta1 integrin and Src kinase are demonstrated to be essential for phosphorylation of PLCgamma1, formation of protein complexes and accumulation of intracellular calcium. Cancer cell invasion and the early morphological changes associated with cell motility were abolished by inhibition of beta1 integrin or Src. Our findings establish PLCgamma1 as a key player in integrin-mediated cell motility processes and identify other critical components of the signalling pathway involved in establishing a motile phenotype. This suggests a more general role for PLCgamma1 in cell motility, functioning as a mediator of both growth factor and integrin-initiated signals.

    Journal of cell science 2005;118;Pt 12;2695-706

  • Pleckstrin homology domains: two halves make a hole?

    Lemmon MA

    Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA. mlemmon@mail.med.upenn.edu

    In a recent issue of Nature, van Rossum et al. report binding of a "split" pleckstrin homology (PH) domain from phospholipase C-gamma(1) to the TRPC3 ion channel. Through sequence analyses and in vitro studies, they suggest a novel mode of protein-protein interaction in which two PH domain fragments in distinct proteins associate to form an "intermolecular" PH domain that binds inositol phospholipids and is required for ion channel location and function.

    Cell 2005;120;5;574-6

  • SHP-2 modulates interleukin-1-induced Ca2+ flux and ERK activation via phosphorylation of phospholipase Cgamma1.

    Wang Q, Downey GP, Herrera-Abreu MT, Kapus A and McCulloch CA

    Canadian Institutes of Health Research Group in Matrix Dynamics, University of Toronto, Toronto, Ontario M5S 3E8.

    Interleukin-1 (IL-1) signaling is dependent on focal adhesions, structures that are enriched with tyrosine kinases and phosphatases. Because the non-receptor tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is enriched in focal adhesions and IL-1-induced ERK activation requires increased Ca(2+), we determined whether SHP-2 modulates IL-1-induced Ca(2+) signaling. In SHP-2-deficient fibroblasts, IL-1-induced Ca(2+) signaling and ERK activation were markedly diminished compared with cells expressing SHP-2. IL-1-induced Ca(2+) release from the endoplasmic reticulum occurred in the vicinity of focal adhesions and was strongly inhibited by the blockage of phospholipase C (PLC) catalytic activity. Immunoprecipitation and immunostaining showed that SHP-2, the endoplasmic reticulum-specific protein calnexin, and PLCgamma1 were associated with focal adhesions; however, these associations and IL-1-induced ERK activation dissipated after cells were plated on non-integrin substrates. IL-1 promoted phosphorylation of SHP-2 and PLCgamma1. IL-1-induced phosphorylation of PLCgamma1 was diminished in SHP-2-deficient cells but was restored by stable transfection with SHP-2. BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester)) blocked IL-1-induced phosphorylation of SHP-2 and PLCgamma1, indicating mutually dependent interactive roles for Ca(2+), SHP-2, and PLCgamma1 in IL-1 signaling. We conclude that SHP-2 is critical for IL-1-induced phosphorylation of PLCgamma1 and thereby enhances IL-1-induced Ca(2+) release and ERK activation. Focal adhesions co-localizing with the endoplasmic reticulum may provide molecular staging sites required for ERK activation.

    The Journal of biological chemistry 2005;280;9;8397-406

  • T cell receptor-induced activation of phospholipase C-gamma1 depends on a sequence-independent function of the P-I region of SLP-76.

    Gonen R, Beach D, Ainey C and Yablonski D

    Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P. O. Box 9649, Bat Galim, Haifa 31096, Israel.

    SLP-76 forms part of a hematopoietic-specific adaptor protein complex, and is absolutely required for T cell development and activation. T cell receptor (TCR)-induced activation of phospholipase C-gamma1 (PLC-gamma1) depends on three features of SLP-76: the N-terminal tyrosine phosphorylation sites, the Gads-binding site, and an intervening sequence, denoted the P-I region, which binds to the SH3 domain of PLC-gamma1 (SH3(PLC)) via a low affinity interaction. Despite extensive research, the mechanism whereby SLP-76 regulates PLC-gamma1 remains uncertain. In this study, we uncover and explore an apparent paradox: whereas the P-I region as a whole is essential for TCR-induced activation of PLC-gamma1 and nuclear factor of activated T cells (NFAT), no particular part of this region is absolutely required. To better understand the contribution of the P-I region to PLC-gamma1 activation, we mapped the PLC-gamma1-binding site within the region, and created a SLP-76 mutant that fails to bind SH3(PLC), but is fully functional, mediating TCR-induced phosphorylation of PLC-gamma1 at tyrosine 783, calcium flux, and nuclear factor of activated T cells activation. Unexpectedly, full functionality of this mutant was maintained even under less than optimal stimulation conditions, such as a low concentration of the anti-TCR antibody. Another SLP-76 mutant, in which the P-I region was scrambled to abolish any sequence-dependent protein-binding motifs, also retained significant functionality. Our results demonstrate that SLP-76 need not interact with SH3(PLC) to activate PLC-gamma1, and further suggest that the P-I region of SLP-76 serves a structural role that is sequence-independent and is not directly related to protein-protein interactions.

    The Journal of biological chemistry 2005;280;9;8364-70

  • Phospholipase Cgamma1 controls surface expression of TRPC3 through an intermolecular PH domain.

    van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL and Snyder SH

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

    Many ion channels are regulated by lipids, but prominent motifs for lipid binding have not been identified in most ion channels. Recently, we reported that phospholipase Cgamma1 (PLC-gamma1) binds to and regulates TRPC3 channels, components of agonist-induced Ca2+ entry into cells. This interaction requires a domain in PLC-gamma1 that includes a partial pleckstrin homology (PH) domain-a consensus lipid-binding and protein-binding sequence. We have developed a gestalt algorithm to detect hitherto 'invisible' PH and PH-like domains, and now report that the partial PH domain of PLC-gamma1 interacts with a complementary partial PH-like domain in TRPC3 to elicit lipid binding and cell-surface expression of TRPC3. Our findings imply a far greater abundance of PH domains than previously appreciated, and suggest that intermolecular PH-like domains represent a widespread signalling mode.

    Nature 2005;434;7029;99-104

  • Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse.

    Gomez TS, Hamann MJ, McCarney S, Savoy DN, Lubking CM, Heldebrant MP, Labno CM, McKean DJ, McNiven MA, Burkhardt JK and Billadeau DD

    Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.

    Actin reorganization at the immunological synapse is required for the amplification and generation of a functional immune response. Using small interfering RNA, we show here that dynamin 2 (Dyn2), a large GTPase involved in receptor-mediated internalization, did not alter antibody-mediated T cell receptor internalization but considerably affected T cell receptor-stimulated T cell activation by regulating multiple biochemical signaling pathways and the accumulation of F-actin at the immunological synapse. Moreover, Dyn2 interacted directly with the Rho family guanine nucleotide exchange factor Vav1, and this interaction was required for T cell activation. These data identify a functionally important interaction between Dyn2 and Vav1 that regulates actin reorganization and multiple signaling pathways in T lymphocytes.

    Funded by: NCI NIH HHS: CA47752; NIAID NIH HHS: AI44959

    Nature immunology 2005;6;3;261-70

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • Phospholipase cgamma1 is required for activation of store-operated channels in human keratinocytes.

    Tu CL, Chang W and Bikle DD

    Endocrine Unit, Veteran Affairs Medical Center and Department of Medicine, University of California, San Francisco, California 94121, USA. ctu@itsa.ucsf.edu

    Store-operated calcium entry depicts the movement of extracellular Ca2+ into cells through plasma membrane Ca2+ channels activated by depletion of intracellular Ca2+ stores. The members of the canonical subfamily of transient receptor potential channels (TRPC) have been implicated as the molecular bases for store-operated channels (SOC). Here we investigate the role of phospholipase C (PLC) in regulation of native SOC and the expression of endogenous TRPC in human epidermal keratinocytes. Calcium entry in response to store depletion with thapsigargin was reversibly blocked by 2-aminoethoxydiphenyl borane, an effective SOC inhibitor, and suppressed by the diacylglycerol analoge, 1-oleoyl-2-acetyl-sn-glycerol. Inhibition of PLC with U73122 or transfection of a PLCgamma1 antisense cDNA construct completely blocked SOC activity, indicating a requirement for PLC, especially PLCgamma1, in the activation of SOC. RT-PCR and immunoblotting analyses showed that TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 are expressed in keratinocytes. Knockdown of the level of endogenous TRPC1 or TRPC4 inhibited store-operated calcium entry, indicating they are part of the native SOC. Co-immunoprecipitation studies demonstrated that TRPC1, but not TRPC4, interacts with PLCgamma1 and the inositol 1,4,5-trisphosphate receptor (IP3R). The association of TRPC1 with PLCgamma1 and IP3R decreased in keratinocytes with higher intracellular Ca2+, coinciding with a downregulation in SOC activity. Our results indicate that the activation of SOC in keratinocytes depends, at least partly, on the interaction of TRPC with PLCgamma1 and IP3R.

    Funded by: NIA NIH HHS: R01-AG21353; NIAMS NIH HHS: R01-AR38386, R01-AR39448

    The Journal of investigative dermatology 2005;124;1;187-97

  • Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase Cgamma and IP3R.

    Tong Q, Chu X, Cheung JY, Conrad K, Stahl R, Barber DL, Mignery G and Miller BA

    Department of Pediatrics, Milton S. Hershey Medical Center, PO Box 850, Hershey, PA 17033, USA.

    In the present study, we examined the mechanisms through which erythropoietin (Epo) activates the calcium-permeable transient receptor potential protein channel (TRPC)2. Erythroblasts were isolated from the spleens of phenylhydrazine-treated mice, and Epo stimulation resulted in a significant and dose-dependent increase in intracellular calcium concentration ([Ca(2+)](i)). This increase in [Ca(2+)](i) was inhibited by pretreatment with the phospholipase C (PLC) inhibitor U-73122 but not by the inactive analog U-73343, demonstrating the requirement for PLC activity in Epo-modulated Ca(2+) influx in primary erythroid cells. To determine whether PLC is involved in the activation of TRPC2 by Epo, cell models were used to examine this interaction. Single CHO-S cells that expressed transfected Epo receptor (Epo-R) and TRPC2 were identified, and [Ca(2+)](i) was quantitated. Epo-induced Ca(2+) influx through TRPC2 was inhibited by pretreatment with U-73122 or by downregulation of PLCgamma1 by RNA interference. PLC activation results in the production of inositol 1,4,5-trisphosphate (IP(3)), and TRPC2 has IP(3) receptor (IP(3)R) binding sites. To determine whether IP(3)R is involved in Epo-R signaling, TRPC2 mutants were prepared with partial or complete deletions of the COOH-terminal IP(3)R binding domains. In cells expressing TRPC2 IP(3)R binding mutants and Epo-R, no significant increase in [Ca(2+)](i) was observed after Epo stimulation. TRPC2 coassociated with Epo-R, PLCgamma, and IP(3)R, and the association between TRPC2 and IP(3)R was disrupted in these mutants. Our data demonstrate that Epo-R modulates TRPC2 activation through PLCgamma; that interaction of IP(3)R with TRPC2 is required; and that Epo-R, TRPC2, PLCgamma, and IP(3)R interact to form a signaling complex.

    Funded by: NHLBI NIH HHS: HL-58672; NIDDK NIH HHS: DK-46778

    American journal of physiology. Cell physiology 2004;287;6;C1667-78

  • Atypical mechanism of regulation of the Wrch-1 Rho family small GTPase.

    Shutes A, Berzat AC, Cox AD and Der CJ

    Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

    Rho family GTPases are GDP/GTP-regulated molecular switches that regulate signaling pathways controlling diverse cellular processes. Wrch-1 was identified as a Wnt-1 regulated Cdc42 homolog, upregulated by Wnt1 signaling in Wnt1-transformed mouse mammary cells, and was able to promote formation of filopodia and activate the PAK serine/threonine kinase. Wrch-1 shares significant sequence and functional similarity with the Cdc42 small GTPase. However, Wrch-1 possesses a unique N-terminal 46 amino acid sequence extension that contains putative Src homology 3 (SH3) domain-interacting motifs. We determined the contribution of the N terminus to Wrch-1 regulation and activity. We observed that Wrch-1 possesses properties that distinguish it from Cdc42 and other Rho family GTPases. Unlike Cdc42, Wrch-1 possesses an extremely rapid, intrinsic guanine nucleotide exchange activity. Although the N terminus did not influence GTPase or GDP/GTP cycling activity in vitro, N-terminal truncation of Wrch-1 enhanced its ability to interact with and activate PAK and to cause growth transformation. The N terminus associated with the Grb2 SH3 domain-containing adaptor protein, and this association increased the levels of active Wrch-1 in cells. We propose that Grb2 overcomes N-terminal negative regulation to promote Wrch-1 effector interaction. Thus, Wrch-1 exhibits an atypical model of regulation not seen in other Rho family GTPases.

    Funded by: NCI NIH HHS: CA63071, CA67771; NIGMS NIH HHS: GM65533

    Current biology : CB 2004;14;22;2052-6

  • Tec kinases mediate sustained calcium influx via site-specific tyrosine phosphorylation of the phospholipase Cgamma Src homology 2-Src homology 3 linker.

    Humphries LA, Dangelmaier C, Sommer K, Kipp K, Kato RM, Griffith N, Bakman I, Turk CW, Daniel JL and Rawlings DJ

    Molecular Biology Institute and Department of Microbiology and Immunology, UCLA, Los Angeles, California 90095, USA.

    Tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2) is a crucial activation switch that initiates and maintains intracellular calcium mobilization in response to B cell antigen receptor (BCR) engagement. Although members from three distinct families of non-receptor tyrosine kinases can phosphorylate PLCgamma in vitro, the specific kinase(s) controlling BCR-dependent PLCgamma activation in vivo remains unknown. Bruton's tyrosine kinase (Btk)-deficient human B cells exhibit diminished inositol 1,4,5-trisphosphate production and calcium signaling despite a normal inducible level of total PLCgamma2 tyrosine phosphorylation. This suggested that Btk might modify a critical subset of residues essential for PLCgamma2 activity. To evaluate this hypothesis, we generated site-specific phosphotyrosine antibodies recognizing four putative regulatory residues within PLCgamma2. Whereas all four sites were rapidly modified in response to BCR engagement in normal B cells, Btk-deficient B cells exhibited a marked reduction in phosphorylation of the Src homology 2 (SH2)-SH3 linker region sites, Tyr(753) and Tyr(759). Phosphorylation of both sites was restored by expression of Tec, but not Syk, family kinases. In contrast, phosphorylation of the PLCgamma2 carboxyl-terminal sites, Tyr(1197) and Tyr(1217), was unaffected by the absence of functional Btk. Together, these data support a model whereby Btk/Tec kinases control sustained calcium signaling via site-specific phosphorylation of key residues within the PLCgamma2 SH2-SH3 linker.

    Funded by: NCI NIH HHS: CA81140; NICHD NIH HHS: HD37091

    The Journal of biological chemistry 2004;279;36;37651-61

  • Phospholipase C-gamma1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis.

    Choi JH, Park JB, Bae SS, Yun S, Kim HS, Hong WP, Kim IS, Kim JH, Han MY, Ryu SH, Patterson RL, Snyder SH and Suh PG

    Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyojadong, Pohang, Kyungbuk 790-784, Republic of Korea.

    Phospholipase C-gamma1 (PLC-gamma1), which interacts with a variety of signaling molecules through its two Src homology (SH) 2 domains and a single SH3 domain has been implicated in the regulation of many cellular functions. We demonstrate that PLC-gamma1 acts as a guanine nucleotide exchange factor (GEF) of dynamin-1, a 100 kDa GTPase protein, which is involved in clathrin-mediated endocytosis of epidermal growth factor (EGF) receptor. Overexpression of PLC-gamma1 increases endocytosis of the EGF receptor by increasing guanine nucleotide exchange activity of dynamin-1. The GEF activity of PLC-gamma1 is mediated by the direct interaction of its SH3 domain with dynamin-1. EGF-dependent activation of ERK and serum response element (SRE) are both up-regulated in PC12 cells stably overexpressing PLC-gamma1, but knockdown of PLC-gamma1 by siRNA significantly reduces ERK activation. These results establish a new role for PLC-gamma1 in the regulation of endocytosis and suggest that endocytosis of activated EGF receptors may mediate PLC-gamma1-dependent proliferation.

    Journal of cell science 2004;117;Pt 17;3785-95

  • Deficiency of BLNK hampers PLC-gamma2 phosphorylation and Ca2+ influx induced by the pre-B-cell receptor in human pre-B cells.

    Taguchi T, Kiyokawa N, Takenouch H, Matsui J, Tang WR, Nakajima H, Suzuki K, Shiozawa Y, Saito M, Katagiri YU, Takahashi T, Karasuyama H, Matsuo Y, Okita H and Fujimoto J

    Department of Developmental Biology, National Research Institute for Child Health and Development, 3-35-31 Taishido, Setagaya-ku, Tokyo 154-8567, Japan.

    B-cell linker protein (BLNK) is a component of the B-cell receptor (BCR) as well as of the pre-BCR signalling pathway, and BLNK(-/-) mice have a block in B lymphopoiesis at the pro-B/pre-B cell stage. A recent report described the complete loss or drastic reduction of BLNK expression in approximately 50% of human childhood pre-B acute lymphoblastic leukaemias (ALL), therefore we investigated BLNK expression in human pre-B ALL cell lines. One of the four cell lines tested, HPB-NULL cells, was found to lack BLNK expression, and we used these human pre-B ALL cell lines that express and do not express BLNK to investigate the intracellular signalling events following pre-BCR cross-linking. When pre-BCR was cross-linked with anti-micro heavy-chain antibodies, significant phosphorylation of intracellular molecules, including Syk, Shc, ERK MAP kinase, and AKT, and an activation of Ras were observed without regard to deficiency of BLNK expression, suggesting that BLNK is not required for pre-BCR-mediated activation of MAP kinase and phosphatidyl-inositol 3 (PI3) kinase signalling. By contrast, phospholipase C-gamma2 (PLC-gamma2) phosphorylation and an increase in intracellular Ca(2+) level mediated by pre-BCR cross-linking were observed only in the BLNK-expressing cells, indicating that BLNK is essential for PLC-gamma2-induced Ca(2+) influx. Human pre-B cell lines expressing and not expressing BLNK should provide an in vitro model for investigation of the role of BLNK in the pre-BCR-mediated signalling mechanism.

    Immunology 2004;112;4;575-82

  • Mechanism of tyrosine phosphorylation and activation of phospholipase C-gamma 1. Tyrosine 783 phosphorylation is not sufficient for lipase activation.

    Sekiya F, Poulin B, Kim YJ and Rhee SG

    Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

    Phospholipase C-gamma 1 (PLC-gamma 1) is phosphorylated on three tyrosine residues: Tyr-771, Tyr-783, and Tyr-1253. With the use of antibodies specific for each of these phosphorylation sites, we have now determined the kinetics and magnitude of phosphorylation at each site. Phosphorylation of Tyr-783, which is essential for lipase activation, was observed in all stimulated cell types examined. The extent of phosphorylation of Tyr-1253 was approximately 50 to 70% of that of Tyr-783 in cells stimulated with platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), but Tyr-1253 phosphorylation was not detected in B or T cell lines stimulated through B- and T-cell antigen receptors, respectively. Tyr-771 was phosphorylated only at a low level in all cells studied. In cells stimulated with PDGF, phosphorylation and dephosphorylation of Tyr-783 and of Tyr-1253 occurred with similar kinetics; the receptor kinase appeared to phosphorylate both sites, albeit with Tyr-783 favored over Tyr-1253, before the bound PLC-gamma 1 was released, and phosphorylation at the two sites occurred independently. PDGF and EGF induced similar levels of phosphorylation of Tyr-783 and of Tyr-1253 in a cell line that expressed receptors for both growth factors. However, only PDGF, not EGF, elicited substantial PLC activity, suggesting that Tyr-783 phosphorylation was not sufficient for enzyme activation. Finally, concurrent production of phosphatidylinositol 3,4,5-trisphosphate was found to contribute to the activation of phosphorylated PLC-gamma 1.

    The Journal of biological chemistry 2004;279;31;32181-90

  • 90-kDa ribosomal S6 kinase is a direct target for the nuclear fibroblast growth factor receptor 1 (FGFR1): role in FGFR1 signaling.

    Hu Y, Fang X, Dunham SM, Prada C, Stachowiak EK and Stachowiak MK

    Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, New York 142214, USA.

    Fibroblast growth factor receptor 1 (FGFR1) is a transmembrane protein capable of transducing stimulation by secreted FGFs. In addition, newly synthesized FGFR1 enters the nucleus in response to cellular stimulation and during development. Nuclear FGFR1 can transactivate CRE (cAMP responsive element), activate CRE-binding protein (CREB)-binding protein (CBP) and gene activities causing cellular growth and differentiation. Here, a yeast two-hybrid assay was performed to identify FGFR1-binding proteins and the mechanism of nuclear FGFR1 action. Ten FGFR1-binding proteins were identified. Among the proteins detected with the intracellular FGFR1 domain was a 90-kDa ribosomal S6 kinase (RSK1), a regulator of CREB, CBP, and histone phosphorylation. FGFR1 bound to the N-terminal region of RSK1. The FGFR1-RSK1 interaction was confirmed by co-immunoprecipitation and colocalization in the nucleus and cytoplasm of mammalian cells. Predominantly nuclear FGFR1-RSK1 interaction was observed in the rat brain during neurogenesis and in cAMP-stimulated cultured neural cells. In TE671 cells, transfected FGFR1 colocalized and coimmunoprecipitated, almost exclusively, with nuclear RSK1. Nuclear RSK1 kinase activity and RSK1 activation of CREB were enhanced by transfected FGFR1. In contrast, kinase-deleted FGFR1 (TK-), which did not bind to RSK1 failed to stimulate nuclear RSK1 activity or RSK1 activation of CREB. Kinase inactive FGFR1 (K514A) bound effectively to nuclear RSK1, but it failed to stimulate RSK1. Thus, active FGFR1 kinase regulates the functions of nuclear RSK1. The interaction of nuclear FGFR1 with pluripotent RSK1 offers a new mechanism through which FGFR1 may control fundamental cellular processes.

    Funded by: NINDS NIH HHS: NS43621-01HL-49376

    The Journal of biological chemistry 2004;279;28;29325-35

  • Hyaluronan-CD44 interaction with Rac1-dependent protein kinase N-gamma promotes phospholipase Cgamma1 activation, Ca(2+) signaling, and cortactin-cytoskeleton function leading to keratinocyte adhesion and differentiation.

    Bourguignon LY, Singleton PA and Diedrich F

    Department of Medicine, University of California, San Francisco, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121, USA. lillyb@itsa.ucsf.edu

    In this study we have investigated hyaluronan (HA)-CD44 interaction with protein kinase N-gamma (PKNgamma), a small GTPase (Rac1)-activated serine/threonine kinase in human keratinocytes. By using a variety of biochemical and molecular biological techniques, we have determined that CD44 and PKNgamma kinase (molecular mass approximately 120 kDa) are physically linked in vivo. The binding of HA to keratinocytes promotes PKNgamma kinase recruitment into a complex with CD44 and subsequently stimulates Rac1-mediated PKNgamma kinase activity. The Rac1-activated PKNgamma in turn increases threonine (but not serine) phosphorylation of phospholipase C (PLC) gamma1 and up-regulates PLCgamma1 activity leading to the onset of intracellular Ca(2+) mobilization. HA/CD44-activated Rac1-PKNgamma also phosphorylates the cytoskeletal protein, cortactin, at serine/threonine residues. The phosphorylation of cortactin by Rac1-PKNgamma attenuates its ability to cross-link filamentous actin in vitro. Further analyses indicate that the N-terminal antiparallel coiled-coil (ACC) domains of PKNgamma interact directly with Rac1 in a GTP-dependent manner. The binding of HA to CD44 induces PKNgamma association with endogenous Rac1 and its activity in keratinocytes. Transfection of keratinocytes with PKNgamma-ACCcDNA reduces HA-mediated recruitment of endogenous Rac1 to PKNgamma and blocks PKNgamma activity. These findings suggest that the PKNgamma-ACC fragment acts as a potent competitive inhibitor of endogenous Rac1 binding to PKNgamma in vivo. Most important, the PKNgamma-ACC fragment functions as a strong dominant-negative mutant that effectively inhibits HA/CD44-mediated PKNgamma phosphorylation of PLCgamma1 and cortactin as well as keratinocyte signaling (e.g. Ca(2+) mobilization and cortactin-actin binding) and cellular functioning (e.g. cell-cell adhesion and differentiation). Taken together, these findings strongly suggest that hyaluronan-CD44 interaction with Rac1-PKNgamma plays a pivotal role in PLCgamma1-regulated Ca(2+) signaling and cortactin-cytoskeleton function required for keratinocyte cell-cell adhesion and differentiation.

    Funded by: NCI NIH HHS: R01 CA 78633, R01 CA66163; NIAMS NIH HHS: P01 AR39448

    The Journal of biological chemistry 2004;279;28;29654-69

  • Linker for activation of B cells: a functional equivalent of a mutant linker for activation of T cells deficient in phospholipase C-gamma1 binding.

    Janssen E, Zhu M, Craven B and Zhang W

    Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.

    Adaptor proteins have important functions in coupling stimulation through immunoreceptors with downstream events. The adaptor linker for activation of B cells (LAB)/non-T cell activation linker (NTAL) is expressed in various immune cell types and has a similar domain structure as linker for activation of T cells (LAT). In this study we generated a LAB transgenic mouse to compare the functional differences between LAB and LAT. A LAB transgene expressed in LAT-deficient T cells was able to restore T cell development. However, these mice developed severe organomegaly with disorganized lymphoid tissues. Lymphocytes from these transgenic mice were hyperactivated, and T cells produced large amounts of type II cytokines. In addition, these activities appeared to be uncoupled from the TCR. An examination of the signaling capabilities of these T cells revealed that LAB resembled a LAT molecule unable to bind phospholipase C-gamma1.

    Funded by: NIAID NIH HHS: 1R01AI048674, AI056156, R01 AI048674, R01 AI056156

    Journal of immunology (Baltimore, Md. : 1950) 2004;172;11;6810-9

  • Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry.

    Brill LM, Salomon AR, Ficarro SB, Mukherji M, Stettler-Gill M and Peters EC

    Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA. lbrill@gnf.org

    Protein tyrosine phosphorylation cascades are difficult to analyze and are critical for cell signaling in higher eukaryotes. Methodology for profiling tyrosine phosphorylation, considered herein as the assignment of multiple protein tyrosine phosphorylation sites in single analyses, was reported recently (Salomon, A. R.; Ficarro, S. B.; Brill, L. M.; Brinker, A.; Phung, Q. T.; Ericson, C.; Sauer, K.; Brock, A.; Horn, D. M.; Schultz, P. G.; Peters, E. C. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 443-448). The technology platform included the use of immunoprecipitation, immobilized metal affinity chromatography (IMAC), liquid chromatography, and tandem mass spectrometry. In the present report, we show that when using complex mixtures of peptides from human cells, methylation improved the selectivity of IMAC for phosphopeptides and eliminated the acidic bias that occurred with unmethylated peptides. The IMAC procedure was significantly improved by desalting methylated peptides, followed by gradient elution of the peptides to a larger IMAC column. These improvements resulted in assignment of approximately 3-fold more tyrosine phosphorylation sites, from human cell lysates, than the previous methodology. Nearly 70 tyrosine-phosphorylated peptides from proteins in human T cells were assigned in single analyses. These proteins had unknown functions or were associated with a plethora of fundamental cellular processes. This robust technology platform should be broadly applicable to profiling the dynamics of tyrosine phosphorylation.

    Analytical chemistry 2004;76;10;2763-72

  • Munc-18-1 inhibits phospholipase D activity by direct interaction in an epidermal growth factor-reversible manner.

    Lee HY, Park JB, Jang IH, Chae YC, Kim JH, Kim IS, Suh PG and Ryu SH

    Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784 Republic of Korea.

    Mammalian phospholipase D (PLD) has been reported to be a key enzyme for epidermal growth factor (EGF)-induced cellular signaling, however, the regulatory mechanism of PLD is still unclear. In this report, we found that Munc-18-1 is a potent negative regulator of PLD in the basal state and that its inhibition is abolished by EGF stimulation. We investigated PLD-binding proteins obtained from rat brain extract, and identified a 67-kDa protein as Munc-18-1 by peptide-mass finger-printing. The direct association between PLD and Munc-18-1 was confirmed by in vitro binding analysis using the purified proteins, and their binding sites were identified as the phox homology domain of PLD and multiple sites of Munc-18-1. PLD activity was potently inhibited by Munc-18-1 in vitro (IC50 = 2-5 nm), and the cotransfection of COS-7 cells with Munc-18-1 and PLD inhibited basal PLD activity in vivo. In the basal state, Munc-18-1 coprecipitated with PLD and colocalized with PLD2 at the plasma membrane of COS-7 cells. EGF treatment triggered the dissociation of Munc-18-1 from PLD when PLD was activated by EGF. The dissociation of the endogenous interaction between Munc-18-1 and PLD, and the activation of PLD by EGF were also observed in primary cultured chromaffin cells. These results suggest that Munc-18-1 is a potent negative regulator of basal PLD activity and that EGF stimulation abolishes this interaction.

    The Journal of biological chemistry 2004;279;16;16339-48

  • Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons.

    Ballif BA, Arnaud L, Arthur WT, Guris D, Imamoto A and Cooper JA

    Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA. jcooper@fhcrc.org

    During brain development, many neurons migrate long distances before settling and differentiating. These migrations are coordinated to ensure normal development. The secreted protein Reelin controls the locations of many types of neurons, and its absence causes the classic "Reeler" phenotype. Reelin action requires tyrosine phosphorylation of the intracellular protein Dab1 by Src-family kinases. However, little is known about signaling pathways downstream of Dab1. Here, we identify several proteins in embryonic brain extract that bind to tyrosine-phosphorylated, but not non-phosphorylated, Dab1. Of these, the Crk-family proteins (CrkL, CrkI, and CrkII ), bind significant quantities of Dab1 when embryonic cortical neurons are exposed to Reelin. CrkL binding to Dab1 involves two tyrosine phosphorylation sites, Y220 and 232, that are critical for proper positioning of migrating cortical plate neurons. CrkL also binds C3G, an exchange factor (GEF) for the small GTPase Rap1 that is activated in other systems by tyrosine phosphorylation. We report that Reelin stimulates tyrosine phosphorylation of C3G and activates Rap1. C3G and Rap1 regulate adhesion of fibroblasts and other cell types. Regulation of Crk/CrkL, C3G, and Rap1 by Reelin may be involved in coordinating neuron migrations during brain development.

    Funded by: NCI NIH HHS: CA 41072, T32 CA 09657; NINDS NIH HHS: F32 NS046492

    Current biology : CB 2004;14;7;606-10

  • The importance of three membrane-distal tyrosines in the adaptor protein NTAL/LAB.

    Koonpaew S, Janssen E, Zhu M and Zhang W

    Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA.

    NTAL (non-T cell activation linker)/LAB (linker for activation of B cells) is a LAT (linker for activation of T cells)-like molecule that is expressed in B cells, mast cells, natural killer cells, and monocytes. Upon engagement of the B cell receptor or Fc receptors, it is phosphorylated and interacts with Grb2. LAB is capable of rescuing thymocyte development in LAT(-/-) mice. In this study, we utilized various LAB Tyr to Phe mutants to map the phosphorylation and Grb2-binding sites of LAB. We also examined the function of these mutants by investigating their ability to rescue signaling defects in LAT-deficient Jurkat cells and thymocyte development in LAT(-/-) mice. Our results indicated that human LAB was primarily phosphorylated on three membrane-distal tyrosines, Tyr(136), Tyr(193), and Tyr(233). Mutation of these three tyrosines abolished Grb2 binding and LAB function. Our data suggested that these tyrosines are the most important tyrosines for LAB function.

    Funded by: NIAID NIH HHS: 1 R01 AI048674, AI056156, R01 AI056156

    The Journal of biological chemistry 2004;279;12;11229-35

  • Rap1-mediated lymphocyte function-associated antigen-1 activation by the T cell antigen receptor is dependent on phospholipase C-gamma1.

    Katagiri K, Shimonaka M and Kinashi T

    Bayer-chair Department of Molecular Immunology and Allergy and Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.

    The small GTPase, Rap1, is a potent activator of leukocyte integrins and enhances the adhesive activity of lymphocyte function-associated antigen-1 (LFA-1) when stimulated by the T cell receptor (TCR) or chemokines. However, the mechanism by which Rap1 is activated remains unclear. Here, we demonstrate that phospholipase C (PLC)-gamma1 plays a critical role in the signaling pathway leading to Rap1 activation triggered by the TCR. In Jurkat T cells, TCR cross-linking triggered persistent Rap1 activation, and SDF-1 (CXCL12) activated Rap1 transiently. A phospholipase C inhibitor, U73122, abrogated Rap1 activation triggered by both the TCR and SDF-1 (CXCL12). PLC-gamma1-deficient Jurkat T cells showed a marked reduction of TCR-triggered Rap1 activation and adhesion to intercellular adhesion molecule-1 (ICAM-1) mediated by LFA-1. In contrast, SDF-1-triggered Rap1 activation and adhesion were not affected in these cells. Transfection of these cells with an expression plasmid encoding PLC-gamma1 restored Rap1 activation by the TCR and the ability to adhere to ICAM-1, accompanied by polarized LFA-1 surface clustering colocalized with regulator of adhesion and polarization enriched in lymphoid tissues (RAPL). Furthermore, when expressed in Jurkat cells, CalDAG-GEFI, a calcium and diacylglycerol-responsive Rap1 exchange factor, associated with Rap1, and resulted in enhanced Rap1 activation and adhesion triggered by the TCR. Our results demonstrate that TCR activation of Rap1 depends on PLC-gamma1. This activity is likely to be mediated by CalDAG-GEFI, which is required to activate LFA-1.

    The Journal of biological chemistry 2004;279;12;11875-81

  • GIT1 mediates Src-dependent activation of phospholipase Cgamma by angiotensin II and epidermal growth factor.

    Haendeler J, Yin G, Hojo Y, Saito Y, Melaragno M, Yan C, Sharma VK, Heller M, Aebersold R and Berk BC

    Center for Cardiovascular Research and Department of Medicine, University of Rochester, Rochester, New York 14642, USA.

    Critical events for vasoconstrictor and growth factor signal transduction include stimulation of phospholipase Cgamma (PLCgamma) and elevation of intracellular calcium. c-Src has been proposed as a common mediator for these signals activated by both G protein-coupled receptors (GPCRs) and tyrosine kinase-coupled receptors (TKRs). Here we show that the GPCR kinase-interacting protein-1 (GIT1) is a substrate for c-Src that undergoes tyrosine phosphorylation in response to angiotensin II (AngII) and EGF in vascular smooth muscle and 293 cells. GIT1 associates with PLCgamma via the PLCgamma Src homology 2 and 3 domains constitutively, and the interaction is unaltered by AngII and EGF. GIT1 interaction with PLCgamma is required for PLCgamma activation based on inhibition of tyrosine phosphorylation and calcium mobilization after GIT1 knockdown with antisense GIT1 oligonucleotides. GIT1 interacts with PLCgamma via a novel Spa homology domain (SHD) and a coiled-coil domain. Deletion mutation analysis showed that GIT1(SHD) is required for AngII- and EGF-mediated PLCgamma activation (measured by phosphorylation of Tyr783 and inositol 1,4,5-trisphosphate formation). We propose that GIT1 is a novel regulator of PLCgamma function that mediates PLCgamma activation by c-Src and integrates signal transduction by GPCRs and TKRs.

    Funded by: NHLBI NIH HHS: R01 HL49192, R01 HL59975

    The Journal of biological chemistry 2003;278;50;49936-44

  • The phospholipase C gamma 1-dependent pathway of Fc epsilon RI-mediated mast cell activation is regulated independently of phosphatidylinositol 3-kinase.

    Tkaczyk C, Beaven MA, Brachman SM, Metcalfe DD and Gilfillan AM

    Laboratory of Allergic Diseases, National Institute of Allergy and Infectious National Institutes of Health, Bethesda, Maryland 20892, USA.

    Mast cell degranulation following Fc epsilon RI aggregation is generally believed to be dependent on phosphatidylinositide 3-kinase (PI 3-kinase)-mediated phospholipase C (PLC)gamma activation. Here we report evidence that the PLC gamma 1-dependent pathway of Fc epsilon RI-mediated activation of mast cells is independent of PI 3-kinase activation. In primary cultures of human mast cells, Fc epsilon RI aggregation induced a rapid translocation and phosphorylation of PLC gamma 1, and subsequent inositol trisphosphate (IP3) production, which preceded PI 3-kinase-related signals. In addition, although PI 3-kinase-mediated responses were completely inhibited by wortmannin, even at high concentrations, this PI 3-kinase inhibitor had no effect on parameters of Fc epsilon RI-mediated PLC gamma activation, and had little effect on the initial increase in intracellular calcium levels that correlated with PLC gamma activation. Wortmannin, however, did produce a partial (approximately 50%) concentration-dependent inhibition of Fc epsilon RI-mediated degranulation in human mast cells and a partial inhibition of the later calcium response at higher concentrations. Further studies, conducted in mast cells derived from the bone marrow of mice deficient in the p85 alpha and p85 beta subunits of PI 3-kinase, also revealed no defects in Fc epsilon RI-mediated PLC gamma 1 activation. These data are consistent with the conclusion that the PLC gamma-dependent component of Fc epsilon RI-mediated calcium flux leading to degranulation of mast cells is independent of PI 3-kinase. However, PI 3-kinase may contribute to the later phase of Fc epsilon RI-mediated degranulation in human mast cells.

    The Journal of biological chemistry 2003;278;48;48474-84

  • Tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCgamma1 and Sam68.

    Paronetto MP, Venables JP, Elliott DJ, Geremia R, Rossi P and Sette C

    Department of Public Health and Cell Biology, Section of Anatomy, University of Rome 'Tor Vergata', Rome, Italy.

    Tr-kit is a truncated form of the tyrosine kinase receptor c-kit expressed in the haploid phase of spermatogenesis. Upon microinjection, tr-kit triggers metaphase-to-anaphase transition in mouse eggs by the sequential activation of Fyn and PLCgamma1. Here, we show that tr-kit promotes the interaction of several tyrosine-phosphorylated proteins with the SH3 domain of PLCgamma1. Western blot analysis indicates that one of these proteins is Sam68, an RNA-binding protein that is known to interact with and be phosphorylated by Src-like kinases in mitosis. tr-kit promotes the association of Sam68 with PLCgamma1 and Fyn in a multimolecular complex, as demonstrated by co-immunoprecipitation of the phosphorylated forms of these proteins using antibodies directed to anyone of the partners of the complex. Expression of tr-kit potentiates the interaction of endogenous Sam68 also with the SH3 domain of Fyn. Furthermore, the subcellular localization of Sam68 is affected by tr-kit through activation of Fyn in live cells. Lastly, we show that interaction with the SH3 domain of Fyn triggers the release of Sam68 from bound RNA. Thus, our data suggest that tr-kit promotes the formation of a multimolecular complex composed of Fyn, PLCgamma1 and Sam68, which allows phosphorylation of PLCgamma1 by Fyn, and may modulate RNA metabolism.

    Oncogene 2003;22;54;8707-15

  • Villin enhances hepatocyte growth factor-induced actin cytoskeleton remodeling in epithelial cells.

    Athman R, Louvard D and Robine S

    Laboratoire de Morphogenèse et Signalisation Cellulaires, Institut Curie Unité Mixte Recherche 144, 75248 Paris, France.

    Villin is an actin-binding protein localized to intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a calcium-dependent manner. Although villin is not necessary for the bundling of F-actin in vivo, it is important for the reorganization of the actin cytoskeleton elicited by stress during both physiological and pathological conditions (Ferrary et al., 1999). These data suggest that villin may be involved in actin cytoskeleton remodeling necessary for many processes requiring cellular plasticity. Here, we study the role of villin in hepatocyte growth factor (HGF)-induced epithelial cell motility and morphogenesis. For this purpose, we used primary cultures of enterocytes derived from wild-type and villin knock-out mice and Madin-Darby canine kidney cells, expressing villin in an inducible manner. In vitro, we show that epithelial cell lysates from villin-expressing cells induced dramatic, calcium-dependent severing of actin filaments. In cell culture, we found that villin-expressing cells exhibit enhanced cell motility and morphogenesis upon HGF stimulation. In addition, we show that the ability of villin to potentiate HGF-induced actin reorganization occurs through the HGF-activated phospholipase Cgamma signaling pathway. Collectively, these data demonstrate that villin acts as a regulator of HGF-induced actin dynamics.

    Molecular biology of the cell 2003;14;11;4641-53

  • Role of the pleckstrin homology domain of PLCgamma1 in its interaction with the insulin receptor.

    Kwon YK, Jang HJ, Kole S, He HJ and Bernier M

    Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institute of Health, Baltimore, MD 21224-6825, USA.

    A thiol-reactive membrane-associated protein (TRAP) binds covalently to the cytoplasmic domain of the human insulin receptor (IR) beta-subunit when cells are treated with the homobifunctional cross-linker reagent 1,6-bismaleimidohexane. Here, TRAP was found to be phospholipase C gamma1 (PLCgamma1) by mass spectrometry analysis. PLCgamma1 associated with the IR both in cultured cell lines and in a primary culture of rat hepatocytes. Insulin increased PLCgamma1 tyrosine phosphorylation at Tyr-783 and its colocalization with the IR in punctated structures enriched in cortical actin at the dorsal plasma membrane. This association was found to be independent of PLCgamma1 Src homology 2 domains, and instead required the pleckstrin homology (PH)-EF-hand domain. Expression of the PH-EF construct blocked endogenous PLCgamma1 binding to the IR and inhibited insulin-dependent phosphorylation of mitogen-activated protein kinase (MAPK), but not AKT. Silencing PLCgamma1 expression using small interfering RNA markedly reduced insulin-dependent MAPK regulation in HepG2 cells. Conversely, reconstitution of PLCgamma1 in PLCgamma1-/- fibroblasts improved MAPK activation by insulin. Our results show that PLCgamma1 is a thiol-reactive protein whose association with the IR could contribute to the activation of MAPK signaling by insulin.

    The Journal of cell biology 2003;163;2;375-84

  • Protein kinase C alpha phosphorylates and negatively regulates diacylglycerol kinase zeta.

    Luo B, Prescott SM and Topham MK

    Huntsman Cancer Institute, and Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA.

    Diacylglycerol kinase (DGK) terminates diacylglycerol (DAG) signaling by phosphorylating DAG to produce phosphatidic acid, which also has signaling properties. Thus, precise control of DGK activity is essential for proper signal transduction. We demonstrated previously that a peptide corresponding to the myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation site domain (PSD) in DGK zeta was phosphorylated in vitro by an active fragment of protein kinase C (PKC). In the present study, we tested full-length DGK zeta and found that PKC alpha phosphorylated DGK zeta on serines within the MARCKS PSD in vitro and in vivo. DGK zeta also coimmunoprecipitated with PKC alpha, suggesting that they reside in a regulated signaling complex. We then tested whether phosphorylation affected DAG kinase activity. We found that a mutant (DGK zeta S/D) in which serines within the MARCKS PSD were altered to aspartates (to mimic phosphorylation) had lower activity compared with wild-type DGK zeta or a control mutant (DGK zeta S/N) in which the same serines were changed to asparagines. Furthermore, activation of PKC alpha by phorbol 12-myristate 13-acetate inhibited the activity of wild-type DGK zeta, but not DGK zeta S/D, in human embryonic kidney 293 cells. These results suggest that by phosphorylating the MARCKS PSD, PKC alpha attenuates DGK zeta activity. Supporting this, we found that cells expressing DGK zeta S/D had higher DAG levels and grew more rapidly compared with cells expressing DGK zeta S/N that could not be phosphorylated. Taken together, these results indicate that PKC alpha phosphorylates DGK zeta in cells, and this phosphorylation inhibits its kinase activity to remove cellular DAG, thereby affecting cell growth.

    The Journal of biological chemistry 2003;278;41;39542-7

  • Key role of PLC-gamma in EGF protection of epithelial barrier against iNOS upregulation and F-actin nitration and disassembly.

    Banan A, Zhang LJ, Shaikh M, Fields JZ, Farhadi A and Keshavarzian A

    Department of Internal Medicine, Section of Gastroenterology and Nutrition, Rush University School of Medicine, 1725 W. Harrison, Suite 206, Chicago, IL 60612, USA. ali_banan@rush.edu

    Upregulation of inducible nitric oxide synthase (iNOS) is key to oxidant-induced disruption of intestinal (Caco-2) monolayer barrier, and EGF protects against this disruption by stabilizing the cytoskeleton. PLC-gamma appears to be essential for monolayer integrity. We thus hypothesized that PLC-gamma activation is essential in EGF protection against iNOS upregulation and the consequent cytoskeletal oxidation and disarray and monolayer disruption. Intestinal cells were transfected to stably overexpress PLC-gamma or to inhibit its activation and were then pretreated with EGF +/- oxidant (H2O2). Wild-type (WT) intestinal cells were treated similarly. Relative to WT monolayers exposed to oxidant, pretreatment with EGF protected monolayers by: increasing native PLC-gamma activity; decreasing six iNOS-related variables (iNOS activity/protein, NO levels, oxidative stress, actin oxidation/nitration); increasing stable F-actin; maintaining actin stability; and enhancing barrier integrity. Relative to WT cells exposed to oxidant, transfected monolayers overexpressing PLC-gamma (+2.3-fold) were protected, as indicated by decreases in all measures of iNOS-driven pathway and enhanced actin and barrier integrity. Overexpression-induced inhibition of iNOS was potentiated by low doses of EGF. Stable inhibition of PLC-gamma prevented all measures of EGF protection against iNOS upregulation. We conclude that 1) EGF protects against oxidative stress disruption of intestinal barrier by stabilizing F-Actin, largely through the activation of PLC-gamma and downregulation of iNOS pathway; 2) activation of PLC-gamma is by itself essential for cellular protection against oxidative stress of iNOS; and 3) the ability to suppress iNOS-driven reactions and cytoskeletal oxidation and disassembly is a novel mechanism not previously attributed to the PLC family of isoforms.

    Funded by: NIDDK NIH HHS: DK-60511

    American journal of physiology. Cell physiology 2003;285;4;C977-93

  • Lipid raft localization of cell surface E-selectin is required for ligation-induced activation of phospholipase C gamma.

    Kiely JM, Hu Y, García-Cardeña G and Gimbrone MA

    Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.

    E-selectin, an endothelial cell surface adhesion receptor for leukocytes, also acts as a signaling receptor. Upon multivalent ligation, E-selectin transduces outside-in signals into the endothelium leading to changes in intracellular Ca(2+) concentration and activation of the mitogen-activated protein kinase signaling pathway. In addition, following leukocyte engagement, E-selectin associates via its cytoplasmic domain with components of the actin cytoskeleton and undergoes alterations in phosphorylation state that result in changes in gene expression. In this study, we show that E-selectin is localized in cholesterol-rich lipid rafts at the cell surface, and that upon ligation E-selectin clusters and redistributes in the plasma membrane colocalizing with a fraction of caveolin-1-containing rafts. In addition, we demonstrate that leukocyte adhesion via E-selectin results in association with and activation of phospholipase Cgamma (PLCgamma). Moreover, we show that disruption of lipid rafts with the cholesterol-depleting drug methyl-beta-cyclodextrin disrupts the raft localization of E-selectin as well as the ligation-induced association of E-selectin with PLCgamma, and subsequent tyrosine phosphorylation of PLCgamma. In contrast, cholesterol depletion has no effect on E-selectin-dependent mitogen-activated protein kinase activation. Thus, these findings demonstrate that the presence of E-selectin in lipid rafts is necessary for its association with, and activation of, PLCgamma, and suggest that this subcellular localization of E-selectin is related to its signaling function(s) during leukocyte-endothelial interactions.

    Funded by: NHLBI NIH HHS: P01-HL36028

    Journal of immunology (Baltimore, Md. : 1950) 2003;171;6;3216-24

  • Src kinase mediates the regulation of phospholipase C-gamma activity by glycosphingolipids.

    Shu L and Shayman JA

    Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0676, USA.

    Glucosylceramide-based glycosphingolipids have been previously demonstrated to regulate negatively the formation of inositol 1,4,5-trisphosphate by phospholipase C-gamma1. In the present study, the depletion of endogenous glucosylceramide by D-t-EtDO-P4 in cultured ECV304 cells induced autophosphorylation of Src kinase at tyrosine residue 418 within the catalytic loop and dephosphorylation of Src kinase at tyrosine residues 529 within the carboxyl-terminal regulatory region. Phosphotransferase activities of Src kinase were also induced in the glucosylceramide-depleted cells. c-Src kinase activity and phosphorylations at Src Tyr-418 and epidermal growth factor (EGF) receptor Tyr-1068 were significantly enhanced by bradykinin in response to 100 nm D-t-EtDO-P4 compared with control cells. The phosphorylation and dephosphorylation on Tyr-418 and Tyr-529 residues of c-Src were reversed by treatment of 4-amino-5-(4-chlorophenyl)-7-t-butyl(pyrazolo)[3,4-d]pyrimidine (PP2), an inhibitor of Src kinase, in control cells. Glucosylceramide-depleted cells resisted treatment with PP2, and both phosphorylation of Tyr-418 and dephosphorylation of Tyr-529 induced by depletion of glucosylceramide were maintained. Compared with untreated cells, tyrosine phosphorylation of phospholipase C-gamma1 was enhanced by EGF stimulation in glucosylceramide-depleted cells, associated with enhanced tyrosine phosphorylation of the EGF receptor at Tyr-1068 and Tyr-1086 stimulated by EGF. The Src inhibitor, PP2, significantly blocked EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 in control cells, whereas in glucosylceramide-depleted cells, suppression of Src kinase activity by PP2 toward EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 was less significant. Thus the activation of Src kinase by depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells is a critical up-stream event in the activation of phospholipase C-gamma1.

    Funded by: NIDDK NIH HHS: R01-DK55823

    The Journal of biological chemistry 2003;278;33;31419-25

  • Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1.

    Bivona TG, Pérez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, Cullen PJ, Pellicer A, Cox AD and Philips MR

    Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA.

    Ras proteins regulate cellular growth and differentiation, and are mutated in 30% of cancers. We have shown recently that Ras is activated on and transmits signals from the Golgi apparatus as well as the plasma membrane but the mechanism of compartmentalized signalling was not determined. Here we show that, in response to Src-dependent activation of phospholipase Cgamma1, the Ras guanine nucleotide exchange factor RasGRP1 translocated to the Golgi where it activated Ras. Whereas Ca(2+) positively regulated Ras on the Golgi apparatus through RasGRP1, the same second messenger negatively regulated Ras on the plasma membrane by means of the Ras GTPase-activating protein CAPRI. Ras activation after T-cell receptor stimulation in Jurkat cells, rich in RasGRP1, was limited to the Golgi apparatus through the action of CAPRI, demonstrating unambiguously a physiological role for Ras on Golgi. Activation of Ras on Golgi also induced differentiation of PC12 cells, transformed fibroblasts and mediated radioresistance. Thus, activation of Ras on Golgi has important biological consequences and proceeds through a pathway distinct from the one that activates Ras on the plasma membrane.

    Nature 2003;424;6949;694-8

  • The direct interaction of phospholipase C-gamma 1 with phospholipase D2 is important for epidermal growth factor signaling.

    Jang IH, Lee S, Park JB, Kim JH, Lee CS, Hur EM, Kim IS, Kim KT, Yagisawa H, Suh PG and Ryu SH

    Department of Life Science and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.

    The epidermal growth factor (EGF) receptor has an important role in cellular proliferation, and the enzymatic activity of phospholipase C (PLC)-gamma1 is regarded to be critical for EGF-induced mitogenesis. In this study, we report for the first time a phospholipase complex composed of PLC-gamma1 and phospholipase D2 (PLD2). PLC-gamma1 is co-immunoprecipitated with PLD2 in COS-7 cells. The results of in vitro binding analysis and co-immunoprecipitation analysis in COS-7 cells show that the Src homology (SH) 3 domain of PLC-gamma1 binds to the proline-rich motif within the Phox homology (PX) domain of PLD2. The interaction between PLC-gamma1 and PLD2 is EGF stimulation-dependent and potentiates EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and Ca(2+) increase. Mutating Pro-145 and Pro-148 within the PX domain of PLD2 to leucines disrupts the interaction between PLC-gamma1 and PLD2 and fails to potentiate EGF-induced IP(3) formation and Ca(2+) increase. However, neither PLD2 wild type nor PLD2 mutant affects the EGF-induced tyrosine phosphorylation of PLC-gamma1. These findings suggest that, upon EGF stimulation, PLC-gamma1 directly interacts with PLD2 and this interaction is important for PLC-gamma1 activity.

    The Journal of biological chemistry 2003;278;20;18184-90

  • Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells.

    Meyer RD, Latz C and Rahimi N

    Departments of Ophthalmology and Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.

    Vascular endothelial growth factor-mediated angiogenic signal transduction relay is achieved by coordinated induction of endothelial cell proliferation, migration, and differentiation. These complex cellular processes are most likely controlled by activation of both cooperative and antagonistic signals by vascular endothelial growth factor receptors (VEGFRs). Here, we investigated the contribution of tyrosine-phosphorylated residues of VEGFR-2/fetal liver kinase-1 to endothelial cell proliferation and differentiation and activation of signaling proteins. Mutation of tyrosine 1006 of VEGFR-2 to phenylalanine severely impaired the ability of this receptor to stimulate endothelial cell differentiation and tubulogenesis. Paradoxically, the mutant receptor stimulated endothelial cell proliferation far better than the wild-type receptor. Further analysis showed that tyrosine 1006 is responsible for phospholipase Cgamma1 (PLCgamma1) activation and intracellular calcium release in endothelial cells. Activation of PLCgamma1 was selectively mediated by tyrosine 1006. Mutation of tyrosines 799, 820, 949, 994, 1080, 1173, and 1221 had no measurable effect on the ability of VEGFR-2 to stimulate PLCgamma1 activation. Association of VEGFR-2 with PLCgamma1 was mainly established between tyrosine 1006 and the C-terminal SH2 domain of PLCgamma1 in vitro and in vivo. Taken together, the results indicate that phosphorylation of tyrosine 1006 is essential for VEGFR-2-mediated PLCgamma1 activation, calcium flux, and cell differentiation. More importantly, VEGFR-2-mediated endothelial cell proliferation is inversely correlated with the ability of VEGFR-2 to associate with and activate PLCgamma1.

    Funded by: NEI NIH HHS: EY 012997, R01 EY012997, R03 EY013706

    The Journal of biological chemistry 2003;278;18;16347-55

  • Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP.

    Moon SY, Zang H and Zheng Y

    Division of Experimental Hematology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA.

    The Rho GTPase-activating proteins (RhoGAPs) are a family of multifunctional molecules that transduce diverse intracellular signals by regulating Rho GTPase activities. A novel RhoGAP family member, p200RhoGAP, is cloned in human and mouse. The murine p200RhoGAP shares 86% sequence identity with the human homolog. In addition to a conserved RhoGAP domain at the N terminus, multiple proline-rich motifs are found in the C-terminal region of the molecules. Northern blot analysis revealed a brain-specific expression pattern of p200RhoGAP. The RhoGAP domain of p200RhoGAP stimulated the GTPase activities of Rac1 and RhoA in vitro and in vivo, and the conserved catalytic arginine residue (Arg-58) contributed to the GAP activity. Expression of the RhoGAP domain of p200RhoGAP in Swiss 3T3 fibroblasts inhibited actin stress fiber formation stimulated by lysophosphatidic acid and platelet-derived growth factor-induced membrane ruffling but not Bradykinin-induced filopodia formation. Endogenous p200RhoGAP was localized to cortical actin in naive N1E-115 neuroblastoma cells and to the edges of extended neurites of differentiated N1E-115 cells. Transient expression of the RhoGAP domain and the full-length molecule, but not the catalytic arginine mutants, readily induced a differentiation phenotype in N1E-115 cells. Finally, p200RhoGAP was capable of binding to the Src homology 3 domains of Src, Crk, and phospholipase Cgamma in vitro and became tyrosine-phosphorylated upon association with activated Src in cells. These results suggest that p200RhoGAP is involved in the regulation of neurite outgrowth by exerting its RhoGAP activity and that its cellular activity may be regulated through interaction with Src-like tyrosine kinases.

    Funded by: NIGMS NIH HHS: GM60523

    The Journal of biological chemistry 2003;278;6;4151-9

  • LAB: a new membrane-associated adaptor molecule in B cell activation.

    Janssen E, Zhu M, Zhang W, Koonpaew S and Zhang W

    Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.

    The adaptor molecule, linker for activation of T cells (LAT), is essential in T cell activation and development; a similar molecule in B cells has not yet been identified. Here, we report the identification of a new adaptor protein, linker for activation of B cells (LAB). Like LAT, LAB was localized to lipid rafts. Upon activation via the B cell receptor (BCR), LAB was phosphorylated and interacted with the adaptor protein Grb2. Decreased LAB expression led to a reduction in BCR-mediated calcium flux and Erk activation. LAB rescued thymocyte development but not normal T cell activation in LAT(-/-) mice. Our data suggest that LAB links BCR engagement to downstream signaling pathways.

    Funded by: NIAID NIH HHS: 1R01 AI48674-01, R01 AI048674, R01 AI056156

    Nature immunology 2003;4;2;117-23

  • Identification of p115 as a PLCgamma1-binding protein and the role of Src homology domains of PLCgamma1 in the vesicular transport.

    Han SJ, Lee JH, Kim CG and Hong SH

    School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.

    In order to gain further insight into the function(s) of PLCgamma1, we tried to identify the binding partners that can interact with the SH223 domains of PLCgamma1. Immunoscreening was performed with the purified antisera that are specific to SH223-binding proteins. Several immunoreactive clones were identified as the putative binding proteins and one of them was identified as p115. p115 was reported to be required for transcytotic fusion and subsequent binding of the vesicles to the target membrane. The interaction between PLCgamma1 and p115 was specific to carboxyl-terminal SH2 domain and SH3 domain of PLCgamma1, and also confirmed by biochemical approaches such as co-immunoprecipitation, pull-down assay, and glycerol gradient fractionation. To further characterize the role of SH domains of PLCgamma1 in the vesicle transport pathway, secreted form of alkaline phosphatase (SEAP) reporter assay was carried out. When the SH2 and/or SH3 domains of PLCgamma1 were deleted, the secretion of SEAP was significantly reduced. These findings indicate that the SH2 and SH3 domains of PLCgamma1 may play a role(s) in the process of the vesicle transport via interaction with other vesicle-associated proteins such as p115.

    Biochemical and biophysical research communications 2003;300;3;649-55

  • Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa and phospholipase C gamma 1 are required for NF-kappa B activation and lipid raft recruitment of protein kinase C theta induced by T cell costimulation.

    Dienz O, Möller A, Strecker A, Stephan N, Krammer PH, Dröge W and Schmitz ML

    Division of Immunochemistry, German Cancer Research Center (Deutsches Krebsforschungszentrum), Im Neuenheimer Feld, Heidelberg, Germany.

    The NF-kappaB activation pathway induced by T cell costimulation uses various molecules including Vav1 and protein kinase C (PKC)theta. Because Vav1 inducibly associates with further proteins including phospholipase C (PLC)gamma1 and Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), we investigated their role for NF-kappaB activation in Jurkat leukemia T cell lines deficient for expression of these two proteins. Cells lacking SLP-76 or PLCgamma1 failed to activate NF-kappaB in response to T cell costimulation. In contrast, replenishment of SLP-76 or PLCgamma1 expression restored CD3/CD28-induced IkappaB kinase (IKK) activity as well as NF-kappaB DNA binding and transactivation. PKCtheta activated NF-kappaB in SLP-76- and PLCgamma1-deficient cells, showing that PKCtheta is acting further downstream. In contrast, Vav1-induced NF-kappaB activation was normal in SLP-76(-) cells, but absent in PLCgamma1(-) cells. CD3/CD28-stimulated recruitment of PKCtheta and IKKgamma to lipid rafts was lost in SLP-76- or PLCgamma1-negative cells, while translocation of Vav1 remained unaffected. Accordingly, recruitment of PKCtheta to the immunological synapse strictly relied on the presence of SLP-76 and PLCgamma1, but synapse translocation of Vav1 identified in this study was independent from both proteins. These results show the importance of SLP-76 and PLCgamma1 for NF-kappaB activation and raft translocation of PKCtheta and IKKgamma.

    Journal of immunology (Baltimore, Md. : 1950) 2003;170;1;365-72

  • Signaling initiated by overexpression of the fibroblast growth factor receptor-1 investigated by mass spectrometry.

    Hinsby AM, Olsen JV, Bennett KL and Mann M

    MDS Proteomics A/S, Staermosegaardsvej 6, Odense DK-5230, Denmark. hinsby@plab.ku.dk

    Overexpression of the fibroblast growth factor receptor-1 (FGFR-1), a prototypic receptor tyrosine kinase, is a feature of several human tumors. In human 293 cells overexpression of the FGFR-1 leads to constitutive activation of the receptor with concomitant sustained high increase in the cellular level of phosphotyrosine-containing proteins. Here we use mass spectrometry to study the tyrosine-phosphorylated proteins induced by overexpression of the FGFR-1. Several well known components of FGFR-1 signaling were identified along with two novel candidates: NS-1-associated protein-1 and target of Myb 1-like protein. We subsequently applied mass spectrometry precursor ion scanning to identify 22 tyrosine phosphorylation sites distributed on six substrate proteins of the FGFR-1 or downstream tyrosine kinases. Novel in vivo tyrosine phosphorylation sites were found in the FGFR-1, phospholipase Cgamma, p90 ribosomal S6 kinase, cortactin, and NS-1-associated protein-1 as a result of sustained FGFR-1 signaling, and we propose these as functional links to downstream molecular and cellular processes.

    Molecular & cellular proteomics : MCP 2003;2;1;29-36

  • [Effect of EGF on ubiquitination and proteasome-dependent degradation of phospholipase C gamma1 in A431 cells].

    Evdonin AL, Tsupkina NV, Nikol'skiĭ NN and Medvedeva ND

    Institute of Cytology RAS, St. Petersburg. evdonin@mail.ru

    Phospholipase C gamma 1 (PLC gamma 1), an enzyme participating in phosphoinositide turnover, is one of the key elements in cell signaling. Here it is shown that treatment of A431 carcinoma cells with proteasome inhibitors Mg132 and lactacystin results in increasing the PLC gamma 1 intracellular level. Simultaneously, several additional bands with lower electrophoretic mobilities were detected on immunoblots, using anti-PLC gamma 1 antibodies. PLC gamma 1 ubiquitinilation was shown using immunoprecepitation. In control A 431 cells, PLC gamma 1 is ubiquitinilated, but the addition of EGF greatly induces the ubiquitinilation of the protein. Association of PLC gamma 1 with ubiquitin-ligase c-Cb1 was shown. Dynamics of ubiquitinilation under EGF treatment is in a close agreement with that of association of PLC gamma 1 and c-Cb1. It is concluded that PLC gamma 1 is ubiquitinilated and degraded by proteasomes. PLC gamma 1 ubiquitinilation is an EGF-dependent process.

    Tsitologiia 2003;45;10;1013-8

  • Distinct usages of phospholipase C gamma and Shc in intracellular signaling stimulated by neurotrophins.

    Yamada M, Numakawa T, Koshimizu H, Tanabe K, Wada K, Koizumi S and Hatanaka H

    Division of Protein Biosynthesis, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. yamada@protein.osaka-u.ac.jp

    Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), members of the neurotrophin family, bind to and activate TrkA, TrkB and TrkC, respectively, members of the Trk receptor tyrosine kinase family, to exert various effects including promotion of differentiation and survival, and regulation of synaptic plasticity in neuronal cells. Many reports have suggested that different neurotrophins show distinct biological functions, although molecular mechanisms by which neurotrophins exert their different functions remain unclear. In the present study, we found distinct usages of phospholipase Cgamma (PLCgamma) and Shc in intracellular signaling stimulated by neurotrophins. BDNF stimulated much stronger interactions of PLCgamma with Trk than NGF and NT-3 in PC12 cells stably expressing TrkB and cultured cerebral cortical neurons, respectively, although BDNF, NGF and NT-3 induced similar levels of tyrosine phosphorylation of Trk. Furthermore, the cultured cortical neurons showed large PLCgamma-dependent increases in intracellular Ca(2+) levels in response to BDNF compared with NT-3. In Shc signaling, NGF, but not BDNF, displayed interactions between Trk and Shc in a phenylarsine oxide (PAO; an inhibitor of tyrosine phosphatase)-dependent manner in TrkB-expressing PC12 cells. These results indicated that neurotrophins stimulate distinct kinds of interactions between Trk and PLCgamma and between Trk and Shc. These differences may lead to the distinct biological functions of neurotrophins.

    Brain research 2002;955;1-2;183-90

  • Signaling pathways triggered by HIV-1 Tat in human monocytes to induce TNF-alpha.

    Bennasser Y, Badou A, Tkaczuk J and Bahraoui E

    Laboratoire d'Immuno-Virologie, EA 3038, Université Paul Sabatier 118, route de Narbonne, 31062, Toulouse Cedex, France.

    In this study we investigated the signaling pathways triggered by Tat in human monocyte to induce TNF-alpha. In monocytes, the calcium, the PKA, and the PKC pathways are highly implicated in the expression of cytokine genes. Thus, these three major signaling pathways were investigated. Our data show that (i) PKC and calcium pathways are required for TNF-alpha production, whereas the PKA pathway seems to be not involved; (ii) downstream from PKC, activation of NFkappaB is essential while ERK1/2 MAP kinases, even though activated by Tat, are not directly involved in the pathway signaling leading to TNF-alpha production.

    Virology 2002;303;1;174-80

  • The proline rich region of the Tec homology domain of ITK regulates its activity.

    Hao S and August A

    Immunology Research Laboratories and Department of Veterinary Science, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA.

    Inducible T-cell kinase (ITK) is a member of the Tec family of tyrosine kinases that are involved in signals emanating from cytokine receptors, antigen receptors and other lymphoid cell surface receptors. Stimulation of tyrosine phosphorylation and activation of ITK by the T-cell antigen receptor, CD28 and CD2 requires the presence of the Src family kinase Lck in T-cells. We have previously demonstrated that the activation of ITK by Src family kinases uses a phosphatidylinositol 3-kinase pathway, which recruits ITK to the membrane via its pleckstrin homology (PH) domain where it is acted upon by Src. We have further explored the mechanism of this requirement for Src family kinases in the activation of ITK. We found that deletion of the proline rich sequence found in the Tec homology domain of ITK results in reduced basal activity of ITK approximately 50%. These differences in the basal activity of ITK were observed when the PH domain was deleted or when the kinase was membrane targeted. Furthermore, this deletion reduces the ability of the Src family kinase Lck to activate ITK, as well as to induce the ITK mediated tyrosine phosphorylation of its substrate PLCgamma1. By contrast, deletion of the SH3 domain of ITK resulted in a two-fold increase in the basal activity of ITK, and allowed this mutant to have an enhanced response to Lck. These results suggest that the proline rich region within the Tec homology domain of ITK regulates its basal activity and its response to Src family kinase signals.

    FEBS letters 2002;525;1-3;53-8

  • EGF-dependent association of phospholipase C-gamma1 with c-Cbl.

    Tvorogov D and Carpenter G

    Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

    The structure of phospholipase Cgamma1 (PLC-gamma1) contains two SH2 domains and one SH3 domain. While the function of the SH2 domains in PLC-gamma1 are well described, to date no growth factor-dependent function for the SH3 domain has been presented. To assess SH3 domain function in the context of the full-length PLC-gamma1, this domain was deleted and the mutant was stably expressed in Plcg1 null mouse embryonic fibroblasts. Following EGF treatment of cells, the PLC-gamma1DeltaSH3 mutant displayed the same increased level of tyrosine phosphorylation and association with EGF receptor as wild-type PLC-gamma1. Also, the SH3 mutant demonstrated membrane translocation and mediated the mobilization of intracellular Ca(2+) in response to EGF. c-Cbl is shown to associate with tyrosine phosphorylated PLC-gamma1 in an EGF-dependent manner, but no association was detected with the PLC-gamma1DeltaSH3 mutant. Interestingly, PDGF, which also tyrosine phosphorylates PLC-gamma1, failed to induce c-Cbl association with PLC-gamma1 and also provoked no c-Cbl tyrosine phosphorylation. This suggests that c-Cbl tyrosine phosphorylation is necessary for its interaction with PLC-gamma1. Evidence of a direct association of c-Cbl with PLC-gamma1 was provided by pull-down and overlay experiments, using glutathione S-transferase fusion proteins that contain the SH3 domain of PLC-gamma1. The data, therefore, show an EGF-inducible direct association of PLC-gamma1 with c-Cbl in vivo that is mediated by the SH3 domain of PLC-gamma1.

    Funded by: NCI NIH HHS: P30 CA68485, R01 CA75195; NIDDK NIH HHS: P30 DK20593

    Experimental cell research 2002;277;1;86-94

  • Leukotriene D4 induces association of active RhoA with phospholipase C-gamma1 in intestinal epithelial cells.

    Thodeti CK, Massoumi R, Bindslev L and Sjölander A

    Division of Experimental Pathology, Department of Laboratory Medicine, Lund University, University Hospital Malmö, SE-205 02 Malmö, Sweden.

    It has been previously suggested that leukotriene-induced Ca2+ signalling is mediated through a Rho-dependent process, but neither direct activation of Rho nor a mechanism underlying such signalling has been reported. Accordingly, we used the Rhotekin binding assay to assess RhoA activation in intestinal epithelial cells and observed that RhoA was activated by leukotriene D4 (LTD4). We also found that, within 15 s, activation of RhoA by LTD4 led to an increased association of RhoA with G-protein betagamma (Gbetagamma) and phospholipase C-gamma1 (PLC-gamma1) in the plasma membrane, as evidenced by the results of co-immunoprecipitation, glutathione S-transferase (GST) pulldown assays, and confocal microscopy. Amounts of RhoA increased in both Gbeta and PLC-gamma1 immunoprecipitates within 15 s of LTD4 treatment. An interaction between RhoA, Gbetagamma and PLC-gamma1 is supported by our finding that a GST fusion protein of constitutively active RhoA (GST-RhoAV14) precipitated Gbetagamma and PLC-gamma1 from cell lysates in an agonist-dependent manner. Such an association is also substantiated by our confocal immunofluorescence results, which revealed that LTD4 induction increased co-localization of constitutively active RhoA and PLC-gamma1 to the plasma membrane of cells transfected with enhanced green fluorescent protein L63RhoA. Furthermore, microinjection of neutralizing RhoA antibodies, but not control antibodies, significantly reduced LTD4-induced Ca2+ mobilization. Our results are the first to demonstrate a LTD4-induced activation of RhoA and more importantly its association with PLC-gamma1, which are essential for the PLC-gamma1-mediated calcium mobilization.

    The Biochemical journal 2002;365;Pt 1;157-63

  • Shb links SLP-76 and Vav with the CD3 complex in Jurkat T cells.

    Lindholm CK, Henriksson ML, Hallberg B and Welsh M

    Department of Medical Cell Biology, Box 571, Biomedicum, Uppsala University, 75123 Uppsala, Sweden. Cecilia.Lindholm@medcellbiol.uu.se

    This study addresses the interactions between the adaptor protein Shb and components involved in T cell signalling, including SLP-76, Gads, Vav and ZAP70. We show that both SLP-76 and ZAP70 co-immunoprecipitate with Shb in Jurkat T cells and that Shb and Vav co-immunoprecipitate when cotransfected in COS cells. We also demonstrate, utilizing fusion protein constructs, that SLP-76, Gads and Vav associate independently of each other to different domains or regions, of Shb. Overexpression of an SH2 domain-defective Shb causes diminished phosphorylation of SLP-76 and Vav and consequently decreased activation of c-Jun kinase upon T cell receptor (TCR) stimulation. Shb was also found to localize to glycolipid-enriched membrane microdomains (GEMs), also called lipid rafts, after TCR stimulation. Our results indicate that upon TCR stimulation, Shb is targeted to these lipid rafts where Shb aids in recruiting the SLP-76-Gads-Vav complex to the T cell receptor zeta-chain and ZAP70.

    European journal of biochemistry 2002;269;13;3279-88

  • Brain-derived neurotrophic factor promotes interaction of the Nck2 adaptor protein with the TrkB tyrosine kinase receptor.

    Suzuki S, Mizutani M, Suzuki K, Yamada M, Kojima M, Hatanaka H and Koizumi S

    Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.

    Brain-derived neurotrophic factor (BDNF) binds to and activates the TrkB tyrosine kinase receptor to regulate cell differentiation, survival, and neural plasticity in the nervous system. However, the identities of the downstream signaling proteins involved in this process remain unclear. Using a yeast two-hybrid screen with the intracellular domain (ICD-TrkB) of the TrkB BDNF receptor, we identified the Nck2 adaptor protein as a novel interaction partner of the active form of TrkB. Additionally, we identified three tyrosines in ICD-TrkB (Y694, Y695, and Y771) that are crucial for this interaction. Similar results were obtained for Nck1, an Nck2 homolog. We also found that TrkB could be co-precipitated with GST-Nck2 recombinant protein or anti-Nck antibody in BDNF-activated cortical neurons. These results suggest that BDNF stimulation promotes interaction of Ncks with TrkB in cortical neurons.

    Biochemical and biophysical research communications 2002;294;5;1087-92

  • Basic fibroblast growth factor-induced translocation of p21-activated kinase to the membrane is independent of phospholipase C-gamma1 in the differentiation of PC12 cells.

    Shin KS, Shin EY, Lee CS, Quan SH, Woo KN, Soung NK, Kwak SJ, Kim SR and Kim EG

    Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, Korea.

    p21-activated kinase (PAK) targeting to the plasma membrane is essential for PC12 cell neurite outgrowth. Phospholipase C-gamma1 (PLC-gamma1) can mediate the PAK translocation in response to growth factors, since PLC-gamma1 binds to both tyrosine-phosphorylated receptor tyrosine kinases and PAK through its SH2 and SH3 domain, respectively. In the present study, we examined a potential role for PLC-gamma1 in the basic fibroblast growth factor (bFGF)-induced PAK translocation using stable PC12 cell lines that overexpress in a tetracycline-inducible manner either the wild-type FGFR-1 or the Y766F FGFR-1 mutant. Phosphatidylinositol hydrolysis was increased 6.5-fold in response to bFGF in the wild type cells but negligible in the mutant cells. The recombinant GST-PLC-gamma1 SH3 was able to bind to PAK1 but not GST alone. However, examination of PLC-gamma1 as an adaptor for translocation of PAK1 in cells showed that both cells transfected with pEGFP-PAK1 was able to differentiate for 24 h, as visualized by laser confocal microscopy. Translocation of PAK1 to growth cones occurs at similar levels in both wild and mutant cells. These results suggest that a protein(s) other than PLC-gamma1 is functionally relevant for PAK targeting.

    Experimental & molecular medicine 2002;34;2;172-6

  • Interaction of elongation factor-1alpha and pleckstrin homology domain of phospholipase C-gamma 1 with activating its activity.

    Chang JS, Seok H, Kwon TK, Min DS, Ahn BH, Lee YH, Suh JW, Kim JW, Iwashita S, Omori A, Ichinose S, Numata O, Seo JK, Oh YS and Suh PG

    Department of Life Science, College of Natural Science, Daejin University, Kyeonggido 487-711, Korea. jchang@road.daijin.ac.kr

    The pleckstrin homology (PH) domain is a small motif for membrane targeting in the signaling molecules. Phospholipase C (PLC)-gamma1 has two putative PH domains, an NH(2)-terminal and a split PH domain. Here we report studies on the interaction of the PH domain of PLC-gamma1 with translational elongation factor (EF)-1alpha, which has been shown to be a phosphatidylinositol 4-kinase activator. By pull-down of cell extract with the glutathione S-transferase (GST) fusion proteins with various domains of PLC-gamma1 followed by peptide sequence analysis, we identified EF-1alpha as a binding partner of a split PH domain of PLC-gamma1. Analysis by site-directed mutagenesis of the PH domain revealed that the beta2-sheet of a split PH domain is critical for the interaction with EF-1alpha. Moreover, Dot-blot assay shows that a split PH domain specifically binds to phosphoinositides including phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate (PIP(2)). So the PH domain of PLC-gamma1 binds to both EF-1alpha and PIP(2). The binding affinity of EF-1alpha to the GST.PH domain fusion protein increased in the presence of PIP(2), although PIP(2) does not bind to EF-1alpha directly. This suggests that EF-1alpha may control the binding affinity between the PH domain and PIP(2). PLC-gamma1 is substantially activated in the presence of EF-1alpha with a bell-shaped curve in relation to the molar ratio between them, whereas a double point mutant PLC-gamma1 (Y509A/F510A) that lost its binding affinity to EF-1alpha shows basal level activity. Taken together, our data show that EF-1alpha plays a direct role in phosphoinositide metabolism of cellular signaling by regulating PLC-gamma1 activity via a split PH domain.

    The Journal of biological chemistry 2002;277;22;19697-702

  • The TRPM7 channel is inactivated by PIP(2) hydrolysis.

    Runnels LW, Yue L and Clapham DE

    Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Enders 1309, 320 Longwood Avenue, Boston, MA 02115, USA.

    TRPM7 (ChaK1, TRP-PLIK, LTRPC7) is a ubiquitous, calcium-permeant ion channel that is unique in being both an ion channel and a serine/threonine kinase. The kinase domain of TRPM7 directly associates with the C2 domain of phospholipase C (PLC). Here, we show that in native cardiac cells and heterologous expression systems, G alpha q-linked receptors or tyrosine kinase receptors that activate PLC potently inhibit channel activity. Numerous experimental approaches demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP(2)), the substrate of PLC, is a key regulator of TRPM7. We conclude that receptor-mediated activation of PLC results in the hydrolysis of localized PIP(2), leading to inactivation of the TRPM7 channel.

    Nature cell biology 2002;4;5;329-36

  • Translocation of PKC[theta] in T cells is mediated by a nonconventional, PI3-K- and Vav-dependent pathway, but does not absolutely require phospholipase C.

    Villalba M, Bi K, Hu J, Altman Y, Bushway P, Reits E, Neefjes J, Baier G, Abraham RT and Altman A

    Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.

    PKCtheta plays an essential role in activation of mature T cells via stimulation of AP-1 and NF-kappaB, and is known to selectively translocate to the immunological synapse in antigen-stimulated T cells. Recently, we reported that a Vav/Rac pathway which depends on actin cytoskeleton reorganization mediates selective recruitment of PKCtheta to the membrane or cytoskeleton and its catalytic activation by anti-CD3/CD28 costimulation. Because this pathway acted selectively on PKCtheta, we addressed here the question of whether the translocation and activation of PKCtheta in T cells is regulated by a unique pathway distinct from the conventional mechanism for PKC activation, i.e., PLC-mediated production of DAG. Using three independent approaches, i.e., a selective PLC inhibitor, a PLCgamma1-deficient T cell line, or a dominant negative PLCgamma1 mutant, we demonstrate that CD3/CD28-induced membrane recruitment and COOH-terminal phosphorylation of PKCtheta are largely independent of PLC. In contrast, the same inhibitory strategies blocked the membrane translocation of PKCalpha. Membrane or lipid raft recruitment of PKCtheta (but not PKCalpha) was absent in T cells treated with phosphatidylinositol 3-kinase (PI3-K) inhibitors or in Vav-deficient T cells, and was enhanced by constitutively active PI3-K. 3-phosphoinositide-dependent kinase-1 (PDK1) also upregulated the membrane translocation of PKCtheta;, but did not associate with it. These results provide evidence that a nonconventional PI3-K- and Vav-dependent pathway mediates the selective membrane recruitment and, possibly, activation of PKCtheta in T cells.

    Funded by: NCI NIH HHS: CA35299, R01 CA035299; NIGMS NIH HHS: GM50819, R01 GM050819

    The Journal of cell biology 2002;157;2;253-63

  • UCS15A, a novel small molecule, SH3 domain-mediated protein-protein interaction blocking drug.

    Oneyama C, Nakano H and Sharma SV

    Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd 3-6-6 Asahi-cho, Machida-shi, Tokyo 194, Japan.

    Protein-protein interactions play critical regulatory roles in mediating signal transduction. Previous studies have identified an unconventional, small-molecule, Src signal transduction inhibitor, UCS15A. UCS15A differed from conventional Src-inhibitors in that it did not alter the levels or the tyrosine kinase activity of Src. Our studies suggested that UCS15A exerted its Src-inhibitory effects by a novel mechanism that involved the disruption of protein-protein interactions mediated by Src. In the present study we have examined the ability of UCS15A to disrupt the interaction of Src-SH3 with Sam68, both in vivo and in vitro. This ability of UCS15A was not restricted to Src-SH3 mediated protein-protein interactions, since the drug was capable of disrupting the in vivo interactions of Sam68 with other SH3 domain containing proteins such as Grb2 and PLCgamma. In addition, UCS15A was capable of disrupting other typical SH3-mediated protein-protein interactions such as Grb2-Sos1, cortactin-ZO1, as well as atypical SH3-mediated protein-protein interactions such as Grb2-Gab1. However, UCS15A was unable to disrupt the non-SH3-mediated protein-protein interactions of beta-catenin, with E-cadherin and alpha-catenin. In addition, UCS15A had no effect on the SH2-mediated interaction between Grb2 and activated Epidermal Growth Factor receptor. Thus, the ability of UCS15A, to disrupt protein-protein interactions appeared to be restricted to SH3-mediated protein-protein interactions. In this regard, UCS15A represents the first example of a non-peptide, small molecule agent capable of disrupting SH3-mediated protein-protein interactions. In vitro analyses suggested that UCS15A did not bind to the SH3 domain itself but rather may interact directly with the target proline-rich domains.

    Oncogene 2002;21;13;2037-50

  • Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin.

    Bonvini P, Gastaldi T, Falini B and Rosolen A

    Clinica di Oncoematologia Pediatrica, Azienda Ospedaliera-Università di Padova, 35128 Padua, Italy. paolobonvini@hotmail.com

    Anaplastic large cell lymphomas (ALCL) are characterized by the expression of a chimeric protein, NPM-ALK, which originates from fusion of the nucleophosmin (NPM) and the membrane receptor anaplastic lymphoma kinase (ALK) genes. The NPM-ALK kinase, on dimerization, shows phosphotransferase activity and, through its interaction with various ALK-adapter proteins, induces cell transformation and increases cell proliferation in vitro. The chaperones heat shock proteins 90 (Hsp90) and 70 (Hsp70) play a critical role in the folding and maturation of several oncogenic protein kinases, and perturbation of Hsp90 structure affects the stability and degradation of Hsp90- and Hsp70-bound substrates. This process is triggered by benzoquinone ansamycin antibiotics, Hsp90-binding small molecules. We have studied the effect of 17-allylamino,17-demethoxygeldanamycin (17-AAG), a benzoquinone ansamycin, on NPM-ALK steady-state level in ALCL cells. Treatment with 17-AAG decreased NPM-ALK expression and phosphorylation, thus impairing its association with phospholipase C-gamma, Src homology 2 domain-containing protein (Shc), growth factor receptor-bound protein 2 (Grb2), and insulin receptor substrate-1 (IRS-1). We also observed that NPM-ALK associates with Hsp90, and incubation with 17-AAG disrupts this complex without affecting Hsp90 expression. As shown previously for other Hsp90 client proteins, destabilization of the Hsp90/NPM-ALK complex induced by 17-AAG resulted in increased binding of the chimeric protein to Hsp70, which is known to affect protein degradation. Hsp/NPM-ALK complex formation appears to be independent of NPM sequences, because we were unable to coimmunoprecipitate NPM with either Hsp90 or Hsp70. Similar to NPM-ALK, the exogenously expressed variant fusion protein TPR-ALK showed decreased expression and phosphorylation after 17-AAG treatment, suggesting that the effect of 17-AAG on ALK chimeric proteins depends on the ALK portion and not on the partner protein moiety. Our data demonstrate that NPM-ALK cell content is determined by its interaction with Hsp90 and Hsp70, and suggest that the alteration of such associations can interfere with NPM-ALK function in ALCL cells.

    Cancer research 2002;62;5;1559-66

  • Phospholipase C gamma 1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE.

    Ye K, Aghdasi B, Luo HR, Moriarity JL, Wu FY, Hong JJ, Hurt KJ, Bae SS, Suh PG and Snyder SH

    Johns Hopkins University School of Medicine, Department of Neuroscience, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA.

    Phospholipase C gamma 1 (PLC-gamma 1) hydrolyses phosphatidylinositol-4,5-bisphosphate to the second messengers inositol-1,4,5-trisphosphate and diacylglycerol. PLC-gamma 1 also has mitogenic activity upon growth-factor-dependent tyrosine phosphorylation; however, this activity is not dependent on the phospholipase activity of PLC-gamma 1, but requires an SH3 domain. Here, we demonstrate that PLC-gamma 1 acts as a guanine nucleotide exchange factor (GEF) for PIKE (phosphatidylinositol-3-OH kinase (PI(3)K) enhancer). PIKE is a nuclear GTPase that activates nuclear PI(3)K activity, and mediates the physiological activation by nerve growth factor (NGF) of nuclear PI(3)K activity. This enzymatic activity accounts for the mitogenic properties of PLC-gamma 1.

    Nature 2002;415;6871;541-4

  • AP180 binds to the C-terminal SH2 domain of phospholipase C-gamma1 and inhibits its enzymatic activity.

    Han SJ, Lee JH, Hong SH, Park SD, Kim CG, Song MD, Park TK and Kim CG

    School of Biological Sciences, Seoul National University, Seoul, Korea.

    The role of phospholipase Cgamma1 (PLCgamma1) in signal transduction was investigated by characterizing its SH domain-binding proteins that may represent components of a novel signaling pathway. A 180-kDa protein that binds to the SH2 domain of PLCgamma1 was purified from rat brain. The amino acid sequence of peptide derived from the purified protein is now identified as AP180, a clathrin assembly protein that has been implicated in clathrin-mediated synaptic vesicle recycling in synapses. In this report, we demonstrate the stable association of PLCgamma1 with AP180 in a clathrin-coated vesicle complex, which not only binds to the carboxyl-terminal SH2 domain of PLCgamma1, but also inhibits its enzymatic activity in a dose-dependent manner.

    Biochemical and biophysical research communications 2002;290;1;35-41

  • The DNA sequence and comparative analysis of human chromosome 20.

    Deloukas P, Matthews LH, Ashurst J, Burton J, Gilbert JG, Jones M, Stavrides G, Almeida JP, Babbage AK, Bagguley CL, Bailey J, Barlow KF, Bates KN, Beard LM, Beare DM, Beasley OP, Bird CP, Blakey SE, Bridgeman AM, Brown AJ, Buck D, Burrill W, Butler AP, Carder C, Carter NP, Chapman JC, Clamp M, Clark G, Clark LN, Clark SY, Clee CM, Clegg S, Cobley VE, Collier RE, Connor R, Corby NR, Coulson A, Coville GJ, Deadman R, Dhami P, Dunn M, Ellington AG, Frankland JA, Fraser A, French L, Garner P, Grafham DV, Griffiths C, Griffiths MN, Gwilliam R, Hall RE, Hammond S, Harley JL, Heath PD, Ho S, Holden JL, Howden PJ, Huckle E, Hunt AR, Hunt SE, Jekosch K, Johnson CM, Johnson D, Kay MP, Kimberley AM, King A, Knights A, Laird GK, Lawlor S, Lehvaslaiho MH, Leversha M, Lloyd C, Lloyd DM, Lovell JD, Marsh VL, Martin SL, McConnachie LJ, McLay K, McMurray AA, Milne S, Mistry D, Moore MJ, Mullikin JC, Nickerson T, Oliver K, Parker A, Patel R, Pearce TA, Peck AI, Phillimore BJ, Prathalingam SR, Plumb RW, Ramsay H, Rice CM, Ross MT, Scott CE, Sehra HK, Shownkeen R, Sims S, Skuce CD, Smith ML, Soderlund C, Steward CA, Sulston JE, Swann M, Sycamore N, Taylor R, Tee L, Thomas DW, Thorpe A, Tracey A, Tromans AC, Vaudin M, Wall M, Wallis JM, Whitehead SL, Whittaker P, Willey DL, Williams L, Williams SA, Wilming L, Wray PW, Hubbard T, Durbin RM, Bentley DR, Beck S and Rogers J

    The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. panos@sanger.ac.uk

    The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a 5' and a 3' untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis, provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than 95% of all coding exons and almost all genes.

    Nature 2001;414;6866;865-71

  • Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT.

    Yablonski D, Kadlecek T and Weiss A

    Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel.

    SLP-76 is an adapter protein required for T-cell receptor (TCR) signaling. In particular, TCR-induced tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), and the resultant TCR-inducible gene expression, depend on SLP-76. Nonetheless, the mechanisms by which SLP-76 mediates PLC-gamma1 activation are not well understood. We now demonstrate that SLP-76 directly interacts with the Src homology 3 (SH3) domain of PLC-gamma1. Structure-function analysis of SLP-76 revealed that each of the previously defined protein-protein interaction domains can be individually deleted without completely disrupting SLP-76 function. Additional deletion mutations revealed a new, 67-amino-acid functional domain within the proline-rich region of SLP-76, which we have termed the P-1 domain. The P-1 domain mediates a constitutive interaction of SLP-76 with the SH3 domain of PLC-gamma1 and is required for TCR-mediated activation of Erk, PLC-gamma1, and NFAT (nuclear factor of activated T cells). The adjacent Gads-binding domain of SLP-76, also within the proline-rich region, mediates inducible recruitment of SLP-76 to a PLC-gamma1-containing complex via the recruitment of both PLC-gamma1 and Gads to another cell-type-specific adapter, LAT. Thus, TCR-induced activation of PLC-gamma1 entails the binding of PLC-gamma1 to both LAT and SLP-76, a finding that may underlie the requirement for both LAT and SLP-76 to mediate the optimal activation of PLC-gamma1.

    Funded by: NCI NIH HHS: CA72531, R01 CA072531

    Molecular and cellular biology 2001;21;13;4208-18

  • Potential role of Gab1 and phospholipase C-gamma in osmotic shock-induced glucose uptake in 3T3-L1 adipocytes.

    Ueno E, Haruta T, Uno T, Usui I, Iwata M, Takano A, Kawahara J, Sasaoka T, Ishibashi O and Kobayashi M

    First Department of Medicine, Toyama Medical and Pharmaceutical University, Japan.

    Osmotic shock induces GLUT4 translocation and glucose uptake through a mechanism independent of PI 3-kinase, but dependent on tyrosine phosphorylation of cellular proteins. To identify the tyrosine phosphorylated proteins required for osmotic shock-stimulated glucose uptake, we examined tyrosine phosphorylation of candidate proteins, and found that the 60-80kDa species including paxillin and the 120-130kDa species including p130Cas, PYK2, FAK and Gab1 were tyrosine-phosphorylated in response to osmotic shock. Inhibition of actin polymerization by cytochalasin D significantly decreased the tyrosine phosphorylation of paxillin, p130Cas, PYK2 and FAK but not Gab1, but had no effect on 2-deoxyglucose (DOG) uptake, suggesting a role for Gab1 in osmotic shock-induced glucose transport. Also, we found that osmotic shock increases the association of phospholipase C-gamma (PLC-gamma) with Gab1 and stimulates tyrosine phosphorylation of PLC-gamma itself. The PLC inhibitor, U73122, inhibited osmotic shock-induced 2-DOG uptake. These results suggest that tyrosine phosphorylation of Gab1 and subsequent recruitment and activation of PLC-gamma may play a role in osmotic shock-induced glucose transport.

    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 2001;33;7;402-6

  • Regulation of NK cell-mediated cytotoxicity by the adaptor protein 3BP2.

    Jevremovic D, Billadeau DD, Schoon RA, Dick CJ and Leibson PJ

    Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.

    Stimulation of lymphocytes through multichain immune recognition receptors activates multiple signaling pathways. Adaptor proteins play an important role in integrating these pathways by their ability to simultaneously bind multiple signaling components. Recently, the 3BP2 adaptor protein has been shown to positively regulate the transcriptional activity of T cells. However, the mechanisms by which signaling components are involved in this regulation remain unclear, as does a potential role for 3BP2 in the regulation of other cellular functions. Here we describe a positive regulatory role for 3BP2 in NK cell-mediated cytotoxicity. We also identify p95(vav) and phospholipase C-gamma isoforms as binding partners of 3BP2. Our results show that tyrosine-183 of 3BP2 is specifically involved in this interaction and that this residue critically influences 3BP2-dependent function. Therefore, 3BP2 regulates NK cell-mediated cytotoxicity by mobilizing key downstream signaling effectors.

    Funded by: NCI NIH HHS: CA-47752

    Journal of immunology (Baltimore, Md. : 1950) 2001;166;12;7219-28

  • Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells.

    Paz PE, Wang S, Clarke H, Lu X, Stokoe D and Abo A

    Onyx Pharmaceuticals, 3031 Research Drive, Richmond, CA 94806, USA.

    T-cell-receptor (TCR)-mediated LAT (linker for activation of T cells) phosphorylation is critical for the membrane recruitment of signalling complexes required for T-cell activation. Although tyrosine phosphorylation of LAT is required for recruitment and activation of signalling proteins, the molecular mechanism associated with this event is unclear. In the present study we reconstituted the LAT signalling pathway by demonstrating that a direct tyrosine phosphorylation of LAT with activated protein-tyrosine kinase Zap70 is necessary and sufficient for the association and activation of signalling proteins. Zap-70 efficiently phosphorylates LAT on tyrosine residues at positions 226, 191, 171, 132 and 127. By substituting these tyrosine residues in LAT with phenylalanine and by utilizing phosphorylated peptides derived from these sites, we mapped the tyrosine residues in LAT required for the direct interaction and activation of Vav, p85/p110alpha and phospholipase Cgamma1 (PLCgamma1). Our results indicate that Tyr(226) and Tyr(191) are required for Vav binding, whereas Tyr(171) and Tyr(132) are necessary for association and activation of phosphoinositide 3-kinase activity and PLCgamma1 respectively. Furthermore, by expression of LAT mutants in LAT-deficient T cells, we demonstrate that Tyr(191) and Tyr(171) are required for T-cell activation and Tyr(132) is required for the activation of PLCgamma1 and Ras signalling pathways.

    The Biochemical journal 2001;356;Pt 2;461-71

  • Identification of three polymorphisms in the translated region of PLC-gamma1 and their investigation in lithium responsive bipolar disorder.

    Ftouhi-Paquin N, Alda M, Grof P, Chretien N, Rouleau G and Turecki G

    Douglas Hospital Research Institute, Douglas Hospital, McGill University, Montreal, Canada.

    Recently, we have found an association between bipolar disorder patients who are excellent responders to lithium prophylaxis and a polymorphic marker located in the first intron of the phospholipase C-gamma1 gene (PLC-gamma1) [Turecki et al., 1998: Mol Psychiatry 3:534-538]. As this variant is not known to be functional, we searched for other markers within the coding region, using single-strand conformational polymorphism (SSCP) analysis. We have identified three polymorphic sites localized in three different exons of the PLC-gamma1 gene (exons 9, 26, 31). Variation studies of these potentially functional sites in a group of 133 bipolar patients with an excellent response to lithium prophylaxis and a comparison group of 99 healthy controls showed no difference in genotype distributions for exon 9 (chi-square = 1.41, df = 2, P = 0.49), exon 26 (chi-square = 2.26, df = 2, P = 0.13), or exon 31 (chi-square = 1.41, df = 2, P = 0.49). Similar results were observed for allele distributions. These results suggest that our previous findings were not the result of linkage disequilibrium with these variants.

    American journal of medical genetics 2001;105;3;301-5

  • Protein tyrosine phosphatase CD148-mediated inhibition of T-cell receptor signal transduction is associated with reduced LAT and phospholipase Cgamma1 phosphorylation.

    Baker JE, Majeti R, Tangye SG and Weiss A

    Department of Medicine and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143-0795, USA.

    In this study, we investigate the role of the receptor-like protein tyrosine phosphatase CD148 in T-cell activation. Overexpression of CD148 in the Jurkat T-cell line inhibited activation of the transcription factor nuclear factor of activated T cells following T-cell receptor (TCR) stimulation but not following stimulation through a heterologously expressed G protein-coupled receptor, the human muscarinic receptor subtype 1. Using a tetracycline-inducible expression system, we show that the TCR-mediated activation of both the Ras and calcium pathways was inhibited by expression of CD148 at levels that approximate those found in activated primary T cells. These effects were dependent on the phosphatase activity of CD148. Analysis of TCR-induced protein tyrosine phosphorylation demonstrated that most phosphoproteins were unaffected by CD148 expression. However, phospholipase Cgamma1 (PLCgamma1) and LAT were strikingly hypophosphorylated in CD148-expressing cells following TCR stimulation, whereas the phosphorylation levels of Slp-76 and Itk were modestly reduced. Based on these results, we propose that CD148 negatively regulates TCR signaling by interfering with the phosphorylation and function of PLCgamma1 and LAT.

    Molecular and cellular biology 2001;21;7;2393-403

  • Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers.

    Huang K, Andersson C, Roomans GM, Ito N and Claesson-Welsh L

    Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, S-751 85, Uppsala, Sweden.

    Vascular endothelial growth factor (VEGF-A) exerts its effects through receptor tyrosine kinases VEGF receptor-1 (VEGFR-1) and VEGFR-2, which are expressed on most endothelial cell types in vitro and in vivo. We have examined VEGF-A-induced signal transduction in porcine aortic endothelial (PAE) cells individually expressing VEGFR-1 or VEGFR-2, and cells co-expressing both receptor types. We show that VEGF-A-stimulated PAE cells co-expressing VEGFR-1 and -2 contain receptor heterodimers. VEGF-A-stimulation of all three cell lines (expressing VEGFR-1, -2 and -1/2) resulted in signal transduction with different efficiencies. Thus, tyrosine phosphorylation of phospholipase Cgamma, and accumulation of inositol polyphosphates were efficiently transduced in the VEGFR-1/2 cells whereas cells expressing VEGFR-1 responded poorly in these assays. In contrast, VEGF-A-induced activation of phosphoinositide 3-kinase and induction of Ca2+ fluxes were transduced well by VEGFR-1 and VEGFR-2 homo- and heterodimers. The pattern of Ca2+ fluxes was unique for each type of VEGF receptor dimer. Our data show that signal transduction induced by VEGF-A is transduced in distinct manners by homo- and heterodimers of VEGF receptors.

    The international journal of biochemistry & cell biology 2001;33;4;315-24

  • The phospholipase C-gamma1 gene (PLCG1) and lithium-responsive bipolar disorder: re-examination of an intronic dinucleotide repeat polymorphism.

    Løvlie R, Berle JO, Stordal E and Steen VM

    Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, University of Bergen, Haukeland University Hospital, Norway. rlov@haukeland.no

    Twin, family and adoption studies have indicated that genetic susceptibility plays an important role in the etiology of bipolar disorder. Turecki et al. (1998) recently published preliminary evidence suggesting that bipolar patients with an excellent response to lithium treatment have a higher frequency of a specific dinucleotide repeat allele in the phospholipase Cgamma-1 (PLCG1) genomic region. The present work was undertaken to re-examine the finding by Turecki et al. in a sample of Norwegian lithium-treated bipolar patients sub-classified as lithium responders, non-responders, or partial responders/unclassified. The overall distribution of the PLCG1 dinucleotide repeat alleles was not significantly different between different categories of subjects. When analyzed according to presence or absence of different dinucleotide alleles, a PLCG1-8 repeat was more frequent among lithium responders vs controls. In line with Turecki et al., we also noticed a moderately over-representation of the PLCG1-5 repeat among the bipolar patients as compared to the controls.

    Psychiatric genetics 2001;11;1;41-3

  • Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation.

    Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M, Welsh J and Wang LH

    Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA.

    A recently reported new member of the Vav family proteins, Vav3 has been identified as a Ros receptor protein tyrosine kinase (RPTK) interacting protein by yeast two-hybrid screening. Northern analysis shows that Vav3 has a broad tissue expression profile that is distinct from those of Vav and Vav2. Two species of Vav3 transcripts, 3.4 and 5.4 kb, were detected with a differential expression pattern in various tissues. Transient expression of Vav in 293T and NIH 3T3 cells demonstrated that ligand stimulation of several RPTKs (epidermal growth factor receptor [EGFR], Ros, insulin receptor [IR], and insulin-like growth factor I receptor [IGFR]) led to tyrosine phosphorylation of Vav3 and its association with the receptors as well as their downstream signaling molecules, including Shc, Grb2, phospholipase C (PLC-gamma), and phosphatidylinositol 3 kinase. In vitro binding assays using glutathione S-transferase-fusion polypeptides containing the GTPase-binding domains of Rok-alpha, Pak, or Ack revealed that overexpression of Vav3 in NIH 3T3 cells resulted in the activation of Rac-1 and Cdc42 whereas a deletion mutant lacking the N-terminal calponin homology and acidic region domains activated RhoA and Rac-1 but lost the ability to activate Cdc42. Vav3 induced marked membrane ruffles and microspikes in NIH 3T3 cells, while the N-terminal truncation mutants of Vav3 significantly enhanced membrane ruffle formation but had a reduced ability to induce microspikes. Activation of IR further enhanced the ability of Vav3 to induce membrane ruffles, but IGFR activation specifically promoted Vav3-mediated microspike formation. N-terminal truncation of Vav3 activated its transforming potential, as measured by focus-formation assays. We conclude that Vav3 mediates RPTK signaling and regulates GTPase activity, its native and mutant forms are able to modulate cell morphology, and it has the potential to induce cell transformation.

    Funded by: NCI NIH HHS: CA29339, CA55054, R01 CA029339, R01 CA055054

    Molecular and cellular biology 2000;20;24;9212-24

  • Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells.

    van Dijk TB, van Den Akker E, Amelsvoort MP, Mano H, Löwenberg B and von Lindern M

    Institute of Hematology, Erasmus University Rotterdam, Rotterdam, The Netherlands. vandijk@hema.fgg.eur.nl

    Stem cell factor (SCF) has an important role in the proliferation, differentiation, survival, and migration of hematopoietic cells. SCF exerts its effects by binding to cKit, a receptor with intrinsic tyrosine kinase activity. Activation of phosphatidylinositol 3'-kinase (PI3-K) by cKit was previously shown to contribute to many SCF-induced cellular responses. Therefore, PI3-K-dependent signaling pathways activated by SCF were investigated. The PI3-K-dependent activation and phosphorylation of the tyrosine kinase Tec and the adapter molecule p62Dok-1 are reported. The study shows that Tec and Dok-1 form a stable complex with Lyn and 2 unidentified phosphoproteins of 56 and 140 kd. Both the Tec homology and the SH2 domain of Tec were identified as being required for the interaction with Dok-1, whereas 2 domains in Dok-1 appeared to mediate the association with Tec. In addition, Tec and Lyn were shown to phosphorylate Dok-1, whereas phosphorylated Dok-1 was demonstrated to bind to the SH2 domains of several signaling molecules activated by SCF, including Abl, CrkL, SHIP, and PLCgamma-1, but not those of Vav and Shc. These findings suggest that p62Dok-1 may function as an important scaffold molecule in cKit-mediated signaling.

    Blood 2000;96;10;3406-13

  • The mechanism of phospholipase C-gamma1 regulation.

    Kim MJ, Kim E, Ryu SH and Suh PG

    Department of Life Science, Pohang University of Science and Technology, Kyungbuk, Korea.

    Phospholipase C (PLC)1 hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate the second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces a transient increase in intracellular free Ca2+, while DAG directly activates protein kinase C. Upon stimulation of cells with growth factors, PLC-gamma1 is activated upon their association with and phosphorylation by receptor and non-receptor tyrosine kinases. In this review, we will focus on the activation mechanism and regulatory function of PLC-gamma1.

    Experimental & molecular medicine 2000;32;3;101-9

  • Specificity of the binding of synapsin I to Src homology 3 domains.

    Onofri F, Giovedi S, Kao HT, Valtorta F, Bongiorno Borbone L, De Camilli P, Greengard P and Benfenati F

    Department of Experimental Medicine, Section of Physiology, University of Genova, Via Benedetto XV 3, I-16132 Genova, Italy.

    Synapsins are synaptic vesicle-associated phosphoproteins involved in synapse formation and regulation of neurotransmitter release. Recently, synapsin I has been found to bind the Src homology 3 (SH3) domains of Grb2 and c-Src. In this work we have analyzed the interactions between synapsins and an array of SH3 domains belonging to proteins involved in signal transduction, cytoskeleton assembly, or endocytosis. The binding of synapsin I was specific for a subset of SH3 domains. The highest binding was observed with SH3 domains of c-Src, phospholipase C-gamma, p85 subunit of phosphatidylinositol 3-kinase, full-length and NH(2)-terminal Grb2, whereas binding was moderate with the SH3 domains of amphiphysins I/II, Crk, alpha-spectrin, and NADPH oxidase factor p47(phox) and negligible with the SH3 domains of p21(ras) GTPase-activating protein and COOH-terminal Grb2. Distinct sites in the proline-rich COOH-terminal region of synapsin I were found to be involved in binding to the various SH3 domains. Synapsin II also interacted with SH3 domains with a partly distinct binding pattern. Phosphorylation of synapsin I in the COOH-terminal region by Ca(2+)/calmodulin-dependent protein kinase II or mitogen-activated protein kinase modulated the binding to the SH3 domains of amphiphysins I/II, Crk, and alpha-spectrin without affecting the high affinity interactions. The SH3-mediated interaction of synapsin I with amphiphysins affected the ability of synapsin I to interact with actin and synaptic vesicles, and pools of synapsin I and amphiphysin I were shown to associate in isolated nerve terminals. The ability to bind multiple SH3 domains further implicates the synapsins in signal transduction and protein-protein interactions at the nerve terminal level.

    Funded by: NIA NIH HHS: AG15072; NIMH NIH HHS: MH39327; Telethon: 1131

    The Journal of biological chemistry 2000;275;38;29857-67

  • CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70.

    Doong H, Price J, Kim YS, Gasbarre C, Probst J, Liotta LA, Blanchette J, Rizzo K and Kohn E

    Molecular Signaling Section, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, MD 20892, USA.

    CAIR-1/BAG-3 forms an EGF-regulated ternary complex with Hsp70/Hsc70 and latent phospholipase C-gamma (PLC-gamma). The expression of CAIR-1, CAI stressed-1, was induced in A2058 human melanoma cells by continuous exposure to CAI, an inhibitor of nonvoltage-gated calcium influx. CAIR-1 sequence is identical, save 2 amino acids, to BAG-3 also cloned recently as Bis, a member of the bcl-2-associated athanogene family. We show that CAIR-1/BAG-3 binds to Hsp70/Hsc70 in intact cells and this binding is increased by short term exposure to CAI (P<0.007). CAIR-1/BAG-3 is phosphorylated in vivo in the absence of stimulation. Basal phosphorylation is inhibited by treatment with d-erythrosphingosine (d-ES), a broad inhibitor of the protein kinase C family. CAIR-1/BAG-3 contains several PXXP SH3 binding domains leading to the hypothesis that it is a partner protein of phospholipase C-gamma. PLC-gamma is bound to CAIR-1/BAG-3 in unstimulated cells. It is increased by CAI or d-ES (P=0.05) treatment, and abrogated by EGF (r2=0.99); d-ES treatment blocks the EGF-mediated dissociation. We show that CAIR-1/BAG-3 binds to PLC-gamma and Hsp70/Hsc70 through separate and distinct domains. Hsp70/Hsc70 binds to the BAG domain of BAGs-1 and -3. CAIR-1/BAG-3 from control and EGF-treated cell lysates bound selectively to the SH3 domain of PLC-gamma, but not its N-SH2 or C-SH2 domains. Confirming the SH3 interaction, PLC-gamma was pulled down by CAIR-1/BAG-3 PXXP-GST fusions, but GST-PXXP constructs confronted with lysates from EGF-treated cells did not bind PLC-gamma as was seen in intact cells. Hsp70/Hsc70 was brought down by the PLC-gamma SH3 construct equally from native and EGF-treated cells, but did not bind the PXXP construct under either condition. We propose that CAIR-1/BAG-3 may act as a multifunctional signaling protein linking the Hsp70/Hsc70 pathway with those necessary for activation of the EGF receptor tyrosine kinase signaling pathways.

    Oncogene 2000;19;38;4385-95

  • Mediation by the protein-tyrosine kinase Tec of signaling between the B cell antigen receptor and Dok-1.

    Yoshida K, Yamashita Y, Miyazato A, Ohya K, Kitanaka A, Ikeda U, Shimada K, Yamanaka T, Ozawa K and Mano H

    Division of Functional Genomics, Departments of Hematology and Cardiology, Jichi Medical School, Kawachi-gun, Tochigi 329-0498, Japan.

    A variety of growth factor receptors induce the tyrosine phosphorylation of a nonreceptor protein-tyrosine kinase Tec as well as that of a Tec-binding protein of 62 kDa. Given the similarity in properties between this 62-kDa protein and p62(Dok-1), the possibility that these two proteins are identical was investigated. Overexpression of a constitutively active form of Tec in a pro-B cell line induced the hyperphosphorylation of endogenous Dok-1. Tec also associated with Dok-1 in a phosphorylation-dependent manner in 293 cells. Tec mediated marked phosphorylation of Dok-1 both in vivo and in vitro, and this effect required both the Tec homology and Src homology 2 domains of Tec in addition to its kinase activity. Expression of Dok-1 in 293 cells induced inhibition of Ras activity, suggesting that Dok-1 is a negative regulator of Ras. In the immature B cell line Ramos, cross-linking of the B cell antigen receptor (BCR) resulted in tyrosine phosphorylation of Dok-1, and this effect was markedly inhibited by expression of dominant negative mutants of Tec. Furthermore, overexpression of Dok-1 inhibited activation of the c-fos promoter induced by stimulation of the BCR. These results suggest that Tec is an important mediator of signaling from the BCR to Dok-1.

    The Journal of biological chemistry 2000;275;32;24945-52

  • Engagement of the T lymphocyte antigen receptor regulates association of son-of-sevenless homologues with the SH3 domain of phospholipase Cgamma1.

    Scholler JK, Perez-Villar JJ, O'Day K and Kanner SB

    Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543, USA.

    One mechanism for transducing signals downstream of lymphocyte receptor activation involves the stable association between signaling proteins. To identify protein ligands of the signal activator phospholipase Cgamma1 (PLCgamma1), we screened T cell cDNA libraries with the PLCgamma1-SH3 domain by the yeast two-hybrid assay. We observed association between the PLCgamma1-SH3 domain and the human Ras guanine nucleotide exchange factor son-of-sevenless-2 (hSos2) through a proline-rich domain interaction. Stable and abundant hSos2 / PLCgamma1 and hSos1 / PLCgamma1 complexes were observed in unstimulated T cells. The interaction between these enzymes was augmented following engagement of the T cell antigen receptor (TCR / CD3). The kinetics of protein complex enhancement correlated with TCR / CD3-induced tyrosine phosphorylation of PLCgamma1; however, those PLCgamma1 molecules in complex with hSos2 were non-phosphorylated after TCR / CD3 stimulation, in contrast to the phosphorylated PLCgamma1 associated with the linker for activation of T cells, LAT. The Grb2 adapter protein was detected in complex with hSos / PLCgamma1, suggesting a regulatory role for Grb2. SH3 domains from both Grb2 and PLCgamma1, but not RasGAP, bound directly to hSos homologues. The SH2 domain from Grb2 formed an association with the hSos / PLCgamma1 complex, which was enhanced following TCR / CD3 ligation. Together, the data suggest a mechanism for the son-of-sevenless and PLCgamma1 signal transducing enzymes in recruitment to protein complexes with potentially differential signaling consequences in T lymphocytes.

    European journal of immunology 2000;30;8;2378-87

  • Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cgamma pathway.

    Marshall AJ, Niiro H, Yun TJ and Clark EA

    Department of Microbiology, University of Washington, Seattle, USA. marshall@ms.umanitoba.ca

    Signal transduction through the B-cell antigen receptor (BCR) determines the fate of B lymphocytes during their development and during immune responses. A multitude of signal transduction events are known to be activated by ligation of the BCR; however, the critical parameters determining the biological outcome of the signal transduction cascade are only just beginning to be understood. Two enzymes which act on plasma membrane phospholipids, phosphatidylinositol 3-kinase (PI3K) and phospholipase Cgamma (PLCgamma), have been implicated as critical mediators of B-cell activation and differentiation signals. Activation of these ubiquitous enzymes is regulated by B-lymphocyte-specific signal transduction proteins, such as CD 19 and B-cell linker protein. These enzymes function by generating both membrane-anchored and soluble second messenger molecules which regulate the activity of downstream signal transduction proteins. Active PI3K produces phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) and phosphatidylinositol-3,4-trisphosphate (PI(3,4,5)P3) which can bind to signaling proteins such as Btk or Akt via their pleckstrin homology domains, resulting in their membrane recruitment and activation. The lipid phosphatases SHIP and PTEN negatively regulate production of PI(3,4)P2 and PI(3,4,S)P3 and therefore function to put a "brake" on the PI3K pathway. Active PLCgamma produces inositol-1,4,5-trisphosphate, which regulates Ca2+ mobilization, and diacylglycerol, which binds to a subset of protein kinase C enzymes leading to their membrane localization and activation. Recent evidence has indicated that PLCgamma activation is partially dependent on the PI(3,4,5)P3 production by activated PI3K. Since PI3K and PLCgamma also share common downstream targets such as the NF-AT and NF-kappaB transcription factors, it is becoming clear that these two pathways are interconnected at several levels. Studies of mice deficient in components of the PI3K and PLCgamma pathways demonstrate that these pathways play critical roles in both pre-BCR and BCR-dependent selection events during B-cell differentiation. Taken together, the present data clearly indicate that PI3K and PLCgamma play critical and indispensable roles in the signal transduction cascades leading to multiple biological responses downstream of the BCR.

    Funded by: NCRR NIH HHS: RR00166; NIAID NIH HHS: AI44257; NIGMS NIH HHS: GM37905

    Immunological reviews 2000;176;30-46

  • Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-gamma1.

    Kim MJ, Chang JS, Park SK, Hwang JI, Ryu SH and Suh PG

    Department of Life Science and School of Environmental Engineering, Pohang University of Science and Technology, Republic of Korea.

    A recent report that microinjection of the SH3 domain of PLC-gamma1 could induce DNA synthesis raised the functional importance of the SH3 domain of PLC-gamma1 in mitogenic signaling. In this report, we provide evidence that SOS1, a p21Ras-specific guanine nucleotide exchange factor, directly binds to the SH3 domain of PLC-gamma1, and that the SH3 domain of PLC-gamma1 is involved in SOS1-mediated p21Ras activation. SOS1 was coprecipitated with the GST-fused SH3 domain of PLC-gamma1 in vitro. The interaction between SOS1 and the PLC-gamma1 SH3 domain is mediated by direct physical interaction. The carboxyl-terminal proline-rich domain of SOS1 is involved in the interaction with the PLC-gamma1 SH3 domain. Moreover, PLC-gamma1 could be co-immunoprecipitated with SOS1 antibody in cell lysates. From transient expression studies, we could demonstrate that the SH3 domain of PLC-gamma1 is necessary for the association with SOS1 in vivo. Intriguingly, overexpression of the SH3 domain of PLC-gamma1, lipase-inactive PLC-gamma1, or wild-type PLC-gamma1 elevated p21Ras activity and ERK activity when compared with vector transfected cells. The PLC-gamma1 mutant lacking the SH3 domain could not activate p21Ras. p21Ras activities in cell lines overexpressing either PLC-gamma1 or the SH2-SH2-SH3 domain of PLC-gamma1 were elevated about 2-fold compared to vector transfected cells. This study is the first to demonstrate that the PLC-gamma1 SH3 domain enhances p21Ras activity, and that the SH3 domain of PLC-gamma1 may be involved in the SOS1-mediated signaling pathway.

    Biochemistry 2000;39;29;8674-82

  • Properties of GST-CALM expressed in E. coli.

    Kim JA, Kim SR, Jung YK, Woo SY, Seoh JY, Hong YS and Kim HL

    Department of Biochemistry, Medical College, Ewha Womans University, Seoul, Korea.

    Clathrin-coated vesicles (CCVs) are involved in protein and lipid trafficking between intracellular compartments in eukaryotic cells. CCVs are composed of clathrin and assembly proteins. The clathrin assembly protein lymphoid myeloid leukemia (CALM) gene, encodes a homologoue of the neuronal clathrin assembly protein AP180. In this study, we characterized the properties of the CALM expressed in E. coli. The molecular weight of bacterially expressed GST-CALM fusion protein was approximately 105 kD on SDS-PAGE. The CALM protein could promote clathrin triskelia into clathrin cages and could bind the preformed clathrin cage. However, 33 kD N-terminal domain of CALM could not bind pre-assembled clathrin cages, but assemble clathrin triskelia into clathrin cages. The CALM protein was bound to SH3 domain through N-terminal domain1, in vitro. The CALM protein is proteolyzed by caspase 3, caspase 8 and calpain through C-terminal domain.

    Experimental & molecular medicine 2000;32;2;93-9

  • Characterization of the tyrosine kinase Tnk1 and its binding with phospholipase C-gamma1.

    Felschow DM, Civin CI and Hoehn GT

    Johns Hopkins Oncology Center, Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, Maryland 21231, USA.

    Tnk1 is a nonreceptor tyrosine kinase cloned from CD34+/Lin-/CD38- hematopoietic stem/progenitor cells. The cDNA predicts a 72-kDa protein containing an NH(2)-terminal kinase, a Src Homology 3 (SH3) domain, and a proline-rich (PR) tail. We generated rabbit antiserum to a GST-Tnk1(SH3) fusion protein. Affinity-purified anti-Tnk1 antibodies specifically recognized a 72-kDa protein in Tnk1-transfected COS-1 cells and cells which express Tnk1 mRNA. Western blot analysis indicated that Tnk1 is expressed in fetal blood cells, but not in any other hematopoietic tissues examined. Tnk1 immunoprecipitated from cell lysates possessed kinase activity and was tyrosine phosphorylated. In binding experiments with a panel of GST-fusion constructs, only GST-PLC-gamma1(SH3) interacted with in vitro translated Tnk1. GST-protein precipitations from cell lysates confirmed that GST-PLC-gamma1(SH3) associated with endogenously expressed Tnk1. Conversely, GST-Tnk1(PR) protein constructs complexed with endogenously expressed PLC-gamma1. The association of Tnk1 with PLC-gamma1 suggests a role for Tnk1 in phospholipid signal transduction.

    Biochemical and biophysical research communications 2000;273;1;294-301

  • Release of calcium from inositol 1,4,5-trisphosphate receptor-regulated stores by HIV-1 Tat regulates TNF-alpha production in human macrophages.

    Mayne M, Holden CP, Nath A and Geiger JD

    Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.

    HIV-1 protein Tat is neurotoxic and increases macrophage and microglia production of TNF-alpha, a cytopathic cytokine linked to the neuropathogenesis of HIV dementia. Others have shown that intracellular calcium regulates TNF-alpha production in macrophages, and we have shown that Tat releases calcium from inositol 1,4, 5-trisphosphate (IP3) receptor-regulated stores in neurons and astrocytes. Accordingly, we tested the hypothesis that Tat-induced TNF-alpha production was dependent on the release of intracellular calcium from IP3-regulated calcium stores in primary macrophages. We found that Tat transiently and dose-dependently increased levels of intracellular calcium and that this increase was blocked by xestospongin C, pertussis toxin, and by phospholipase C and type 1 protein kinase C inhibitors but not by protein kinase A or phospholipase A2 inhibitors. Xestospongin C, BAPTA-AM, U73122, and bisindolylmalemide significantly inhibited Tat-induced TNF-alpha production. These results demonstrate that in macrophages, Tat-induced release of calcium from IP3-sensitive intracellular stores and activation of nonconventional PKC isoforms play an important role in Tat-induced TNF-alpha production.

    Journal of immunology (Baltimore, Md. : 1950) 2000;164;12;6538-42

  • Discoidin domain receptor 1 (DDR1) signaling in PC12 cells: activation of juxtamembrane domains in PDGFR/DDR/TrkA chimeric receptors.

    Foehr ED, Tatavos A, Tanabe E, Raffioni S, Goetz S, Dimarco E, De Luca M and Bradshaw RA

    Departments of Physiology and Biophysics, College of Medicine, University of California, Irvine, California 92697-4560, USA.

    The discoidin domain receptor (DDR1) is characterized by a discoidin I motif in the extracellular domain, an unusually long cytoplasmic juxtamembrane (JM) region, and a kinase domain that is 45% identical to that of the NGF receptor, TrkA. DDR1 also has a major splice form, which has a 37 amino acid insert in the JM region with a consensus Shc PTB site that is lacking in the shorter receptor. One class of ligands for the DDR receptors has recently been identified as being derived from the collagen family, but neither native PC12 cells, which express modest amounts of DDR1, nor transfected PC12 cells, which express much larger amounts of DDR1, respond to this ligand. A chimeric receptor, containing the extracellular domain of hPDGFRbeta fused to the transmembrane and intracellular regions of DDR1, also fails to mediate neuronal-like differentiation in stably transfected PC12 cells and is only weakly autophosphorylated. However, chimeric receptors, which are composed of combinations of intracellular regions from DDR1 and TrkA (with the extracellular domain of hPDGFRbeta), in some cases provided ligand (PDGF) -inducible receptor responses. Those with the TrkA kinase domain and the DDR1 JM regions were able to produce differentiation to varying degrees, whereas the opposite combination did not. Analysis of the signaling responses of the two chimeras with DDR1 JM sequences (with and without the insert) indicated that the shorter sequence bound and activated FRS2 whereas the insert-containing form activated Shc instead. Both activated PLCgamma through the carboxyl-terminal tyrosine of the TrkA domain (Y785 in TrkA residue numbering). Mutation of this site (Y-->F) eliminated PLCgamma activation (indicating there are no other cryptic binding sites for PLCgamma in the DDR1 sequences) and markedly reduced the differentiative activity of the receptor. This is in contrast to TrkA (or PDGFRbeta/TrkA chimeras), where ablation of this pathway has no notable effect on PC12 cell morphogenic responses. Thus, the activation of FRS2 and Shc (leading to MAPK activation) is weaker in the DDR1/TrkA chimeras than in TrkA alone, and the PLCgamma contribution becomes essential for full response. Nonetheless, both DDR1 JM regions contain potentially usable signaling sites, albeit they apparently are not activated directly in DDR1 (or DDR1 chimeras) in a ligand-dependent fashion. These findings suggest that the DDR1 receptors do have signaling capacity but may require additional components or altered conditions to fully activate their kinase domains and/or sustain the activation of the JM sites.

    Funded by: NIA NIH HHS: AG09735

    FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2000;14;7;973-81

  • A novel B lymphocyte-associated adaptor protein, Bam32, regulates antigen receptor signaling downstream of phosphatidylinositol 3-kinase.

    Marshall AJ, Niiro H, Lerner CG, Yun TJ, Thomas S, Disteche CM and Clark EA

    Department of Microbiology, University of Washington, Seattle, Washington 98195, USA. aaronn@u.washington.edu

    We have identified and characterized a novel src homology 2 (SH2) and pleckstrin homology (PH) domain-containing adaptor protein, designated Bam32 (for B cell adaptor molecule of 32 kD). cDNAs encoding the human and mouse Bam32 coding sequences were isolated and the human bam32 gene was mapped to chromosome 4q25-q27. Bam32 is expressed by B lymphocytes, but not T lymphocytes or nonhematopoietic cells. Human germinal center B cells show increased Bam32 expression, and resting B cells rapidly upregulate expression of Bam32 after ligation of CD40, but not immunoglobulin M. Bam32 is tyrosine-phosphorylated upon B cell antigen receptor (BCR) ligation or pervanadate stimulation and associates with phospholipase Cgamma2. After BCR ligation, Bam32 is recruited to the plasma membrane through its PH domain. Membrane recruitment requires phosphatidylinositol 3-kinase (PI3K) activity and an intact PI(3,4, 5)P(3)-binding motif, suggesting that membrane association occurs through binding to 3-phosphoinositides. Expression of Bam32 in B cells leads to a dose-dependent inhibition of BCR-induced activation of nuclear factor of activated T cells (NF-AT), which is blocked by deletion of the PH domain or mutation of the PI(3,4,5)P(3)-binding motif. Thus, Bam32 represents a novel B cell-associated adaptor that regulates BCR signaling downstream of PI3K.

    Funded by: NIAID NIH HHS: AI44257, R01 AI044257, R01 AI045088, R37 AI044257; NIDCR NIH HHS: DE08229, P50 DE008229; NIGMS NIH HHS: GM37905, R01 GM037905

    The Journal of experimental medicine 2000;191;8;1319-32

  • Direct interaction of nerve growth factor receptor, TrkA, with non-receptor tyrosine kinase, c-Abl, through the activation loop.

    Koch A, Mancini A, Stefan M, Niedenthal R, Niemann H and Tamura T

    Institut für Biochemie, OE 4310, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30623, Hannover, Germany.

    The nerve growth factor receptor, TrkA, is essential for the survival and differentiation of neurons in the central and peripheral nervous systems. To understand the molecular principles underlying this differentiation step, we employed a yeast two-hybrid screening protocol using human TrkA as bait. We isolated c-Abl as a TrkA-interacting protein, in addition to known proteins such as phospholipase Cgamma and SH2-B. This interaction was confirmed by an in vitro binding assay using glutathione S-tranferase-Abl fusion protein. Furthermore, we show here that c-Abl binds to phosphotyrosine residue(s) in the kinase activation loop of TrkA.

    FEBS letters 2000;469;1;72-6

  • VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor.

    Wu LW, Mayo LD, Dunbar JD, Kessler KM, Ozes ON, Warren RS and Donner DB

    Department of Microbiology and Immunology, Indiana University School of Medicine, and Walther Oncology Center, Indianapolis, Indiana 46202, USA.

    A protein that binds the intracellular domain of KDR (KDR-IC), a receptor for vascular endothelial cell growth factor (VEGF), was identified by two-hybrid screening. Two-hybrid mapping showed that the VEGF receptor-associated protein (VRAP) interacted with tyrosine 951 in the kinase insert domain of KDR. Northern blot analysis identified multiple VRAP transcripts in peripheral leukocytes, spleen, thymus, heart, lung, and human umbilical vein endothelial cells (HUVEC). The predominant VRAP mRNA encodes a 389-amino acid protein that contains an SH2 domain and a C-terminal proline-rich motif. In HUVEC, VEGF promotes association of VRAP with KDR. Phospholipase C gamma and phosphatidylinositol 3-kinase, effector proteins that are downstream of KDR and important to VEGF-induced endothelial cell survival and proliferative responses, associate constitutively with VRAP. These observations identify VRAP as an adaptor that recruits cytoplasmic signaling proteins to KDR, which plays an important role in normal and pathological angiogenesis.

    Funded by: NCI NIH HHS: CA 67891, CA 73023, CA 84018; ...

    The Journal of biological chemistry 2000;275;9;6059-62

  • Possible involvement of Shc in IL-4-induced germline epsilon transcription in a human B cell line.

    Ikizawa K and Yanagihara Y

    Clinical Research Center for Allergy, National Sagamihara Hospital, Sagamihara, Kanagawa, 228-8522, Japan. k-ikizawa@taiho.co.jp

    The IL-4Ralpha contains the I4R motif which binds to the phosphotyrosine binding domain of several adaptor proteins, including IRS-1/2 and Shc. Although the involvement of IRS-1/2 in IL-4-induced PI3-kinase activation is known, there is little information on the role of Shc in IL-4 signaling. In this study, we found the preferential utilization of Shc by the IL-4Ralpha in a human Burkitt's B lymphoma cell line, DND39. IL-4 induced the association of tyrosine-phosphorylated Shc with the IL-4Ralpha, whereas no detectable tyrosine phosphorylation of IRS-1 or IRS-2 was induced. IL-4-induced germline epsilon promoter activation was enhanced by overexpression of Shc and was inhibited by truncated Shc lacking the collagen-homologous domain. We further found the association of Shc with PLCgamma1. Although direct tyrosine phosphorylation of PLCgamma1 was not detectable, the amount of PLCgamma1 coprecipitable with anti-phosphotyrosine was increased after IL-4 stimulation. These results suggest that Shc can function as an adaptor protein of the IL-4Ralpha and mediate the germline epsilon transcription.

    Biochemical and biophysical research communications 2000;268;1;54-9

  • Regulated association between the tyrosine kinase Emt/Itk/Tsk and phospholipase-C gamma 1 in human T lymphocytes.

    Perez-Villar JJ and Kanner SB

    Immunology, Inflammation, and Pulmonary Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543, USA. perezvillar@bms.com

    The Emt/Itk/Tsk tyrosine kinase is involved in intracellular signaling events induced by several lymphocyte surface receptors. Modulation of TCR/CD3-induced phospholipase-C gamma 1 (PLC gamma 1) activity by the tyrosine kinase Emt/Itk/Tsk has been demonstrated based on studies of Itk-deficient murine T lymphocytes. Here we report a TCR/CD3-regulated association between Emt and PLC gamma 1 in both normal and leukemic T cells. In addition, this association was enhanced following independent ligation of the CD2, CD4, or CD28 costimulatory molecules, but not of CD5 or CD6 surface receptors, correlating to the induced tyrosine phosphorylation of Emt. Before Ab-induced T cell activation, we found that the Emt-SH3 domain was crucial for the constitutive Emt/PLC gamma 1 association; however, upon TCR/CD3 engagement, the Emt-SH2 domain was more efficient in mediating the enhanced Emt/PLC gamma 1 interaction. Furthermore, the PLC gamma 1-SH3 domain, but not the two PLC gamma 1-SH2 domains, contributed to formation of the protein complex. Thus, we describe a regulated interaction between Emt and PLC gamma 1, and based on our studies with individual Emt and PLC gamma 1 SH2/SH3 domains, we propose a mechanism for this association.

    Journal of immunology (Baltimore, Md. : 1950) 1999;163;12;6435-41

  • Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat.

    Haughey NJ, Holden CP, Nath A and Geiger JD

    Department of Pharmacology and Therapeutics, University of Manitoba Faculty of Medicine, Winnipeg, Canada.

    HIV-1 infection commonly leads to neuronal cell death and a debilitating syndrome known as AIDS-related dementia complex. The HIV-1 protein Tat is neurotoxic, and because cell survival is affected by the intracellular calcium concentration ([Ca2+]i), we determined mechanisms by which Tat increased [Ca2+]i and the involvement of these mechanisms in Tat-induced neurotoxicity. Tat increased [Ca2+]i dose-dependently in cultured human fetal neurons and astrocytes. In neurons, but not astrocytes, we observed biphasic increases of [Ca2+]i. Initial transient increases were larger in astrocytes than in neurons and in both cell types were significantly attenuated by antagonists of inositol 1,4,5-trisphosphate (IP3)-mediated intracellular calcium release [8-(diethylamino)octyl-3,4,5-trimethoxybenzoate HCI (TMB-8) and xestospongin], an inhibitor of receptor-Gi protein coupling (pertussis toxin), and a phospholipase C inhibitor (neomycin). Tat significantly increased levels of IP3 threefold. Secondary increases of neuronal [Ca2+]i in neurons were delayed and progressive as a result of excessive calcium influx and were inhibited by the glutamate receptor antagonists ketamine, MK-801, (+/-)-2-amino-5-phosphonopentanoic acid, and 6,7-dinitroquinoxaline-2,3-dione. Secondary increases of [Ca2+]i did not occur when initial increases of [Ca2+]i were prevented with TMB-8, xestospongin, pertussis toxin, or neomycin, and these inhibitors as well as thapsigargin inhibited Tat-induced neurotoxicity. These results suggest that Tat, via pertussis toxin-sensitive phospholipase C activity, induces calcium release from IP3-sensitive intracellular stores, which leads to glutamate receptor-mediated calcium influx, dysregulation of [Ca2+]i, and Tat-induced neurotoxicity.

    Journal of neurochemistry 1999;73;4;1363-74

  • Requirement of the Src homology 2 domain protein Shb for T cell receptor-dependent activation of the interleukin-2 gene nuclear factor for activation of T cells element in Jurkat T cells.

    Lindholm CK, Gylfe E, Zhang W, Samelson LE and Welsh M

    Department of Medical Cell Biology, Box 571, Biomedicum, Uppsala University, S-75123 Uppsala, Sweden.

    Stimulation of the T cell antigen receptor (TCR) induces tyrosine phosphorylation of numerous intracellular proteins. We have recently investigated the role of the adaptor protein Shb in the early events of T cell signaling and observed that Shb associates with Grb2, linker for activation of T cells (LAT) and the TCR zeta-chain in Jurkat cells. We now report that Shb also associates with phospholipase C-gamma1 (PLC-gamma1) in these cells. Overexpression of Src homology 2 domain defective Shb caused diminished phosphorylation of LAT and consequently the activation of mitogen-activated protein kinases was decreased upon TCR stimulation. In addition, the Shb mutant also blocked phosphorylation of PLC-gamma1 and the increase in cytoplasmic Ca(2+) following TCR stimulation. Nuclear factor for activation of T cells is a major target for Ras and calcium signaling pathways in T cells following TCR stimulation, and the overexpression of the mutant Shb prevented TCR-dependent activation of the nuclear factor for activation of T cells. Consequently, endogenous interleukin-2 production was decreased under these conditions. The results indicate a role for Shb as a link between the TCR and downstream signaling events involving LAT and PLC-gamma1 and resulting in the activation of transcription of the interleukin-2 gene.

    The Journal of biological chemistry 1999;274;39;28050-7

  • Tyrosine phosphorylation of tub and its association with Src homology 2 domain-containing proteins implicate tub in intracellular signaling by insulin.

    Kapeller R, Moriarty A, Strauss A, Stubdal H, Theriault K, Siebert E, Chickering T, Morgenstern JP, Tartaglia LA and Lillie J

    Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, USA. kapeller@mpi.com

    A mutation in the tub gene leads to maturity-onset obesity, insulin resistance, and progressive retinal and cochlear degeneration in mice. tub is a member of a growing family of genes that encode proteins of unknown function that are remarkably conserved across species. The absence of obvious transmembrane domain(s) or signal sequence peptide motif(s) suggests that Tub is an intracellular protein. Additional sequence analysis revealed the presence of putative tyrosine phosphorylation motifs and Src homology 2 (SH2)-binding sites. Here we demonstrate that in CHO-IR cells, transfected Tub is phosphorylated on tyrosine in response to insulin and insulin-like growth factor-1 and that in PC12 cells, insulin but not EGF induced tyrosine phosphorylation of endogenous Tub. In vitro, Tub is phosphorylated by purified insulin receptor kinase as well as by Abl and JAK 2 but not by epidermal growth factor receptor and Src kinases. Furthermore, upon tyrosine phosphorylation, Tub associated selectively with the SH2 domains of Abl, Lck, and the C-terminal SH2 domain of phospholipase Cgamma and insulin enhanced the association of Tub with endogenous phospholipase Cgamma in CHO-IR cells. These data suggest that Tub may function as an adaptor protein linking the insulin receptor, and possibly other protein-tyrosine kinases, to SH2-containing proteins.

    The Journal of biological chemistry 1999;274;35;24980-6

  • Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src.

    Shen Z, Batzer A, Koehler JA, Polakis P, Schlessinger J, Lydon NB and Moran MF

    Banting and Best Department of Medical Research, University of Toronto, Canada.

    Sam68 is a 68 kDa protein that associates with and is phosphorylated by the c-Src kinase at mitosis. It contains a KH domain implicated in RNA binding and several proline-rich motifs that resemble known SH3 binding sites. The SH3 domains of c-Src, phosphatidylinositol 3-OH kinase, phospholipase C-gamma and Grb2 protein (containing two SH3 domains), but not other SH3 domains tested, were capable of binding Sam68 in vitro. Synthetic peptides corresponding to the proline motifs of Sam68 inhibited with different efficiencies the binding of SH3 domains to Sam68 suggesting that the proline motifs of Sam68 function as specific SH3 domain binding sites. Mutation of Sam68 SH3 binding sites further indicated that the SRC SH3 domain mediates binding of Src to unphosphorylated Sam68. Phosphorylation of Sam68 by Src kinase was inhibited when the Src SH3 binding site of Sam68 was mutated or when corresponding peptides were added to in vitro kinase reactions indicating that binding of the Src SH3 domain to a specific site near the amino-terminus of Sam68 (including residues 38 - 45: PPLPHRSR) facilitates phosphorylation of Sam68 by the Src kinase domain. Sam68-based proline peptides had no effect on the phosphorylation of another in vitro substrate of Src, enolase. These results suggest that Src effectively mounts Sam68 through its SH3 domain, possibly as a mechanism to position the kinase domain close to substrate tyrosine residues in the carboxyl-half of the protein.

    Oncogene 1999;18;33;4647-53

  • Focal adhesion kinase promotes phospholipase C-gamma1 activity.

    Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G and Hanks SK

    Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

    The nonreceptor tyrosine kinase FAK ("focal adhesion kinase") is a key mediator of integrin signaling events controlling cellular responses to the extracellular matrix, including spreading, migration, proliferation, and survival. Integrin-ligand interactions stimulate FAK tyrosine phosphorylation and activation of FAK signaling functions. Here evidence is presented that the FAK autophosphorylation site Tyr-397 mediates a direct interaction with the C-terminal Src homology 2 domain of phospholipase C (PLC)-gamma1 and that this is required for both adhesion-dependent association of the two molecules and increased inositol phosphate production in mouse embryo fibroblasts. Overexpression of FAK and PLC-gamma1 in COS-7 cells increases PLC-gamma1 enzymatic activity and tyrosine phosphorylation, also dependent on FAK Tyr-397. However, FAK appears incapable of directly phosphorylating PLC-gamma1. These observations suggest a role for FAK in recruiting PLC-gamma1 to the plasma membrane at sites of cell-matrix adhesion and there promoting its enzymatic activity, possibly by releasing the repression caused by intramolecular interactions of the PLC-gamma1 Src homology domains and/or by positioning it for phosphorylation by associated Src-family kinases. These findings expand the known signaling functions of FAK and provide mechanistic insight into integrin-stimulation of PLC-gamma1.

    Funded by: NCI NIH HHS: CA75195, R01 CA075195; NIGMS NIH HHS: GM49882, R01 GM049882

    Proceedings of the National Academy of Sciences of the United States of America 1999;96;16;9021-6

  • A role for phospholipase C-gamma-mediated signaling in tumor cell invasion.

    Kassis J, Moellinger J, Lo H, Greenberg NM, Kim HG and Wells A

    Birmingham Veterans Administration Medical Center, Department of Pathology, University of Alabama at Birmingham, 35294-0007, USA.

    The invasive and metastatic transformation of cancers often results in death. However, the mechanisms that promote this transformation remain unclear. Two closely related receptors, the epidermal growth factor receptor (EGFR) and ErbB2, are overexpressed in a significant percentage of breast and prostate carcinomas, among others, with this up-regulated signaling correlating with tumor progression. Previous studies in our laboratory have demonstrated that an EGFR-phospholipase C (PLC)gamma-mediated motility-associated signaling pathway is rate-limiting for tumor cell invasion in vitro and in vivo in one model of prostate carcinoma. Therefore, we investigated whether this PLCgamma signaling pathway also was rate-limiting for invasion in other tumor cell lines and types and whether this EGFR activity is subsumed by the closely related ErbB2. We determined the effects of PLCgamma signal abrogation by pharmacological (U73122) and molecular (expression of the dominant-negative PLCz) means on the in vitro invasiveness of tumor cells. Inhibition of PLCgamma signaling concomitantly decreased invasiveness of de novo-occurring transgenic adenocarcinoma mouse prostate (TRAMP) lines and the human breast cancer cell lines MDA-468 and MDA-231; these lines present up-regulated EGFR signaling. Because the prostate and breast cancer lines usually present autocrine stimulatory loops involving EGFR, we also examined transgenic adenocarcinoma mouse prostate C1 and MDA-468 treated with the EGFR-specific kinase inhibitor PD153035 to determine whether invasiveness is dependent on EGFR signaling. PD153035 reduced invasiveness to levels similar to those seen with U73122, suggesting that the autocrine EGFR stimulatory loop is functioning to promote invasiveness. To determine whether this signaling pathway also promotes invasiveness of ErbB2-overexpressing tumors, we examined the human breast carcinoma line MDA-361; again, U73122 inhibition of PLCgamma decreased invasiveness. In all situations, the inhibition of PLCgamma signaling did not decrease mitogenic signaling. Thus, the motility-associated PLCgamma signaling pathway is a generalizable rate-limiting step for tumor cell progression.

    Funded by: NCI NIH HHS: CA58204; PHS HHS: R01 54739

    Clinical cancer research : an official journal of the American Association for Cancer Research 1999;5;8;2251-60

  • Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1.

    Zhao C, Yu DH, Shen R and Feng GS

    Department of Biochemistry and Molecular Biology, and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202-5254, USA.

    We describe a novel human adapter molecule containing a pleckstrin homolgy (PH) domain at the N terminus that is closely related to human Grb2-associated binder 1, Gab1, and Drosophila daughter of sevenless. We designate this protein as Gab2. Northern blot analysis indicates that Gab2 is widely expressed and has an overlapping but distinctive expression pattern as compared with Gab1, with high levels of Gab2 mRNA detected in the heart, brain, placenta, spleen, ovary, peripheral blood leukocytes, and spinal cord. Upon tyrosine phosphorylation, Gab2 physically interacts with Shp2 tyrosine phosphatase and Grb2 adapter protein. Strikingly, Gab2 has an inhibitory effect on the activation of Elk-1-dependent transcription triggered by a dominant active Ras mutant (RasV12) or under growth factor stimulation, whereas Gab1 acts to potentiate slightly the Elk-1 activity in the same system. In contrast to the reciprocal effects of Gab1 and Gab2 in mediating Elk-1 induction, these two molecules have a similar function in extracellular signal-regulated kinase activation induced by either oncogenic Ras or growth factor stimulation. Taken together, these results argue that Gab1 and Gab2, two closely related PH-containing adapter proteins, might have distinct roles in coupling cytoplasmic-nuclear signal transduction. This is the first evidence that an intracellular molecule with a PH domain operates as a negative effector in signal relay to the regulation of gene expression.

    Funded by: NIGMS NIH HHS: R29GM53660

    The Journal of biological chemistry 1999;274;28;19649-54

  • Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31.

    Pumphrey NJ, Taylor V, Freeman S, Douglas MR, Bradfield PF, Young SP, Lord JM, Wakelam MJ, Bird IN, Salmon M and Buckley CD

    Division of Immunity and Infection, University of Birmingham, UK.

    Recent studies have shown that, in addition to its role as an adhesion receptor, platelet endothelial cell adhesion molecule 1/CD31 becomes phosphorylated on tyrosine residues Y663 and Y686 and associates with protein tyrosine phosphatases SHP-1 and SHP-2. In this study, we screened for additional proteins which associate with phosphorylated platelet endothelial cell adhesion molecule 1, using surface plasmon resonance. We found that, besides SHP-1 and SHP-2, platelet endothelial cell adhesion molecule 1 binds the cytoplasmic signalling proteins SHIP and PLC-gamma1 via their Src homology 2 domains. Using two phosphopeptides, NSDVQpY663TEVQV and DTETVpY686SEVRK, we demonstrate differential binding of SHP-1, SHP-2, SHIP and PLC-gamma1. All four cytoplasmic signalling proteins directly associate with cellular platelet endothelial cell adhesion molecule 1, immunoprecipitated from pervanadate-stimulated THP-1 cells. These results suggest that overlapping immunoreceptor tyrosine-based inhibition motif/immunoreceptor tyrosine-based activation motif-like motifs within platelet endothelial cell adhesion molecule 1 mediate differential interactions between the Src homology 2 containing signalling proteins SHP-1, SHP-2, SHIP and PLC-gamma1.

    Funded by: Wellcome Trust

    FEBS letters 1999;450;1-2;77-83

  • The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation.

    Meakin SO, MacDonald JI, Gryz EA, Kubu CJ and Verdi JM

    Neurodegeneration Research Group, The John P. Robarts Research Institute, London, Ontario N6A 5K8, Canada. smeakin@rri.on.ca

    We have isolated a human cDNA for the signaling adapter molecule FRS-2/suc1-associated neurotrophic factor target and shown that it is tyrosine-phosphorylated in response to nerve growth factor (NGF) stimulation. Importantly, we demonstrate that the phosphotyrosine binding domain of FRS-2 directly binds the Trk receptors at the same phosphotyrosine residue that binds the signaling adapter Shc, suggesting a model in which competitive binding between FRS-2 and Shc regulates differentiation versus proliferation. Consistent with this model, FRS-2 binds Grb-2, Crk, the SH2 domain containing tyrosine phosphatase SH-PTP-2, the cyclin-dependent kinase substrate p13(suc1), and the Src homology 3 (SH3) domain of Src, providing a functional link between TrkA, cell cycle, and multiple NGF signaling effectors. Importantly, overexpression of FRS-2 in cells expressing an NGF nonresponsive TrkA receptor mutant reconstitutes the ability of NGF to stop cell cycle progression and to stimulate neuronal differentiation.

    The Journal of biological chemistry 1999;274;14;9861-70

  • Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation.

    De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P and Rottapel R

    Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto M5G 2M9.

    We have identified Socs1 as a downstream component of the Kit receptor tyrosine kinase signalling pathway. We show that the expression of Socs1 mRNA is rapidly increased in primary bone marrow-derived mast cells following exposure to Steel factor, and Socs1 inducibly binds to the Kit receptor tyrosine kinase via its Src homology 2 (SH2) domain. Previous studies have shown that Socs1 suppresses cytokine-mediated differentiation in M1 cells inhibiting Janus family kinases. In contrast, constitutive expression of Socs1 suppresses the mitogenic potential of Kit while maintaining Steel factor-dependent cell survival signals. Unlike Janus kinases, Socs1 does not inhibit the catalytic activity of the Kit tyrosine kinase. In order to define the mechanism by which Socs1-mediated suppression of Kit-dependent mitogenesis occurs, we demonstrate that Socs1 binds to the signalling proteins Grb-2 and the Rho-family guanine nucleotide exchange factors Vav. We show that Grb2 binds Socs1 via its SH3 domains to putative diproline determinants located in the N-terminus of Socs1, and Socs1 binds to the N-terminal regulatory region of Vav. These data suggest that Socs1 is an inducible switch which modulates proliferative signals in favour of cell survival signals and functions as an adaptor protein in receptor tyrosine kinase signalling pathways.

    The EMBO journal 1999;18;4;904-15

  • Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells.

    Bertagnolo V, Marchisio M, Volinia S, Caramelli E and Capitani S

    Department of Morphology and Embryology, University of Ferrara, Italy.

    The granulocytic differentiation of HL-60 cells induced by all-trans retinoic acid was accompanied by a progressive tyrosine phosphorylation of specific proteins in either cells or isolated nuclei. Among these phosphoproteins, we identified the Vav adaptor in whole cells as well as in the inner nuclear compartment, where the increase in its tyrosine phosphorylation level was more conspicuous. We also demonstrated the differentiation-dependent association of nuclear phosphorylated Vav to phospholipase C-gamma1 and to the p85 regulatory subunit of phosphoinositide 3-kinase. The role of the Vav/phospholipase C-gamma1/phosphoinositide 3-kinase phosphoprotein complexes in the nuclei of HL-60 induced to differentiate along the granulocytic lineage is discussed.

    FEBS letters 1998;441;3;480-4

  • Adaptor function for the Syk kinases-interacting protein 3BP2 in IL-2 gene activation.

    Deckert M, Tartare-Deckert S, Hernandez J, Rottapel R and Altman A

    Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.

    Syk-family tyrosine kinases are essential for lymphocyte development and activation. Using a yeast two-hybrid screen to identify Syk kinases-interacting proteins (SKIPs), we isolated 3BP2, an Abl SH3-interacting protein of unknown function. 3BP2 was selectively expressed in hematopoietic/lymphoid tissues and bound via its SH2 domain activated Syk-family kinases in mammalian cells, including in antigen receptor-stimulated T cells. In addition to Zap-70, the 3BP2 SH2 domain associated in vitro with LAT, Grb2, PLCgamma1, and Cbl from activated T cell lysates. Transient 3BP2 overexpression induced transcriptional activation of the IL-2 promoter and its NFAT or AP-1 elements. This activity was dependent on the SH2 and pleckstrin-homology domains of 3BP2, and required functional Syk kinases, Ras, and calcineurin. Thus, 3BP2 is an important adaptor that may couple activated Zap-70/Syk to a LAT-containing signaling complex involved in TCR-mediated gene transcription.

    Funded by: NCI NIH HHS: CA35299; NIGMS NIH HHS: GM50819

    Immunity 1998;9;5;595-605

  • Identification and characterization of novel substrates of Trk receptors in developing neurons.

    Qian X, Riccio A, Zhang Y and Ginty DD

    Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

    Neurotrophins influence growth and survival of specific populations of neurons through activation of Trks, members of the receptor tyrosine kinase (RTK) family. In this report, we describe the identification and characterization of two substrates of Trk kinases, rAPS and SH2-B, which are closely related Src homolog 2 (SH2) domain-containing signaling molecules. rAPS and SH2-B are substrates of TrkB and TrkC in cortical neurons and SH2-B is a substrate of TrkA in sympathetic neurons. Moreover, rAPS and SH2-B bind to Grb2, and both are sufficient to mediate NGF induction of Ras, MAP kinase (MAPK), and morphological differentiation of PC12 cells. Lastly, antibody perturbation and transient transfection experiments indicate that SH2-B, or a closely related molecule, is necessary for NGF-dependent signaling in neonatal sympathetic neurons. Together, these observations indicate that rAPS and SH2-B mediate Trk signaling in developing neurons.

    Funded by: PHS HHS: N534814

    Neuron 1998;21;5;1017-29

  • Ligands of CD4 inhibit the association of phospholipase Cgamma1 with phosphoinositide 3 kinase in T cells: regulation of this association by the phosphoinositide 3 kinase activity.

    Jauliac S, Mazerolles F, Jabado N, Pallier A, Bernard F, Peake J, Fischer A and Hivroz C

    INSERM U429, Hôpital Necker, Enfants Malades, Paris, France.

    We have previously shown that CD4 ligands inhibit interleukin-2 (IL-2) production and T cell proliferation in human peripheral CD4+ T lymphocytes, in an MHC-independent way. Two major pathways implicated in T cell activation are inhibited by binding of CD4 ligands to the CD4 molecule, i.e. Ca2+ signaling by phospholipase Cgamma1 (PLCgamma1), and ERK-2 activation, suggesting a p21ras inhibition. We have correlated these inhibitions with the disruption of multifunctional complexes containing PLCgamma1, p120GAP and Sam68, induced by T cell activation. We report here that T cell activation through the TCR/CD3 induces an association of the phosphoinositide 3 kinase (PI3 kinase) with PLCgamma1, both in peripheral CD4+ T lymphocytes and the HUT-78 CD4+ T cell line. PI3 kinase is present in the multifunctional complexes that we have described previously. Preincubation of human peripheral CD4+ T cells and HUT-78 CD4+ T cells with gp160 or a peptide analogue of the HLA class II DR molecule precludes the association of PLCgamma1 with PI3 kinase. We also demonstrate, using two specific inhibitors of PI3 kinase activity (LY294002 and wortmannin), that this activity plays a key role in the association of PLCgamma1 with PI3 kinase. Moreover, we demonstrate the implication of the PI3 kinase activity in the negative signal mediated by HIV gp160 binding to CD4 molecules. We propose that the products of the PI3 kinase are important mediators of the negative signaling induced by the binding of CD4 ligands to the CD4 molecule implicated in the regulation of the formation of multifunctional complexes.

    European journal of immunology 1998;28;10;3183-91

  • Sam68 association with p120GAP in CD4+ T cells is dependent on CD4 molecule expression.

    Jabado N, Jauliac S, Pallier A, Bernard F, Fischer A and Hivroz C

    Institut National de la Santé et de la Recherche Médicale, Unité 429, Hôpital Necker-Enfants Malades, Paris, France. Jabado@necker.fr

    p120 GTPase-activating protein (p120GAP) is a major negative regulator of p21ras activity in several cell types including T cells. Catalytic activity of this enzyme is regulated in part by its interaction with several associated tyrosine-phosphorylated proteins. Sam68 was initially described as associated with p120GAP. It has been further established that Sam68 is a substrate of src kinases in mitosis and that it is not associated with p120GAP in transformed fibroblasts. We describe herein that Sam68 associates with p120GAP and PLC gamma 1 in human mature T cells and in a T cell line expressing the CD4 molecule HUT78 CD4+. This association is present in nonactivated cells and increases after anti-CD3 activation. It is dependent on CD4 expression and, in part, on the association of CD4 with p56lck, as shown by the strongly decreased association of Sam68 with p120GAP in the CD4- mutants, HUT78 CD4-, and by the reduced association of Sam68 with both p120GAP and p56lck in the HUT78 T cell line expressing a CD4 mutant unable to interact with p56lck, HUT78 C420/22. We propose that recruitment of Sam68, via CD4/p56lck, to the inner face of the plasma membrane may permit, via its docking properties, the correct association of key signaling molecules including PLC gamma 1 and p120GAP. This formation of transduction modules will enable the activation of different signaling cascades including the p21ras pathway and an array of downstream events, ultimately leading to T cell activation.

    Journal of immunology (Baltimore, Md. : 1950) 1998;161;6;2798-803

  • Sequences surrounding the Src-homology 3 domain of phospholipase Cgamma-1 increase the domain's association with Cbl.

    Graham LJ, Stoica BA, Shapiro M, DeBell KE, Rellahan B, Laborda J and Bonvini E

    Division of Monoclonal Antibodies, US-Food and Drug Administration, Bethesda, Maryland, 20852, USA.

    SH3 domains are protein modules that interact with proline-rich polypeptide fragments. Cbl is an adapter-like protein known to interact with several SH3 domains, including the PLCgamma1 SH3 domain and the Grb2 amino terminal SH3 domain. Here we explore whether sequences surrounding the PLCgamma1 SH3 domain core sequence (aa.796-851) can affect the binding to Cbl, a target used as a prototypical ligand. Consistent with previous reports, our results demonstrated a weak binding of Cbl to GST fusion proteins that strictly encompass the structural core of the PLCgamma1 SH3 domain but a high-avidity binding to the Grb2 amino-terminal SH3 domain. Inclusion of amino acids immediately flanking the PLCgamma1 SH3 core domain, however, substantially increased binding of Cbl to a level comparable to that of the Grb2 amino-terminal SH3 domain. The interaction of this extended PLCgamma1 SH3 domain fusion protein with Cbl was shown to depend entirely upon the interaction of the domain with a proline-rich motif in Cbl, ruling out the possibility that amino acids adjacent to the core SH3 domain of PLCgamma1 provide independent Cbl binding. These data suggest that sequences surrounding the SH3 domain of PLCgamma1 may contribute to or stabilize the association of the domain with the target protein, thus increasing its binding efficiency.

    Biochemical and biophysical research communications 1998;249;2;537-41

  • LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation.

    Zhang W, Trible RP and Samelson LE

    Section on Lymphocyte Signaling, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5430, USA.

    The linker molecule LAT is a critical substrate of the tyrosine kinases activated upon TCR engagement. Phosphorylated LAT binds Grb2, PLC-gamma1, and other signaling molecules. We demonstrate that human LAT is palmitoylated and that palmitoylated LAT predominantly localizes into glycolipid-enriched microdomains (GEMs). Although the LAT transmembrane domain is sufficient for membrane localization, palmitoylation at C26 and C29 is essential for efficient partitioning into GEMs. LAT palmitoylation is necessary for its tyrosine phosphorylation. After T cell activation, most tyrosine-phosphorylated LAT molecules and a fraction of PLC-gamma1 and other signaling molecules are present in GEMs. LAT is central to T cell activation and is a novel linker molecule shown to require targeting to membrane microdomains for signaling.

    Immunity 1998;9;2;239-46

  • Novel recognition motif on fibroblast growth factor receptor mediates direct association and activation of SNT adapter proteins.

    Xu H, Lee KW and Goldfarb M

    Brookdale Center for Developmental and Molecular Biology, Cellular, Biochemical and Developmental Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA.

    Fibroblast growth factors (FGFs) stimulate tyrosine phosphorylation of a membrane-anchored adapter protein, FRS2/SNT-1, promoting its association with Shp-2 tyrosine phosphatase and upstream activators of Ras. Using the yeast two-hybrid protein-protein interaction assay, we show that FRS2/SNT-1 and a newly isolated SNT-2 protein directly bind to FGF receptor-1 (FGFR-1). A juxtamembrane segment of FGFR-1 and the phosphotyrosine-binding domain of SNTs are both necessary and sufficient for interaction in yeast and in vitro, and FGFR-mediated SNT tyrosine phosphorylation in vivo requires these segments of receptor and SNT. Our findings establish SNTs as direct protein links between FGFR-1 and multiple downstream pathways. The SNT binding motif of FGFR-1 is distinct from previously described phosphotyrosine-binding domain recognition motifs, lacking both tyrosine and asparagine residues.

    Funded by: NIGMS NIH HHS: R21-GM55666, T32-GM08553

    The Journal of biological chemistry 1998;273;29;17987-90

  • BLNK: a central linker protein in B cell activation.

    Fu C, Turck CW, Kurosaki T and Chan AC

    Center for Immunology, Program in Molecular Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

    Linker or adapter proteins provide mechanisms by which receptors can amplify and regulate downstream effector proteins. We describe here the identification of a novel B cell linker protein, termed BLNK, that interfaces the B cell receptor-associated Syk tyrosine kinase with PLCgamma, the Vav guanine nucleotide exchange factor, and the Grb2 and Nck adapter proteins. Tyrosine phosphorylation of BLNK by Syk provides docking sites for these SH2-containing effector molecules that, in turn, permits the phosphorylation and/or activation of their respective signaling pathways. Hence, BLNK represents a central linker protein that bridges the B cell receptor-associated kinases with a multitude of signaling pathways and may regulate the biologic outcomes of B cell function and development.

    Funded by: NCI NIH HHS: R01 CA71516; NIAID NIH HHS: R01 AI42787

    Immunity 1998;9;1;93-103

  • Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins.

    Moutoussamy S, Renaudie F, Lago F, Kelly PA and Finidori J

    Unité 344, Endocrinologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Necker-Enfants Malades, 75730 Paris Cedex 15, France.

    The cloning of receptor targets procedure, used so far to identify proteins associated with tyrosine kinase receptors was modified to clone SH2 proteins able to bind to the growth hormone receptor (GHR). The cytoplasmic region of GHR, a member of the cytokine receptor superfamily does not contain tyrosine kinase activity. It was thus phosphorylated in bacteria by the Elk tyrosine kinase and radiolabeled to screen a mouse expression library. With this probe, we identified Shc and the p85 subunit of phosphatidylinositol 3-kinase as direct targets of the receptor. The other proteins identified, Csk, Shb, Grb4, and Grb10 are new potential transducers for cytokine receptors. We show in Huh-7 hepatoma cells that Grb10 and GHR associate under GH stimulation. Co-transfections in 293 cells further show that Grb10 interacts with both the GHR and Jak2. Functional tests demonstrate that Grb10 inhibits transcription of two reporter genes containing, respectively, the serum response element of c-fos and the GH response element 2 of the Spi2.1 gene, whereas it has no effect on a reporter gene containing only Stat5 binding elements. Our results suggest that Grb10 is a new target for a member of the cytokine receptor family that down-regulates some GH signaling pathways downstream of Jak2 and independently of Stat5.

    The Journal of biological chemistry 1998;273;26;15906-12

  • Tyrosine 1213 of Flt-1 is a major binding site of Nck and SHP-2.

    Igarashi K, Isohara T, Kato T, Shigeta K, Yamano T and Uno I

    Life Science Research Center, Nippon Steel Corporation, Kawasaki, Japan. igarashi@lab1.nsc.co.jp

    Vascular endothelial growth factor (VEGF) binds to its receptor tyrosine kinase Flt-1 and KDR/Flk-1 and stimulates their autophosphorylation. However, little is known about their downstream signal transduction properties. We examined the interactions of certain proteins with a SH2-domain with Flt-1 and KDR using the yeast two-hybrid system and found that Nck, SHP-2, PLC gamma, and PI3K p85 bind to Flt-1. Extensive site-directed mutagenesis of Flt-1 revealed their major binding sites. Nck, SHP-2, and PI3K bind to Y1213 of Flt-1. Nck also binds to Y1333 of Flt-1. These results suggest that Nck, SHP-2, PLC gamma, and PI3K play important roles in Flt-1 signal transduction and that Y1213 of Flt-1 is a major binding site of PI3K, Nck, and SHP-2.

    Biochemical and biophysical research communications 1998;246;1;95-9

  • Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region.

    Zisch AH, Kalo MS, Chong LD and Pasquale EB

    The Burnham Institute, La Jolla, California 92037, USA.

    The cellular components of the neuronal signaling pathways of Eph receptor tyrosine kinases are only beginning to be elucidated. Here we show that in vivo tyrosine phosphorylation sites of the Eph receptors EphA3, EphA4, and EphB2 in embryonic retina serve as binding sites for the Src-homology 2 (SH2) domain of Src kinase. Furthermore, tyrosine-phosphorylated EphB2 was detected in Src immunoprecipitates from transfected Cos cells, indicating that EphB2 and Src can physically associate. Interestingly, a form of Src with reduced electrophoretic mobility and increased tyrosine phosphorylation was detected in Cos cells expressing tyrosine-phosphorylated EphB2, suggesting a functional interaction between EphB2 and Src. Yeast two-hybrid analysis in conjunction with site-directed mutagenesis demonstrated that phosphorylated tyrosine 611 in the juxtamembrane region of EphB2 is crucial for the interaction with the SH2 domain of Src. In contrast, binding of the carboxy-terminal SH2 domain of phospholipase Cgamma was not abolished upon mutation of tyrosine 611 in EphB2. Phosphopeptide mapping of autophosphorylated full-length EphB2, and wild-type and tyrosine to phenylalanine mutants of the EphB2 cytoplasmic domain fused to LexA, showed tyrosine 611 in the sequence motif YEDP as a major site of autophosphorylation in EphB2. Our mutational analysis also indicated that tyrosines 605 and 611 are important for EphB2 kinase activity. We propose Src kinase as a downstream effector that mediates the neuron's response to Eph receptor activation.

    Funded by: NEI NIH HHS: EY105576; NICHD NIH HHS: HD25938

    Oncogene 1998;16;20;2657-70

  • HIV-1 tat molecular diversity and induction of TNF-alpha: implications for HIV-induced neurological disease.

    Mayne M, Bratanich AC, Chen P, Rana F, Nath A and Power C

    Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.

    Activation and infection by HIV-1 of glial cells and infiltrating macrophages are cardinal features of AIDS-related neurological disease. Tumor necrosis factor-alpha (TNF-alpha) is released by these cell types, and increased TNF-alpha mRNA and protein levels are associated with the development and severity of HIV-induced neurological disease. HIV-1 proteins have been implicated in HIV neuropathogenesis including Tat which has been shown to be a potent inducer of TNF-alpha. We review our data showing the induction of TNF-alpha by Tat in primary human fetal astrocytes, human peripheral blood mononuclear cells, macrophages, and astrocytic and macrophage cell lines. TNF-alpha induction was NF-kappaB dependent and was eliminated by inhibiting protein kinase A, phospholipase C and protein tyrosine kinase activity. In addition, we examined the molecular diversity of the tat genome in the brains of HIV-infected patients from different HIV-1 clades. Comparison of matched brain- and spleen-derived tat sequences indicated that homology among brain-derived clones was greater than that between the brain- and spleen-derived clones. The brain-derived tat sequences were markedly heterogeneous in regions which influence viral replication and intracellular transport. Future studies using Tat, encoded by different sequences, will be necessary to determine the functional significance of tat molecular diversity. Nonetheless, these studies suggest that Tat is an important inducer of TNF-alpha production and thus may play a key role in the pathogenesis of HIV-related neurological disease.

    Neuroimmunomodulation 1998;5;3-4;184-92

  • Angiotensin II-induced association of phospholipase Cgamma1 with the G-protein-coupled AT1 receptor.

    Venema RC, Ju H, Venema VJ, Schieffer B, Harp JB, Ling BN, Eaton DC and Marrero MB

    Vascular Biology Center, Department of Pediatrics, Medical College of Georgia, Augusta, Georgia 30912, USA.

    An early event in signaling by the G-protein-coupled angiotensin II (Ang II) AT1 receptor in vascular smooth muscle cells is the tyrosine phosphorylation and activation of phospholipase Cgamma1 (PLCgamma1). In the present study, we show that stimulation of this event by Ang II in vascular smooth muscle cells is accompanied by binding of PLCgamma1 to the AT1 receptor in an Ang II- and tyrosine phophorylation-dependent manner. The PLCgamma1-AT1 receptor interaction appears to depend on phosphorylation of tyrosine 319 in a YIPP motif in the C-terminal intracellular domain of the AT1 receptor and binding of the phosphorylated receptor by the most C-terminal of two Src homology 2 domains in PLCgamma1. PLCgamma1 thus binds to the same site in the receptor previously identified for binding by the SHP-2 phosphotyrosine phosphatase.JAK2 tyrosine kinase complex. A single site in the C-terminal tail of the AT1 receptor can, therefore, be bound in a ligand-dependent manner by two different downstream effector proteins. These data demonstrate that G-protein-coupled receptors can physically associate with intracellular proteins other than G proteins, creating membrane-delimited signal transduction complexes similar to those observed for classic growth factor receptors.

    Funded by: NHLBI NIH HHS: HL57201; NIDDK NIH HHS: DK-02111, P01-DK50268; ...

    The Journal of biological chemistry 1998;273;13;7703-8

  • IL-13 induces tyrosine phosphorylation of phospholipase C gamma-1 following IRS-2 association in human monocytes: relationship with the inhibitory effect of IL-13 on ROI production.

    Sozzani P, Hasan L, Séguélas MH, Caput D, Ferrara P, Pipy B and Cambon C

    Laboratoire de l'Université P. Sabatier, CHU Rangueil, Toulouse, France. Patricia.Sozzani@rangueil.inserm.fr

    Here we analysed the involvement of tyrosine phosphorylation in the regulation of the initial molecular events induced by IL-13 to modulate TPA-triggered reactive oxygen intermediates (ROI) production. Our data indicate that treatment of monocytes with a protein tyrosine kinase inhibitor (herbimycin A) prevents IL-13-induced cAMP accumulation and subsequent ROI inhibition. We have previously demonstrated that cAMP accumulation depends on inositol phosphates hydrolysis (InsPs) and intracellular Ca2+ mobilisation. The inhibition of InsPs and intracellular Ca2+ release by herbimycin A suggests a primary role of tyrosine kinases upstream PLC activation. We further specify that IL-13 stimulates PLC-gamma 1 and IRS-2 tyrosine phosphorylation in human monocytes. We demonstrate for the first time that IL-13 induces the association of IRS-2 with PLC-gamma 1. We proposed here that PLC-gamma 1 is a new candidate recruited by IRS-2.

    Biochemical and biophysical research communications 1998;244;3;665-70

  • LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation.

    Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP and Samelson LE

    Section on Lymphocyte Signaling, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5430, USA.

    Despite extensive study, several of the major components involved in T cell receptor-mediated signaling remain unidentified. Here we report the cloning of the cDNA for a highly tyrosine-phosphorylated 36-38 kDa protein, previously characterized by its association with Grb2, phospholipase C-gamma1, and the p85 subunit of phosphoinositide 3-kinase. Deduced amino acid sequence identifies a novel integral membrane protein containing multiple potential tyrosine phosphorylation sites. We show that this protein is phosphorylated by ZAP-70/Syk protein tyrosine kinases leading to recruitment of multiple signaling molecules. Its function is demonstrated by inhibition of T cell activation following overexpression of a mutant form lacking critical tyrosine residues. Therefore, we propose to name the molecule LAT-linker for activation of T cells.

    Cell 1998;92;1;83-92

  • Interactions of FLT-1 and KDR with phospholipase C gamma: identification of the phosphotyrosine binding sites.

    Cunningham SA, Arrate MP, Brock TA and Waxham MN

    Department of Pharmacology, Texas Biotechnology Corporation, Houston, Texas 77030, USA.

    Vascular endothelial cell growth factor interacts with the receptor tyrosine kinases Flt-1 and KDR/Flk-1. We report that both receptors bind to PLC gamma and display specificity for the N-SH2 over the C-SH2 domain. Extensive site-directed mutagenesis of Flt-1 reveals that the juxta-membrane Y794, and the carboxyl terminal Y1169, are two major sites of interaction. Amino acids in the +1, +2 and +3 positions following these tyrosines are LSI and IPI, respectively. Peptide maps generated from wild type and mutant Flt-1 confirms that these residues are autophosphorylated. As predicted, mutagenesis of the analogous amino acids in KDR, positions Y801F and Y1175F, which lie in contexts YLSI and YIVL, respectively, reduced interactions of PLC gamma with this receptor. We conclude that both Flt-1 and KDR have the potential to signal through PLC gamma via phosphotyrosine residues located in juxta-membrane and carboxyl tail regions.

    Biochemical and biophysical research communications 1997;240;3;635-9

  • Signals transduced through the CD4 molecule interfere with TCR/CD3-mediated ras activation leading to T cell anergy/apoptosis.

    Tamma SM, Chirmule N, McCloskey TW, Oyaizu N, Kalyanaraman VS and Pahwa S

    Department of Pediatrics, North Shore University Hospital-New York University School of Medicine, Manhasset, New York 11030, USA.

    It has been previously demonstrated that the occupancy of CD4 molecules by the HIV-1 envelope glycoprotein gp120 results in marked inhibition of T cell receptor-CD3 complex (TCR/CD3) activation-induced IL-2 secretion. To elucidate the mechanism of inhibitory effects of gp160 on T cell signaling, we have investigated the intracellular biochemical events and biological output in response to anti-CD3 mAb activation of purified peripheral blood CD4+ T cells from healthy donors with and without prior exposure to HIV-1 gp160. Pretreatment with gp160 resulted in marked inhibition of tyrosine phosphorylation of p59(fyn), PLC-gamma1, ras activation, and TNF-alpha secretion in anti-CD3 mAb activated CD4+ T cells, and a subset of CD4+ cells underwent activation-induced cell death. The data presented here provide insight into the mechanism by which the interaction of HIV-1 envelope glycoproteins with CD4 molecules may alter TCR/CD3-activation-induced signal transduction resulting in anergy and apoptosis with consequent functional deficiency of CD4+ T cells.

    Funded by: NIAID NIH HHS: AI28281; NIDA NIH HHS: DA 05161

    Clinical immunology and immunopathology 1997;85;2;195-201

  • Identification of two tyrosine phosphoproteins, pp70 and pp68, which interact with phospholipase Cgamma, Grb2, and Vav after B cell antigen receptor activation.

    Fu C and Chan AC

    Program in Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

    Tyrosine phosphorylation of cellular proteins mediates the assembly and localization of effector proteins through interactions facilitated by modular Src homology 2 (SH2) and phosphotyrosine binding domains. We describe here two tyrosine-phosphorylated proteins with Mr values of 70,000 and 68,000 that interact with Grb2, phospholipase C (PLCgamma1 and PLCgamma2), and Vav after B cell receptor cross-linking. The interaction of pp70 and pp68 with PLC and Vav is mediated by the carboxyl-terminal SH2 domain of PLC and the SH2 domain of Vav. In contrast, the interaction of pp70 and pp68 with Grb2 requires cooperative binding of the SH2 and SH3 domains of Grb2. Western blot analysis demonstrated that neither pp70 nor pp68 represented the recently described linker protein SLP-76, which binds Grb2, PLC, and Vav in T cells after T cell receptor activation. Moreover, SLP-76 protein was not detected in a number of B cell lines or in normal mouse B cells. Hence, we propose that pp70 and pp68 likely represent B cell homologs of SLP-76 which facilitate and coordinate B cell activation.

    The Journal of biological chemistry 1997;272;43;27362-8

  • A novel ligand for an SH3 domain of the adaptor protein Nck bears an SH2 domain and nuclear signaling motifs.

    Matuoka K, Miki H, Takahashi K and Takenawa T

    Department of Biosignal Research, Tokyo Metropolitan Institute of Gerontology, Japan.

    Nck is a small protein composed of Src homology regions (SH) 2 and 3, paralleling the adaptors c-Crk and Grb2/Ash, but its function remains enigmatic. To clarify Nck signaling, a human brain cDNA library was searched for targets of the SH3 moiety of Nck. A novel molecule detected therefrom (referred to as Nck-, Ash- and phospholipase Cgamma-binding protein 4) contained proline-rich sequences and, through the function of one of them, interacted with the middle SH3 domain of Nck. A NAP4 fusion peptide exhibited an affinity for Nck, Ash and phospholipase Cgamma in whole cell lysates. NAP4 also had an SH2 domain, which could bind to activated EGF receptor. These intermolecular interactions imply the intricacy of Nck-mediated signaling around the receptor protein-tyrosine kinases. In addition, NAP4 bore a putative nuclear localization signal and a Q-run/P-run composite, both characteristic of nuclear proteins, and might therefore relate to the presence of Nck in the cellular nucleus.

    Biochemical and biophysical research communications 1997;239;2;488-92

  • Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma-associated proteins. Characterization of a c-Src-dependent 97-kD protein in vascular smooth muscle cells.

    Schmitz U, Ishida M and Berk BC

    Department of Medicine, University of Washington, Seattle 98195-7710, USA.

    Stimulation of phospholipase C-gamma (PLC-gamma) is a critical event in angiotensin II (Ang II) signal transduction. We have previously shown that in rat aortic smooth muscle (RASM) cells Ang II stimulates tyrosine phosphorylation of PLC-gamma via activation of c-Src. Because we failed to demonstrate a direct association between c-Src and PLC-gamma, we hypothesized that a linker protein mediates the interaction between these molecules. To identify PLC-gamma-associated proteins, RASM cells were labeled with [32P]orthophosphate and stimulated with 100 nmol/L Ang II for 5 minutes. PLC-gamma was immunoprecipitated, and associated proteins were characterized by autoradiography and Western blotting with anti-phosphotyrosine antibodies. Ang II stimulated the phosphorylation of 47-, 60-, 84-, and 97-kD PLC-gamma-associated proteins. Because Ang II increased tyrosine phosphorylation of only the 97-kD protein, we characterized p97 further. An important role for Src in tyrosine phosphorylation of p97 was suggested by findings that p97 phosphorylation was inhibited by the selective Src-family kinase inhibitor CP-118,556, diminished in mouse aortic smooth muscle (MASM) cells from c-Src knockout mice compared with wild-type MASM cells, and increased in v-Src-transformed NIH-3T3 cells compared with wild-type NIH-3T3 cells. These studies are the first to define a PLC-gamma-associated protein that may be required for Ang II-mediated signal transduction.

    Funded by: NHLBI NIH HHS: HL-44721, HL-49192

    Circulation research 1997;81;4;550-7

  • The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma.

    Sawano A, Takahashi T, Yamaguchi S and Shibuya M

    Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108, Japan.

    Flt-1, a tyrosine kinase receptor for vascular endothelial growth factor (VEGF), plays important roles in the angiogenesis required for embryogenesis and in monocyte/macrophage migration. However, the signal transduction of Flt-1 is poorly understood due to its very weak tyrosine kinase activity. Therefore, we overexpressed Flt-1 in insect cells using the Baculovirus system in order to examine for autophosphorylation sites and association with adapter molecules such as phospholipase Cgamma-1 (PLCgamma). Tyr-1169 and Tyr-1213 on Flt-1 were found to be auto-phosphorylated, but only a phenylalanine mutant of Tyr-1169 strongly suppressed its association with PLCgamma. In Flt-1 overexpressing NIH3T3 cells, VEGF induced autophosphorylation of Flt-1, tyrosine-phosphorylation of PLCgamma and protein kinase C-dependent activation of MAP kinase. These results strongly suggest that Tyr-1169 on Flt-1 is a major binding site for PLCgamma and important for Flt-1 signal transduction within the cell.

    Biochemical and biophysical research communications 1997;238;2;487-91

  • The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases.

    Chen P, Mayne M, Power C and Nath A

    Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3.

    Human immunodeficiency virus (HIV) infection may cause a dementing illness. HIV-mediated dementia is clinically and pathologically correlated with the infiltration of activated macrophages and elevated levels of tumor necrosis factor (TNF)-alpha, both of which occur in an environment of small numbers of infected cells. We examined the possibility that HIV protein Tat, which is released extracellularly from infected cells, may induce the production of TNF-alpha. Tat induced TNF-alpha mRNA and protein production dose-dependently, primarily in macrophages but also in astrocytic cells. The TNF-alpha induction was NF-kappaB-dependent and could be eliminated by inhibiting protein kinase A or protein tyrosine kinase activity. In addition, Tat-induced TNF-alpha release was also linked to phospholipase C activation. However, Tat effects were independent of protein kinase C. These observations suggest that Tat may provide an important link between HIV and macrophage/glial cell activation and suggest new therapeutic approaches for HIV dementia.

    The Journal of biological chemistry 1997;272;36;22385-8

  • A new function for phospholipase C-gamma1: coupling to the adaptor protein GRB2.

    Pei Z, Maloney JA, Yang L and Williamson JR

    School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

    Epidermal growth factor (EGF)-induced autophosphorylation of the EGF receptor results in high-affinity binding of the adaptor protein GRB2, which serves as a convergence point for multiple signaling pathways. Present studies demonstrate that EGF induces the co-immunoprecipitation of phospholipase C (PLC)-gamma1 with the adaptor protein GRB2 and the guanine nucleotide exchange factor Sos, but not with the adaptor protein SHC, in WB cells. Inhibition of PLC-gamma1 tyrosine phosphorylation by phenylarsine oxide reduces the co-immunoprecipitation of PLC-gamma1 with GRB2. Furthermore, angiotensin II, a G protein-coupled receptor agonist, also induces the tyrosine phosphorylation of PLC-gamma1 and its co-immunoprecipitation with GRB2 in WB cells. Interestingly, angiotensin II stimulation also causes tyrosine phosphorylation of the EGF receptor, suggesting that angiotensin II-induced PLC-gamma1 tyrosine phosphorylation in WB cells may be via EGF receptor tyrosine kinase activation. In addition, there is some level of association between PLC-gamma1 and GRB2 that is independent of the tyrosine phosphorylation of PLC-gamma1 in both in vivo and in vitro studies. In vitro studies further demonstrate that the Tyr771 and Tyr783 region of PLC-gamma1 and the SH2 domain of GRB2 are potentially involved in the tyrosine phosphorylation-dependent association between PLC-gamma1 and GRB2. The association of PLC-gamma1 with GRB2 and Sos suggests that PLC-gamma1 may be directly involved in the Ras signaling pathway and that GRB2 may be involved in the translocation of PLC-gamma1 from cytosol to the plasma membrane as a necessary step for its effect on inositol lipid hydrolysis.

    Funded by: NIDDK NIH HHS: DK-07314, DK-15120, DK-48493

    Archives of biochemistry and biophysics 1997;345;1;103-10

  • The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma.

    Gurd JW and Bissoon N

    Division of Life Sciences, University of Toronto at Scarborough, West Hill, Ontario, Canada.

    The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-gamma (PLC-gamma). A glutathione S-transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-gamma was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-gamma and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.

    Journal of neurochemistry 1997;69;2;623-30

  • Phosphotyrosine binding domain-dependent upregulation of the platelet-derived growth factor receptor alpha signaling cascade by transforming mutants of Cbl: implications for Cbl's function and oncogenicity.

    Bonita DP, Miyake S, Lupher ML, Langdon WY and Band H

    Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

    Recent studies have demonstrated that Cbl, the 120-kDa protein product of the c-cbl proto-oncogene, serves as a substrate of a number of receptor-coupled tyrosine kinases and forms complexes with SH3 and SH2 domain-containing proteins, pointing to its role in signal transduction. Based on genetic evidence that the Caenorhabditis elegans Cbl homolog, SLI-1, functions as a negative regulator of the LET-23 receptor tyrosine kinase and our demonstration that Cbl's evolutionarily conserved N-terminal transforming region (Cbl-N; residues 1 to 357) harbors a phosphotyrosine binding (PTB) domain that binds to activated ZAP-70 tyrosine kinase, we examined the possibility that oncogenic Cbl mutants may activate mitogenic signaling by deregulating cellular tyrosine kinase machinery. Here, we show that expression of Cbl-N and two other transforming Cbl mutants (CblY368 delta and Cbl366-382 delta or Cb170Z), but not wild-type Cbl, in NIH 3T3 fibroblasts leads to enhancement of endogenous tyrosine kinase signaling. We identified platelet-derived growth factor receptor alpha (PDGFR alpha) as one target of mutant Cbl-induced deregulation. In mutant Cbl transfectants, PDGFR alpha was hyperphosphorylated and constitutively complexed with a number of SH2 domain-containing proteins. PDGFR alpha hyperphosphorylation and enhanced proliferation of mutant Cbl-transfected NIH 3T3 cells were drastically reduced upon serum starvation, and PDGF-AA substituted for the maintenance of these traits. PDGF-AA stimulation of serum-starved Cbl transfectants induced the in vivo association of transfected Cbl proteins with PDGFR alpha. In vitro, Cbl-N directly bound to PDGFR alpha derived from PDGF-AA-stimulated cells but not to that from unstimulated cells, and this binding was abrogated by a point mutation (G306E) corresponding to a loss-of-function mutation in SLI-1. The Cbl-N/G306E mutant protein, which failed to induce enhanced growth and transformation of NIH 3T3 cells, also failed to induce hyperphosphorylation of PDGFR alpha. Altogether, these findings identify a novel mechanism of Cbl's physiological function and oncogenesis, involving its PTB domain-dependent direct interaction with cellular tyrosine kinases.

    Funded by: NCI NIH HHS: CA64503; NIAMS NIH HHS: AR36308

    Molecular and cellular biology 1997;17;8;4597-610

  • Cytoskeletal association of epidermal growth factor receptor and associated signaling proteins is regulated by cell density in IEC-6 intestinal cells.

    Bedrin MS, Abolafia CM and Thompson JF

    Department of Pediatrics, University of Miami School of Medicine, Florida, USA.

    Epidermal growth factor (EGF) mediates a variety of physiologic responses in rat intestine. EGF receptor (EGFR) responsiveness to EGF is mediated by the surface expression of high affinity EGFR, which is associated with the cytoskeleton (CSK). EGFR signal transduction appears to be mediated by the CSK association of EGFR and related signaling proteins. In the nontransformed intestinal cell line IEC-6, expression of EGFR, Src homology and collagen protein (SHC), phospholipase C gamma 1 (PLC gamma), and their tyrosine phosphorylation in response to EGF was assayed by immunoblot. The distribution of EGFR and tyrosine-phosphorylated EGFR was regulated by cell density. At confluence, EGFR and tyrosine-phosphorylated EGFR were predominantly associated with the Triton X-100-insoluble CSK at confluence, while predominantly Triton X-100-soluble at subconfluence. PLC gamma was predominantly soluble at both states of confluence. Confluent but not subconfluent IEC-6 cells demonstrated a cascade of EGF-mediated events consisting of a transient CSK association of PLC gamma with EGFR, a brief expression of tyrosine-phosphorylated PLC gamma, a brief increase in PLC gamma CSK association, and a prolonged soluble association of PLC gamma with the EGFR. EGF led to an increase in the CSK association of SHC at both states of confluence and was greater at confluence. EGFR association with SHC was primarily soluble at subconfluence, while at confluence EGFR association was markedly increased and predominantly in the CSK. Thus, cell density regulates the CSK association of the EGFR and its ability to associate and activate signaling pathways in intestinal cells.

    Journal of cellular physiology 1997;172;1;126-36

  • Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site.

    Braunger J, Schleithoff L, Schulz AS, Kessler H, Lammers R, Ullrich A, Bartram CR and Janssen JW

    Institut für Humangenetik, Ruprecht-Karls-Universität Heidelberg, Germany.

    Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.

    Oncogene 1997;14;22;2619-31

  • Thrombin activation of human platelets dissociates a complex containing gelsolin and actin from phosphatidylinositide-specific phospholipase Cgamma1.

    Baldassare JJ, Henderson PA, Tarver A and Fisher GJ

    Department of Pharmacological and Physiological Science, St. Louis Health Science Center, St. Louis, MO 63110, USA.

    We have examined the association of two cytoskeleton proteins, gelsolin and actin, with phosphatidylinositide-specific phospholipase Cgamma1 (PLCgamma1) in resting and thrombin-stimulated human platelets. In unstimulated platelets, gelsolin, actin and PLCgamma1 were immunoprecipitated as a complex by a polyclonal antibody to PLCgamma1. The association of gelsolin and actin was specific for PLCgamma1 because immunoprecipitates of PLCs beta2, beta3, gamma2 and delta1, which are also expressed in human platelets, did not contain detectable gelsolin or actin. Activation with thrombin resulted in platelet aggregation and the dissociation of gelsolin and actin from PLCgamma1. Inhibition of thrombin-induced platelet aggregation blocked the dissociation of gelsolin and actin from PLCgamma1. After stimulation with thrombin, PLCgamma1 activity in immunoprecipitates was increased 2-3-fold. This elevation in PLCgamma1 activity in response to thrombin activation was not observed when platelet aggregation was blocked. Although PLCgamma1 is tyrosine phosphorylated in response to many agonists, we could not detect, by Western analysis with anti-phosphotyrosine antibodies, tyrosine phosphorylation of PLCgamma1 immunoprecipitated from thrombin-stimulated platelets. These results demonstrate that PLCgamma1 is associated with gelsolin and actin in resting platelets, and that thrombin-induced platelet aggregation results in the dissociation of PLCgamma1 from gelsolin and actin, and the stimulation of PLCgamma1 activity.

    Funded by: PHS HHS: R01-40901

    The Biochemical journal 1997;324 ( Pt 1);283-7

  • ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK)

    Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X and Witte DP

    Department of Experimental Oncology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

    Anaplastic Lymphoma Kinase (ALK) was originally identified as a member of the insulin receptor subfamily of receptor tyrosine kinases that acquires transforming capability when truncated and fused to nucleophosmin (NPM) in the t(2;5) chromosomal rearrangement associated with non-Hodgkin's lymphoma, but further insights into its normal structure and function are lacking. Here, we characterize a full-length normal human ALK cDNA and its product, and determine the pattern of expression of its murine homologue in embryonic and adult tissues as a first step toward the functional assessment of the receptor. Analysis of the 6226 bp ALK cDNA identified an open reading frame encoding a 1620-amino acid (aa) protein of predicted mass approximately 177 kDa that is most closely related to leukocyte tyrosine kinase (LTK), the two exhibiting 57% aa identity and 71% similarity over their region of overlap. Biochemical analysis demonstrated that the approximately 177 kDa ALK polypeptide core undergoes co-translational N-linked glycosylation, emerging in its mature form as a 200 kDa single chain receptor. Surface labeling studies indicated that the 200 kDa glycoprotein is exposed at the cell membrane, consistent with the prediction that ALK serves as the receptor for an unidentified ligand(s). In situ hybridization studies revealed Alk expression beginning on embryonic day 11 and persisting into the neonatal and adult periods of development. Alk transcripts were confined to the nervous system and included several thalamic and hypothalamic nuclei; the trigeminal, facial, and acoustic cranial ganglia; the anterior horns of the spinal cord in the region of the developing motor neurons; the sympathetic chain; and the ganglion cells of the gut. Thus, ALK is a novel orphan receptor tyrosine kinase that appears to play an important role in the normal development and function of the nervous system.

    Funded by: NCI NIH HHS: CA-01702, CA-21765, CA-69129

    Oncogene 1997;14;18;2175-88

  • Cloning of the human phospholipase C-gamma1 promoter and identification of a DR6-type vitamin D-responsive element.

    Xie Z and Bikle DD

    Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California 94121, USA.

    The 5'-flanking region of the human phospholipase C-gamma1 gene was isolated from a human P1 genomic DNA library. The S1-nuclease mapping and primer extension analysis revealed that there is a single transcriptional start site located at 135 bases upstream from the translation start codon in the human phospholipase C-gamma1 gene. DNA sequence analysis showed that the sequence around the transcriptional start site is very GC-rich and has no TATA box. The fragment +135 to -877 in the 5'-flanking region of the human phospholipase C-gamma1 gene was subcloned into a luciferase reporter vector. The chimeric gene produced a high level of luciferase activity and responded to 1,25-(OH)2D3 in transiently transfected human keratinocytes. Deletion and mutation studies of the fragment +135 to -877 demonstrated a vitamin D-responsive element that contains a motif arranged as two direct repeats separated by 6 bases (DR6), AGGTCAgaccacTGGACA, located between -786 and -803 base pairs. Incubation of the oligonucleotide containing the DR6 with keratinocyte nuclear extracts produced a specific protein-DNA complex that shifted to a higher molecular weight form upon the addition of an antibody specific to the 1,25-(OH)2D3 receptor. Therefore, the 5'-flanking region of the human phospholipase C-gamma1 gene confers promoter activity and contains a DR6-type vitamin D-responsive element that mediates, at least in part, the enhanced expression of this gene in human keratinocytes by 1, 25-(OH)2D3.

    The Journal of biological chemistry 1997;272;10;6573-7

  • Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling.

    Fusaki N, Iwamatsu A, Iwashima M and Fujisawa Ji

    Department of Microbiology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi-shi, Osaka 570, Japan.

    The Src family protein-tyrosine kinase, Fyn, is associated with the T cell receptor (TCR) and plays an important role in TCR-mediated signaling. We found that a human T cell leukemia virus type 1-infected T cell line, Hayai, overexpressed Fyn. To identify the molecules downstream of Fyn, we analyzed the tyrosine phosphorylation of cellular proteins in the cells. In Hayai, a 68-kDa protein was constitutively tyrosine-phosphorylated. The 68-kDa protein was coimmunoprecipitated with various signaling proteins such as phospholipase C gamma1, the phosphatidylinositol 3-kinase p85 subunit, Grb2, SHP-1, Cbl, and Jak3, implying that the protein might function as an adapter. Purification and microsequencing of this protein revealed that it was the RNA-binding protein, Sam68 (Src associated in mitosis, 68 kDa). Sam68 was associated with the Src homology 2 and 3 domains of Fyn and also those of another Src family kinase, Lck. CD3 cross-linking induced tyrosine phosphorylation of Sam68 in uninfected T cells. These data suggest that Sam68 participates in the signal transduction pathway downstream of TCR-coupled Src family kinases Fyn and Lck in lymphocytes, that is not only in the mitotic pathway downstream of c-Src in fibroblasts.

    The Journal of biological chemistry 1997;272;10;6214-9

  • RET alternate splicing influences the interaction of activated RET with the SH2 and PTB domains of Shc, and the SH2 domain of Grb2.

    Lorenzo MJ, Gish GD, Houghton C, Stonehouse TJ, Pawson T, Ponder BA and Smith DP

    CRC Human Cancer Genetics Research Group, University of Cambridge, Department of Pathology, Cambridge, UK.

    Activating germline mutations of the RET receptor tyrosine kinase are found in the majority of cases of inherited cancer syndrome MEN 2, and inactivating mutations in some cases of dominantly inherited Hirschsprung disease. Using RET activated by a MEN 2 mutation, we show that both the SH2 and PTB domains of the adaptor protein Shc interact with RET, and we identify the PTB domain interaction site. Interaction with both the SH2 and PTB domains of Shc contributes to the transcriptional activation of a serum response element. RET alternate splicing affects the strength of interaction with both the Shc SH2 and PTB domains. In addition, a splice isoform-specific HSCR missense mutation, which does not inactivate the RET kinase activity, decreases the strength of the PTB domain interaction and the level of RET-dependent Shc phosphorylation.

    Oncogene 1997;14;7;763-71

  • The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling.

    Trüb T, Frantz JD, Miyazaki M, Band H and Shoelson SE

    Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA.

    We have characterized an SH3-SH2-SH3 linker protein that is prominently expressed in lymphoid tissues. This protein has 58% sequence identity to Grb2. An identical protein called Grap has been found in hematopoietic cells. In Jurkat cells, T cell receptor activation leads to the association of Grap with phosphoproteins p36/38 and, to a lesser degree, Shc. This interaction is mediated by the Grap SH2 domain, which has similar binding specificity to the Grb2 SH2 domain. Grap also associates via its SH3 domains with Sos, the Ras guanine nucleotide exchange factor; with dynamin, a GTPase involved in membrane protein trafficking; and with Sam68, a nuclear RNA-binding protein that serves as a substrate of Src kinases during mitosis. T cell activation effects an increase in Grap association with p36/38, Shc, Sos, and dynamin. Sam68 binding is constitutive. Phospholipase C-gamma1 and Fyn are also found in activated Grap signaling complexes, although these interactions may not be direct. We conclude that Grap is a prominent component of lymphocyte receptor signaling. Based on the known functions of bound effector molecules, Grap-mediated responses to antigen challenge may include endocytosis of the T cell receptor, cellular proliferation, and regulated entry into the cell cycle.

    Funded by: NIAMS NIH HHS: AR36308; NIDDK NIH HHS: DK36836, DK45943; ...

    The Journal of biological chemistry 1997;272;2;894-902

  • Isolation of a NCK-associated kinase, PRK2, an SH3-binding protein and potential effector of Rho protein signaling.

    Quilliam LA, Lambert QT, Mickelson-Young LA, Westwick JK, Sparks AB, Kay BK, Jenkins NA, Gilbert DJ, Copeland NG and Der CJ

    Department of Biochemistry and Molecular Biology and the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. lawrence_quilliam@iucc.iupui.edu

    The NCK adapter protein is comprised of three consecutive Src homology 3 (SH3) protein-protein interaction domains and a C-terminal SH2 domain. Although the association of NCK with activated receptor protein-tyrosine kinases, via its SH2 domain, implicates NCK as a mediator of growth factor-induced signal transduction, little is known about the pathway(s) downstream of NCK recruitment. To identify potential downstream effectors of NCK we screened a bacterial expression library to isolate proteins that bind its SH3 domains. Two molecules were isolated, the Wiskott-Aldrich syndrome protein (WASP, a putative CDC42 effector) and a serine/threonine protein kinase (PRK2, closely related to the putative Rho effector PKN). Using interspecific backcross analysis the Prk2 gene was mapped to mouse chromosome 3. Unlike WASP, which bound the SH3 domains of several signaling proteins, PRK2 specifically bound to the middle SH3 domain of NCK and (weakly) that of phospholipase Cgamma. PRK2 also specifically bound to Rho in a GTP-dependent manner and cooperated with Rho family proteins to induce transcriptional activation via the serum response factor. These data suggest that PRK2 may coordinately mediate signal transduction from activated receptor protein-tyrosine kinases and Rho and that NCK may function as an adapter to connect receptor-mediated events to Rho protein signaling.

    Funded by: NCI NIH HHS: CA42978, CA52072, CA63139; ...

    The Journal of biological chemistry 1996;271;46;28772-6

  • Evidence that the Wiskott-Aldrich syndrome protein may be involved in lymphoid cell signaling pathways.

    Cory GO, MacCarthy-Morrogh L, Banin S, Gout I, Brickell PM, Levinsky RJ, Kinnon C and Lovering RC

    Institute of Child Health, University of London, United Kingdom.

    Wiskott-Aldrich syndrome is an X-linked combined immunodeficiency affecting cells of several different hemopoietic lineages. The Wiskott-Aldrich syndrome protein (WASP), which has no homology with any other known protein families, is rich in proline motifs known to contribute to Src homology 3 binding sites. However, its function has not been determined. The Tec family of cytoplasmic tyrosine kinases, which include Btk (the X-linked agammaglobulinemia gene), Itk, and Tec, is thought to be involved in lymphoid cell signaling pathways. In this work, we show binding of WASP to the Src homology 3 domains of Btk, Itk, Tec, Grb2, and phospholipase C-gamma, which suggests a function for WASP in lymphoid cell signaling.

    Funded by: Wellcome Trust

    Journal of immunology (Baltimore, Md. : 1950) 1996;157;9;3791-5

  • STK/RON receptor tyrosine kinase mediates both apoptotic and growth signals via the multifunctional docking site conserved among the HGF receptor family.

    Iwama A, Yamaguchi N and Suda T

    Department of Cell Differentiation, Kumamoto University School of Medicine, Japan.

    STK/RON tyrosine kinase, a member of the hepatocyte growth factor (HGF) receptor family, is a receptor for macrophage-stimulating protein (MSP). To examine the STK/RON signalling pathway, we generated STK/ RON transfectants showing opposite features in growth. STK/RON-expressing Ba/F3 pro-B cells (BaF/STK) exhibited MSP-dependent growth, whereas STK/ RON-expressing mouse erythroleukaemia cells (MEL/ STK) displayed MSP-induced apoptosis. This apoptosis was accompanied by the prolonged activation of c-Jun N-terminal kinase (JNK), which has recently been implicated in the initiation of apoptosis. Co-immunoprecipitation analyses showed that autophosphorylated STK/RON associated with PLC-gamma, P13-kinase, Shc and Grb2 in both transfectants. However, major tyrosine-phosphorylated proteins, p61 and p65, specifically associated with STK/RON in MEL/STK cells. Mutations at two C-terminal tyrosine residues, Y1330 and Y1337, in the counterpart of the multifunctional docking site of the HGF receptor abolished both MSP-induced growth and apoptosis. Analyses of these mutants and in vitro association revealed that signalling proteins including p61 and p65 directly bound to the phosphotyrosines in the multifunctional docking site. These results demonstrate that positive or negative signals toward cell growth are generated through the multifunctional docking site and suggest the involvement of p61 and p65 as well as JNK in apoptosis. Our findings provide the first evidence for apoptosis via a receptor tyrosine kinase.

    The EMBO journal 1996;15;21;5866-75

  • Identification of regions of the Wiskott-Aldrich syndrome protein responsible for association with selected Src homology 3 domains.

    Finan PM, Soames CJ, Wilson L, Nelson DL, Stewart DM, Truong O, Hsuan JJ and Kellie S

    Yamanouchi Research Institute, Littlemore Hospital, Oxford OX4 4XN, United Kingdom.

    Src homology 3 (SH3) domains have been shown to mediate selected interactions between signaling molecules and are essential for the activation of a number of receptor-driven pathways. The Wiskott-Aldrich syndrome protein was identified as a protein that associated selectively with the SH3 domains derived from c-Src, p85alpha, phospholipase Cgamma1, and c-Fgr. Significantly reduced association was detected to the N-terminal SH3 domain and the tandem SH3 domains of p47(phox), and no binding was detected to the SH3 domain of n-Src, the C-terminal SH3 domain of p47(phox), or either of the SH3 domains of p67(phox). Three peptides corresponding to potential Wiskott-Aldrich syndrome protein SH3 domain binding motifs were found to inhibit its association with c-Src, Fgr, and phospholipase Cgamma1 SH3 domains, but not the p85alpha SH3 domain. These peptides have the sequences MRRQEPLPPPPPPSRG, TGRSGPLPPPPPGA, and KGRSGPLPPVPLGI and show homology with other SH3 domain binding motifs. It is possible that the intracellular association of Wiskott-Aldrich syndrome protein with other signaling proteins is mediated by its SH3 domain-binding regions, and this may play a role in its putative function as a regulatory molecule in immune cells.

    The Journal of biological chemistry 1996;271;42;26291-5

  • Nuclear phosphoinositide-specific phospholipase C, phosphatidylinositol 4,5-bisphosphate and protein kinase C during rat spermatogenesis.

    Caramelli E, Matteucci A, Zini N, Carini C, Guidotti L, Ricci D, Maraldi NM and Capitani S

    Institute of Histology and General Embryology, University of Bologna, Italy.

    Presence and intracellular distribution of phosphoinositide-specific phospholipase C, phosphatidylinositol 4,5-bisphosphate and protein kinase C have been investigated in rat maturing germ cells and spermatozoa. The isoforms beta 1 and gamma 1 of phosphoinositide-specific phospholipase C were immunologically identified and found to be predominantly nuclear or cytoplasmic and nuclear, respectively. The two enzymes were present in the maturing cell lineage of the seminiferous tubule, except for the nucleus of late spermatids, and absent in spermatozoa, in which, however, a phosphoinositide-specific phospholipase C activity persisted, due to yet uncharacterized enzyme(s). Protein kinase C paralleled these developmental changes, and was completely down-regulated in both total cell homogenates and isolated nuclei obtained from spermatozoa. On the contrary, phosphatidylinositol 4,5-bisphosphate, present at the nuclear level in all cell types, accumulated in the nuclei of late spermatids and spermatozoa. These data support the contention that the spermatozoon nucleus stores a lipid-dependent signaling apparatus which could be reactivated either during sperm maturation or at fertilization.

    European journal of cell biology 1996;71;2;154-64

  • Protein kinase C mu (PKC mu) associates with the B cell antigen receptor complex and regulates lymphocyte signaling.

    Sidorenko SP, Law CL, Klaus SJ, Chandran KA, Takata M, Kurosaki T and Clark EA

    Department of Microbiology, University of Washington, Seattle 98195, USA.

    We have identified a Ser/Thr kinase associated with the B cell receptor (BCR) complex as protein kinase C mu (PKC mu). PKC mu activity is up-regulated after cross-linking the BCR and CD19 on B cells, and PKC mu co-precipitates with Syk and phospholipase C-gamma 1/2 (PLC gamma 1/2). In vitro phosphorylation of fusion proteins showed that both Syk and PLC gamma 1 are potential substrates of PKC mu in vivo. Analysis of mutants of the chicken B cell line DT40 deficient in either Syk, Lyn, Btk, or PLC gamma 2 revealed that BCR-induced activation of PKC mu, like activation of PLC gamma 2, requires Syk and is partially regulated by Btk, but is Lyn independent. PKC mu can down-regulate the ability of Syk to phosphorylate PLC gamma 1 in vitro. Thus, PKC mu may function in a negative feedback loop regulating BCR-initiated signaling cascades.

    Funded by: NIGMS NIH HHS: GM37905, GM42508

    Immunity 1996;5;4;353-63

  • Requirement of phospholipase C gamma, the tyrosine phosphatase Syp and the adaptor proteins Shc and Nck for PDGF-induced DNA synthesis: evidence for the existence of Ras-dependent and Ras-independent pathways.

    Roche S, McGlade J, Jones M, Gish GD, Pawson T and Courtneidge SA

    Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Germany.

    We have investigated the roles of the phosphotyrosine phosphatase Syp (also called SH-PTP2), phospholipase C (PLC) gamma1, rasGTPase Activating Protein (rasGAP) and the adapter molecules Nck and Shc in the mitogenic response induced by PDGF in fibroblasts. Two separate approaches were used to inhibit the biological activity of these signalling proteins in vivo. Either glutathione S-transferase (GST) fusion proteins containing the SH2 domains of these proteins, or antibodies specific for these polypeptides, were microinjected into cells. GST-SH2 fusion proteins are expected to act as dominant inhibitors by competing for physiological SH2-mediated interactions, while microinjected antibodies can directly block protein functions. Inhibition of PLCgamma, Syp, Shc and Nck signals blocked PDGF-stimulated cells in G1 showing a requirement for these proteins for S-phase entry. Inhibition of rasGAP, in contrast, had no effect on S-phase entry. We next examined which of these signals were required for PDGF-induced cFos expression, a Ras-dependent event important for signalling. By using the same approaches with cells expressing beta-galactosidase under the control of a c-fos promoter, we showed that PLCgamma, Syp and Shc were necessary for ligand-induced cFos expression whereas Nck and phosphatidylinositol 3-kinase alpha were not. From these results we concluded that PDGF generates Ras-dependent and Ras-independent pathways important for DNA synthesis.

    The EMBO journal 1996;15;18;4940-8

  • Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein-tyrosine kinases.

    Banin S, Truong O, Katz DR, Waterfield MD, Brickell PM and Gout I

    Leukaemia Research Fund Centre for Childhood Leukaemia, Molecular Haematology Unit, Institute of Child Health, 30 Guilford Street, LondonWC1N 1EH, UK.

    Background: Receptor-mediated signal transduction requires the assembly of multimeric complexes of signalling proteins, and a number of conserved protein domains, such as the SH2, SH3 and PH domains, are involved in mediating protein-protein interactions in such complexes. The identification of binding partners for these domains has added considerably to our understanding of signal-transduction pathways, and the purpose of this work was to identify SH3-binding proteins in haematopoietic cells.

    Results: We performed affinity-chromatography experiments with a panel of GST-SH3 fusion proteins (composed of glutathione-S-transferase appended to various SH3 domains) to search for SH3-binding proteins in a human megakaryocytic cell line. Protein microsequencing identified one of the SH3-binding proteins as WASp, the protein that is defective in Wiskott-Aldrich syndrome (WAS) and isolated X-linked thrombocytopenia. WASp bound preferentially in vitro to SH3 domains from c-Src family kinases, and analysis of proteins expressed in insect cells using a baculovirus vector demonstrated a specific interaction between WASp and the Fyn protein-tyrosine kinase. Finally, in vivo experiments showed that WASp and Fyn physically associate in human haematopoietic cells.

    Conclusions: Haematopoietic cells from individuals with WAS exhibit defects in cell morphology and signal transduction, including reduced proliferation and tyrosine phosphorylation in response to stimulatory factors. Members of the c Src family of protein-tyrosine kinases, including Fyn, are involved in a range of signalling pathways - such as those regulating cytoskeletal structure - in both haematopoietic and non-haematopoietic cells. Our data suggest that binding of Fyn to WASp may be a critical event in such signalling pathways in haematopoietic cells.

    Current biology : CB 1996;6;8;981-8

  • Focal adhesion kinase-related fakB is regulated by the integrin LFA-1 and interacts with the SH3 domain of phospholipase C gamma 1.

    Kanner SB

    Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121, USA.

    Signal transduction through integrin molecules expressed on platelets and nonlymphoid cells involves activation of the intracellular focal adhesion kinase ppI25FAK (FAK) to phosphorylate substrate proteins on tyrosine residues. Similar mechanisms are also functional in T-lymphocytes through the beta 1-integrin VLA-4. A putative FAK-related phosphoprotein (fakB) was identified that is responsive to intracellular signals induced through ligation of antigen receptors on both T- and B-lymphocytes, and whose induced tyrosine phosphorylation is augmented by TCR costimulation through the adhesion/costimulatory receptors CD2 and CD4. In this report, fakB is shown to respond to extracellular signals through the beta 2-integrin LFA-1 in the absence of primary signals through the TCR. Protein-protein complex formation was observed involving an association between fakB, phospholipase C gamma 1 (PLC gamma 1), and the tyrosine phosphoprotein pp35-36. Evidence is provided here that fakB interacts with PLC gamma 1 through its SH3 domain. The association between fakB and PLC gamma 1 does not appear to require T-cell activation, whereas the induced tyrosine phosphorylation of the protein complex components occurs following engagement of LFA-1. These data indicate that the beta2-integrin LFA-1 expressed on T-lymphocytes stimulates a novel, FAK-related molecule that may function in the interplay between adhesion receptors and intracellular signaling enzymes responsible for downstream second messenger generation.

    Cellular immunology 1996;171;1;164-9

  • Genetic mapping of the human and mouse phospholipase C genes.

    Lyu MS, Park DJ, Rhee SG and Kozak CA

    Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

    To determine chromosome positions for 10 mouse phospholipase C (PLC) genes, we typed the progeny of two sets of genetic crosses for inheritance of restriction enzyme polymorphisms of each PLC. Four mouse chromosomes, Chr 1, 11, 12, and 19, contained single PLC genes. Four PLC loci, Plcb1, Plcb2, Plcb4, and Plcg1, mapped to three sites on distal mouse Chr 2. Two PLC genes, Plcd1 and Plcg2, mapped to distinct sites on Chr 8. We mapped the human homologs of eight of these genes to six chromosomes by analysis of human x rodent somatic cell hybrids. The map locations of seven of these genes were consistent with previously defined regions of conserved synteny; Plcd1 defines a new region of homology between human Chr 3 and mouse Chr 8.

    Mammalian genome : official journal of the International Mammalian Genome Society 1996;7;7;501-4

  • Tyrosine phosphorylation of Grb2-associated proteins correlates with phospholipase C gamma 1 activation in T cells.

    Motto DG, Musci MA, Ross SE and Koretzky GA

    Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City 52242, USA.

    Ligation of the T-cell antigen receptor (TCR) results in the rapid activation of several protein tyrosine kinases, with the subsequent phosphorylation of numerous cellular proteins. We investigated the requirement for tyrosine phosphorylation of proteins which bind the Grb2 SH2 domain in TCR-mediated signal transduction by transfecting the Jurkat T-cell line with a cDNA encoding a chimeric protein designed to dephosphorylate these molecules. Stimulation of the TCR on cells expressing this engineered enzyme fails to result in sustained tyrosine phosphorylation of a 36-kDa protein likely to be the recently cloned pp36/Lnk. Interestingly, TCR ligation of the transfected cells also fails to induce soluble inositol phosphate production and intracellular calcium mobilization, although receptor-mediated tyrosine phosphorylation of phospholipase C gamma 1 still occurs. TCR-mediated Ras and mitogen-activated protein kinase activation remain intact in cells expressing the engineered phosphatase. These data demonstrate that tyrosine phosphorylation of a protein(s) which binds the SH2 domain of Grb2 correlates with phospholipase C gamma 1 activation and suggest that such a phosphoprotein(s) plays a critical role in coupling the TCR with the phosphatidylinositol second-messenger pathway.

    Funded by: NCI NIH HHS: R01CA56050; NHLBI NIH HHS: HL07638; NIGMS NIH HHS: R01GM53256

    Molecular and cellular biology 1996;16;6;2823-9

  • Pathways downstream of Shc and Grb2 are required for cell transformation by the tpr-Met oncoprotein.

    Fixman ED, Fournier TM, Kamikura DM, Naujokas MA and Park M

    Molecular Oncology Group, Royal Victoria Hospital, Department of Medicine, McGill University, Montreal, Quebec, H3A 1A1 Canada.

    The Tpr-Met oncoprotein, which is a member of a family of tyrosine kinase oncoproteins generated following genomic rearrangement, consists of the catalytic kinase domain of the hepatocyte growth factor/scatter factor receptor tyrosine kinase (Met) fused downstream from sequences encoded by the tpr gene. We have previously demonstrated that a single tyrosine residue in the carboxyl terminus, Tyr489, is highly phosphorylated and is essential for efficient transformation of Fr3T3 fibroblasts by Tpr-Met and for the association of Tpr-Met with the Grb2 adaptor protein and phosphatidylinositol 3'-kinase. We show here that Tyr489 is also required for association of Tpr-Met with phospholipase Cgamma and the tyrosine phosphatase, SHPTP2/Syp. To distinguish which of these substrates are required for cell transformation by the Tpr-Met oncoprotein, we generated a novel Tpr-Met mutant that selectively fails to associate with the Grb2 adaptor protein. Utilizing this mutant, together with additional Tpr-Met mutants containing Tyr to Phe substitutions, we have demonstrated that transformation of Fr3T3 fibroblasts by the Tpr-Met oncoprotein is dependent upon pathways downstream of Shc and Grb2 and that pathways downstream of phosphatidylinositol 3'-kinase, phospholipase Cgamma, and SHPTP2/Syp are insufficient for transformation.

    The Journal of biological chemistry 1996;271;22;13116-22

  • The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma.

    Borrello MG, Alberti L, Arighi E, Bongarzone I, Battistini C, Bardelli A, Pasini B, Piutti C, Rizzetti MG, Mondellini P, Radice MT and Pierotti MA

    Divisione di Oncologia Sperimentale A, Istituto Nazionale Tumori, Milan, Italy.

    RET/PTC oncogenes, generated by chromosomal rearrangements in papillary thyroid carcinomas, are constitutively activated versions of proto-RET, a gene coding for a receptor-type tyrosine kinase (TK) whose ligand is still unknown. RET/PTCs encode fusion proteins in which proto-RET TK and C-terminal domains are fused to different donor genes. The respective Ret/ptc oncoproteins display constitutive TK activity and tyrosine phosphorylation. We found that Ret/ptcs associate with and phosphorylate the SH2-containing transducer phospholipase Cgamma (PLCgamma). Two putative PLCgamma docking sites, Tyr-505 and Tyr-539, have been identified on Ret/ptc2 by competition experiments using phosphorylated peptides modelled on Ret sequence. Transfection experiments and biochemical analysis using Tyr-->Phe mutants of Ret/ptc2 allowed us to rule out Tyr-505 and to identify Tyr-539 as a functional PLCgamma docking site in vivo. Moreover, kinetic measurements showed that Tyr-539 is able to mediate high-affinity interaction with PLCgamma. Mutation of Tyr-539 resulted in a drastically reduced oncogenic activity of Ret/ptc2 on NIH 3T3 cells (75 to 90% reduction) both in vitro and in vivo, which correlates with impaired ability of Ret/ptc2 to activate PLCgamma. In conclusion, this paper demonstrates that Tyr-539 of Ret/ptc2 (Tyr-761 on the proto-RET product) is an essential docking site for the full transforming potential of the oncogene. In addition, the present data identify PLCgamma as a downstream effector of Ret/ptcs and suggest that this transducing molecule could play a crucial role in neoplastic signalling triggered by Ret/ptc oncoproteins.

    Molecular and cellular biology 1996;16;5;2151-63

  • Phospholipase C-gamma1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk.

    Law CL, Chandran KA, Sidorenko SP and Clark EA

    Department of Microbiology, University of Washington, Seattle, USA.

    Antigen receptor ligation on lymphocytes activates protein tyrosine kinases and phospholipase C-gamma (PLC-gamma) isoforms. Glutathione S-transferase fusion proteins containing the C-terminal Src-homology 2 [SH2(C)] domain of PLC-gamma1 bound to tyrosyl phosphorylated Syk. Syk isolated from antigen receptor-activated B cells phosphorylated PLC-gamma1 on Tyr-771 and the key regulatory residue Tyr-783 in vitro, whereas Lyn from the same B cells phosphorylated PLC-gamma1 only on Tyr-771. The ability of Syk to phosphorylate PLC-gamma1 required antigen receptor ligation, while Lyn was constitutively active. An mCD8-Syk cDNA construct could be expressed as a tyrosyl-phosphorylated chimeric protein tyrosine kinase in COS cells, was recognized by PLC-gamma1 SH2(C) in vitro, and induced tyrosyl phosphorylation of endogenous PLC-gamma1 in vivo. Substitution of Tyr-525 and Tyr-526 at the autophosphorylation site of Syk in mCD8-Syk substantially reduced the kinase activity and the binding of this variant chimera to PLC-gamma1 SH2(C) in vitro; it also failed to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. In contrast, substitution of Tyr-348 and Tyr-352 in the linker region of Syk in mCD8-Syk did not affect the kinase activity of this variant chimera but almost completely eliminated its binding to PLC-gamma1 SH(C) and completely eliminated its ability to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. Thus, an optimal kinase activity of Syk and an interaction between the linker region of Syk with PLC-gamma1 are required for the tyrosyl phosphorylation of PLC-gamma1.

    Funded by: NCRR NIH HHS: RR00166; NIGMS NIH HHS: GM42508

    Molecular and cellular biology 1996;16;4;1305-15

  • A Grb2-associated docking protein in EGF- and insulin-receptor signalling.

    Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK and Wong AJ

    Department of Microbiology & Immunology, Jefferson Cancer Institute, Philadelphia, Pennsylvania 19107, USA.

    The protein Grb2 plays a central role in signalling by receptor protein-tyrosine kinases, where its SH2 domain binds to the receptor and its two SH3 domains link to effectors. One target effector is Sos, so Grb2 links receptor protein-tyrosine kinases with the Ras signalling pathway. The SH3 domains can also couple to other signalling proteins, including Vav, c-Abl and dynamin. We have identified several bands in glial and medulloblastoma tumours that are recognized by Grb2 but these did not correspond to any known protein. Here we use recombinant Grb2 to isolate a complementary DNA called Gab1 (for Grb2-associated binder-1). Gab1 shares amino-acid homology and several structural features with IRS-1 (insulin-receptor substrate-1; refs 6,7), is a substrate of the EGF and insulin receptors, and can act as a docking protein for several SH2-containing proteins. Over-expression of Gab1 enhances cell growth and results in transformation. We conclude that Gab1 is a new protein in EGF and insulin receptor signalling which could integrate signals from different systems.

    Nature 1996;379;6565;560-4

  • CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-gamma(1) upon B cell activation.

    Law CL, Sidorenko SP, Chandran KA, Zhao Z, Shen SH, Fischer EH and Clark EA

    Department of Microbiology, University of Washington, Seattle 98195, USA.

    Cross-linking B cell antigen receptor (BCR) elicits early signal transduction events, including activation of protein tyrosine kinases, phosphorylation of receptor components, activation of phospholipase C-gamma (PLC-gamma), and increases in intracellular free Ca2+. In this article, we report that cross-linking the BCR led to a rapid translocation of cytosolic protein tyrosine phosphatase (PTP) 1C to the particulate fraction, where it became associated with a 140-150-kD tyrosyl-phosphorylated protein. Western blotting analysis identified this 140-150-kD protein to be CD22. The association of PTP-1C with CD22 was mediated by the NH2-terminal Src homology 2 (SH2) domain of PTP-1C. Complexes of either CD22/PTP-1C/Syk/PLC-gamma(1) could be isolated from B cells stimulated by BCR engagement or a mixture of hydrogen peroxidase and sodium orthovanadate, respectively. The binding of PLC-gamma(1) and Syk to tyrosyl-phosphorylated CD22 was mediated by the NH2-terminal SH2 domain of PLC-gamma(1) and the COOH-terminal SH2 domain of Syk, respectively. These observations suggest that tyrosyl-phosphorylated CD22 may downmodulate the activity of this complex by dephosphorylation of CD22, Syk, and/or PLC-gamma(1). Transient expression of CD22 and a null mutant of PTP-1C (PTP-1CM) in COS cells resulted in an increase in tyrosyl phosphorylation of CD22 and its interaction with PTP-1CM. By contrast, CD22 was not tyrosyl phosphorylated or associated with PTP-1CM in the presence of wild-type PTP-1C. These results suggest that tyrosyl-phosphorylated CD22 may be a substrate for PTP-1C regulates tyrosyl phosphorylation of CD22.

    Funded by: NIDDK NIH HHS: DK07902; NIGMS NIH HHS: GM37905, GM425008

    The Journal of experimental medicine 1996;183;2;547-60

  • A single point mutation switches the specificity of group III Src homology (SH) 2 domains to that of group I SH2 domains.

    Songyang Z, Gish G, Mbamalu G, Pawson T and Cantley LC

    Division of Signal Transduction, Beth Israel Hospital, Boston, Massachusetts, USA.

    Src homology 2 (SH2) domains recognize phosphotyrosine-containing sequences, and thereby mediate the association of specific signaling proteins in response to tyrosine phosphorylation (Pawson, T., and Schlessinger, J. (1993) Curr. Biol. 3, 434-442). We have shown that specific binding of SH2 domains to tyrosine-phosphorylated sites is determined by sequences adjacent to the phosphotyrosine. Based on the phosphopeptide specificity and crystal structures, SH2 domains were classified into four different groups (Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., R. B. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B., and Cantley, L. C. (1993) Cell 72, 767-778). The beta D5 residues of SH2 domains were predicted to be critical in distinguishing these groups (Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., R. B. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B., and Cantley, L. C. (1993) Cell 72, 767-778; Eck, M. J., Shoelson, S. E., and Harrison, S. C. (1993) Nature 362, 87-91). We report here that replacing the aliphatic residues at the beta D5 positions of two Group III SH2 domains (phosphoinositide 3-kinase N-terminal SH2 domain and phospholipase C-gamma C-terminal SH2 domain) with Tyr (as found in Group I SH2 domains) results in a switch in phosphopeptide selectivity, consistent with the specificities of Group I SH2 domains. These results establish the importance of the beta D5 residue in determining specificities of SH2 domains.

    Funded by: NIGMS NIH HHS: GM36624

    The Journal of biological chemistry 1995;270;44;26029-32

  • Naturally occurring tyrosine kinase inserts block high affinity binding of phospholipase C gamma and Shc to TrkC and neurotrophin-3 signaling.

    Guiton M, Gunn-Moore FJ, Glass DJ, Geis DR, Yancopoulos GD and Tavaré JM

    Department of Biochemistry, School of Medical Sciences, University of Bristol, United Kingdom.

    Neurotrophin-3 binds to the receptor tyrosine kinase, TrkC. Several naturally occurring splice variants of TrkC exist including those with 14- and 39-amino acid inserts within the tyrosine kinase homology region. When expressed in fibroblasts, full-length TrkC, but not the kinase insert variants, mediated neurotrophin-3-stimulated cell proliferation. We investigated the molecular basis of this signaling defect. The kinase inserts blocked the ability of TrkC to mediate neurotrophin-3 stimulated c-myc and c-fos transcription and activation of the AP-1 transcriptional complex. In cells expressing full-length TrkC, neurotrophin-3 promoted a sustained activation of mitogen-activated protein kinase; TrkC containing kinase inserts only mediated transient activation of mitogen-activated protein kinase. The kinase inserts specifically blocked neurotrophin-3-stimulated autophosphorylation of the phospholipase C gamma binding site on TrkC (tyrosine 789) resulting in a severe reduction in phospholipase C gamma association with TrkC and its tyrosine phosphorylation. Neurotrophin-3-stimulated phosphorylation of the Shc binding site (tyrosine 485) on TrkC, and tyrosine phosphorylation of Shc itself, was unaffected by the kinase inserts; however, the kinase inserts blocked high affinity Shc association with TrkC. It is proposed that the lack of high affinity binding of Shc and/or phospholipase C gamma to the TrkC kinase insert variants may be responsible for the inability of these variants to bring about a full biological response in fibroblasts.

    Funded by: Wellcome Trust

    The Journal of biological chemistry 1995;270;35;20384-90

  • Exogenous human immunodeficiency virus type-1 Tat protein selectively stimulates a phosphatidylinositol-specific phospholipase C nuclear pathway in the Jurkat T cell line.

    Zauli G, Previati M, Caramelli E, Bassini A, Falcieri E, Gibellini D, Bertolaso L, Bosco D, Robuffo I and Capitani S

    Institute of Human Anatomy, University of Ferrara, Italy.

    We investigated the effect of extracellular Tat protein of human immunodeficiency virus-type 1 (HIV-1) on the phosphatidylinositol (PI) cycle, which represents a major signal transduction pathway in lymphoid cells. Recombinant Tat, recombinant HIV-1 p24 and cross-linked anti-CD3 monoclonal antibody (mAb) were added in culture for 1-60 min to Jurkat lymphoblastoid CD4+ T cells. The stimulation of T cell receptor by cross-linked anti-CD3 mAb resulted in a rapid increase of the phosphatidylinositol-specific phospholipase C (PI-PLC) activity in whole cell lysates. On the other hand, Tat protein, either alone or in combination with anti-CD3 mAb, showed little effect on the PI turnover of whole cell extracts. Tat, however, selectively stimulated a nuclear-specific PI-PLC with a peak of activity after 30 min from the addition in culture to Jurkat cells. Interestingly, this time corresponded to that required for the uptake and nuclear localization of recombinant Tat protein, as demonstrated by electron microscope immunocytochemistry experiments with anti-Tat mAb. Moreover, exogenous Tat reached the nucleus of Jurkat cells in a bioactive form, as shown in a HIV-1 long terminal repeat-chloramphenicol acetyl transferase transactivation assay. The specific increase of a nuclear PI-PLC activity was further demonstrated by the ability of Tat to stimulate PI turnover also when added directly to isolated nuclei. As a whole, these data demonstrate that Tat selectively stimulates a nuclear polyphosphoinositide hydrolysis, which appears to be independent of the cellular PI turnover. The relevance of these findings for a better understanding of the biological functions of extracellular Tat is discussed.

    European journal of immunology 1995;25;9;2695-700

  • Ligation of the T-cell antigen receptor (TCR) induces association of hSos1, ZAP-70, phospholipase C-gamma 1, and other phosphoproteins with Grb2 and the zeta-chain of the TCR.

    Nel AE, Gupta S, Lee L, Ledbetter JA and Kanner SB

    Department of Medicine, UCLA School of Medicine 90024, USA.

    Signaling by the T-cell antigen receptor (TCR) involves both phospholipase C (PLC)-gamma 1 and p21ras activation. While failing to induce Shc/Grb2 association, ligation of the TCR/CD3 receptor in Jurkat T-cells induced hSos1-Grb2 complexes. In addition to hSos1, Grb2 participates in the formation of a tyrosine phosphoprotein complex that includes 145-, 95-, 70-, 54-, and 36-38-kDa proteins. p145 was identified as PLC-gamma 1 and p70 as the protein tyrosine kinase, ZAP-70. Although of the same molecular weight, p95 was not recognized by an anti-serum to p95 Vav. The SH2 domains of Grb2 and PLC-gamma 1 were required for the formation of this protein complex. In anti-CD3-treated cells, Grb2 redistributed from the cytosol to a particulate cell compartment along with p36/p38, ZAP-70, and PLC-gamma 1. Part of the Grb2 complex associated with the particulate compartment could be extracted with Nonidet P-40, while the rest was Nonidet P-40 insoluble. In both the detergent-soluble and -insoluble fractions, Grb2 coimmunoprecipitated with the zeta-chain of the TCR. Taken together, these results indicate that anti-CD3 induces Grb2-hSos1-PLC-gamma 1-p36/p38-ZAP70 complexes, which localize in the vicinity of TCR-zeta.

    Funded by: NIGMS NIH HHS: GM41576

    The Journal of biological chemistry 1995;270;31;18428-36

  • Requirement for phosphatidylinositol transfer protein in epidermal growth factor signaling.

    Kauffmann-Zeh A, Thomas GM, Ball A, Prosser S, Cunningham E, Cockcroft S and Hsuan JJ

    Protein Biochemistry Group, Ludwig Institute for Cancer Research, University College London School of Medicine, UK.

    Stimulation of phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis is a widespread mechanism for receptor-mediated signaling in eukaryotes. Cytosolic phosphatidylinositol transfer protein (PITP) is necessary for guanosine triphosphate (GTP)-dependent hydrolysis of PIP2 by phospholipase C-beta (PLC-beta), but the role of PITP is unclear. Stimulation of phospholipase C-gamma (PLC-gamma) in A431 human epidermoid carcinoma cells treated with epidermal growth factor (EGF) required PITP. Stimulation of PI-4 kinase in cells treated with EGF also required PITP. Coprecipitation studies revealed an EGF-dependent association of PITP with the EGF receptor, with PI-4 kinase, and with PLC-gamma.

    Funded by: Wellcome Trust

    Science (New York, N.Y.) 1995;268;5214;1188-90

  • HIV-1 glycoprotein gp120 disrupts CD4-p56lck/CD3-T cell receptor interactions and inhibits CD3 signaling.

    Hubert P, Bismuth G, Körner M and Debré P

    Laboratoire d'Immunologie Cellulaire et Tissulaire, CNRS URA 625, Paris, France.

    Using the CD4+ human T cell clone P28, we demonstrated that the HIV-1 glycoprotein gp120 inhibited CD3-induced inositol trisphosphate production, calcium influx and T cell proliferation. Additionally, gp120 was shown to dissociate the tyrosine kinase p56lck from CD4 in CEM cells, with a concommittant inhibition of CD4-linked kinase activity. We have addressed the question whether disruption of CD4/p56lck or CD4/CD3-T cell receptor interactions, or both, could account for the inhibitory effect of gp120 in P28 cells. By comparing the effects of various anti-CD4 monoclonal antibodies (mAb) with those of gp120, we show that gp120 and IOT4a modulate CD4 expression, and decrease CD4-associated p56lck and CD4-linked kinase activity at the plasma membrane. In contrast, OKT4A and OKT4 anti-CD4 mAb have no inhibitory effect. Interestingly, gp120 also inhibits CD3-induced Lck activation and cellular tyrosine phosphorylation, particularly of phosphoinositide-specific phospholipase C-gamma-1. Kinetic experiments reveal that the inhibitory effect of gp120 on CD3-induced tyrosine phosphorylation appears as early as 30 min, but culminate when CD4-p56lck complexes disappear from the cell surface after 4 h. These results suggest that a negative signal is triggered by gp120 that results, after a few hours, in down-modulation of CD4-p56lck complexes and the impairment of CD3 signaling. Supporting this hypothesis, gp120 inhibits CD3-linked kinase activity as shown by the inhibition of the phosphorylation of CD3 chains, leading to the inhibition of subsequent signal transduction.

    European journal of immunology 1995;25;5;1417-25

  • The MATK tyrosine kinase interacts in a specific and SH2-dependent manner with c-Kit.

    Jhun BH, Rivnay B, Price D and Avraham H

    Department of Medicine, Deaconess Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.

    We have cloned a protein tyrosine kinase, MATK, which is expressed abundantly in megakaryocytes and the brain. We investigated whether MATK participates in the c-Kit ligand/stem cell factor (KL/SCF) signaling pathway in the megakaryocytic cell line CMK. After KL/SCF stimulation, five major proteins of molecular masses of 145, 113, 92, 76, and 63 kDa were rapidly and transiently tyrosine-phosphorylated in a time-dependent manner, peaking within 5 min, and returning to basal levels within 60 min. To study the role of MATK in the KL/SCF signaling pathway, glutathione S-transferase (GST) fusion proteins containing SH2 and SH3 domains of MATK were cloned, expressed in Escherichia coli, and purified. MATK-SH2, but not MATK-SH3, precipitated the tyrosine-phosphorylated c-Kit (molecular mass of 145 kDa) in KL/SCF-stimulated CMK cells. Other GST fusion proteins containing the SH2 domain of p85 of phosphatidylinositol 3-kinase, phospholipase C gamma-1, and ras-GAP also precipitated c-Kit. The tyrosine-phosphorylated c-Kit was co-immunoprecipitated with anti-MATK and anti-p85 antibodies in KL/SCF-stimulated CMK cells, but not in granulocyte-macrophage colony stimulating factor or interleukin-6-stimulated cells, suggesting receptor specificity. These results indicate that MATK associates with the c-Kit receptor following specific stimulation by KL/SCF via its SH2 domain and likely participates in transduction of growth signals induced by this cytokine in megakaryocytes.

    Funded by: NHLBI NIH HHS: HL46668, HL51456

    The Journal of biological chemistry 1995;270;16;9661-6

  • Demonstration of functionally different interactions between phospholipase C-gamma and the two types of platelet-derived growth factor receptors.

    Eriksson A, Nånberg E, Rönnstrand L, Engström U, Hellman U, Rupp E, Carpenter G, Heldin CH and Claesson-Welsh L

    Ludwig Institute for Cancer Research, Uppsala, Sweden.

    Phosphorylated tyrosine residues in receptor tyrosine kinases serve as binding sites for signal transduction molecules. We have identified two autophosphorylation sites, Tyr-988 and Tyr-1018, in the platelet-derived growth factor (PDGF) alpha-receptor carboxyl-terminal tail, which are involved in binding of phospholipase C-gamma (PLC-gamma). The capacities of the Y988F and Y1018F mutant PDGF alpha-receptors, expressed in porcine aortic endothelial cells, to bind PLC-gamma are 60 and 5% of that of the wild-type receptor, respectively. Phosphorylated but not unphosphorylated peptides containing Tyr-1018 are able to compete with the intact receptor for binding to immobilized PLC-gamma SH2 domains; a phosphorylated Tyr-988 peptide competes 10 times less efficiently. The complex between PLC-gamma and the PDGF alpha-receptor is more stable than that of PLC-gamma and the PDGF beta-receptor. However, PDGF stimulation results in a smaller fraction of tyrosine-phosphorylated PLC-gamma and a smaller accumulation of inositol trisphosphate in cells expressing the alpha-receptor as compared with cells expressing the beta-receptor. We conclude that phosphorylated Tyr-988 and Tyr-1018 in the PDGF alpha-receptor carboxyl-terminal tail bind PLC-gamma, but this association leads to only a relatively low level of tyrosine phosphorylation and activation of PLC-gamma.

    Funded by: NCI NIH HHS: CA43720

    The Journal of biological chemistry 1995;270;13;7773-81

  • Construction of an SH2 domain-binding site with mixed specificity.

    Larose L, Gish G and Pawson T

    Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

    SH2 domains bind to specific phosphotyrosine-containing sites in a fashion dictated by the amino acids flanking the phosphotyrosine. Attention has focused on the role of the three COOH-terminal positions (+1 to +3) in generating specificity. Autophosphorylation of Tyr1021 in the tail of the beta-receptor for platelet-derived growth factor creates a specific binding site for the COOH-terminal SH2 domain of phospholipase C (PLC)-gamma 1. We show that the residues 4 and 5 amino acids COOH-terminal to Tyr1021 (+4 Leu and +5 Pro) are required for efficient PLC-gamma 1 binding, and that their replacement with the corresponding residues from a phosphatidylinositol 3'-kinase binding site abrogates stable association with PLC-gamma 1. In contrast, replacement of the +3 Pro with Met produces a Tyr1021 site with mixed specificity that binds both PLC-gamma 1 and phosphatidylinositol 3'-kinase. This motif is rendered specific for phosphatidylinositol 3'-kinase by further substitution of the +4 Leu. These results indicate that the +4 and +5 residues are important for the selective binding of specific SH2 domains. This study suggests that phosphotyrosine sites can be tailored to bind one or more SH2 domains with high affinity, depending on the combination of residues in the +1 to +5 positions.

    The Journal of biological chemistry 1995;270;8;3858-62

  • Human spleen tyrosine kinase p72Syk associates with the Src-family kinase p53/56Lyn and a 120-kDa phosphoprotein.

    Sidorenko SP, Law CL, Chandran KA and Clark EA

    Department of Microbiology, University of Washington Medical Center, Seattle 98195.

    The 72-kDa spleen tyrosine kinase (Syk) and Src-family kinase p53/56Lyn (Lyn) contribute to signaling via the B-cell antigen receptor complex. Here we show that Syk and Lyn from human B lymphocytes can interact directly. Syk and Lyn coimmunoprecipitated from mature and activated B-cell lines, and gel-purified Syk and Lyn reassociated in vitro, demonstrating their direct interaction. This Syk-Lyn interaction may be dependent on the stage of B-cell differentiation, since Syk-Lyn associations were not detected in pre-B and myeloma cell lines and Syk from an immature B-cell line did not reassociate with Lyn in vitro. Serine/threonine kinase activity was also associated with Syk. Crosslinking of cell surface IgM led to rapid activation of both tyrosine and serine/threonine protein kinase activities that resulted in phosphorylation in vitro of proteins coprecipitating with Syk--in particular, a serine/threonine phosphorylated protein 120 kDa in size (pp120). Several phosphoproteins, including one of 72 kDa and one of 120 kDa, coprecipitated with phospholipase C-gamma 1 (PLC gamma 1). Sequential immunoprecipitation identified the 72-kDa protein associated with PLC gamma 1 as Syk. The 120-kDa serine/threonine phosphorylated protein that coprecipitated with PLC gamma 1 resembled the Syk-associated pp120 by several criteria. Thus, pp120 may serve as a link between Syk and PLC gamma 1, coupling the B-cell antigen receptor to the phosphatidylinositol pathway.

    Funded by: NCRR NIH HHS: RR00166; NIGMS NIH HHS: GM37905, GM42508

    Proceedings of the National Academy of Sciences of the United States of America 1995;92;2;359-63

  • Association of p62, a multifunctional SH2- and SH3-domain-binding protein, with src family tyrosine kinases, Grb2, and phospholipase C gamma-1.

    Richard S, Yu D, Blumer KJ, Hausladen D, Olszowy MW, Connelly PA and Shaw AS

    Center for Immunology, Washington University School of Medicine, St Louis, Missouri 63110.

    src family tyrosine kinases contain two noncatalytic domains termed src homology 3 (SH3) and SH2 domains. Although several other signal transduction molecules also contain tandemly occurring SH3 and SH2 domains, the function of these closely spaced domains is not well understood. To identify the role of the SH3 domains of src family tyrosine kinases, we sought to identify proteins that interacted with this domain. By using the yeast two-hybrid system, we identified p62, a tyrosine-phosphorylated protein that associates with p21ras GTPase-activating protein, as a src family kinase SH3-domain-binding protein. Reconstitution of complexes containing p62 and the src family kinase p59fyn in HeLa cells demonstrated that complex formation resulted in tyrosine phosphorylation of p62 and was mediated by both the SH3 and SH2 domains of p59fyn. The phosphorylation of p62 by p59fyn required an intact SH3 domain, demonstrating that one function of the src family kinase SH3 domains is to bind and present certain substrates to the kinase. As p62 contains at least five SH3-domain-binding motifs and multiple tyrosine phosphorylation sites, p62 may interact with other signalling molecules via SH3 and SH2 domain interactions. Here we show that the SH3 and/or SH2 domains of the signalling proteins Grb2 and phospholipase C gamma-1 can interact with p62 both in vitro and in vivo. Thus, we propose that one function of the tandemly occurring SH3 and SH2 domains of src family kinases is to bind p62, a multifunctional SH3 and SH2 domain adapter protein, linking src family kinases to downstream effector and regulatory molecules.

    Molecular and cellular biology 1995;15;1;186-97

  • Human ltk receptor tyrosine kinase binds to PLC-gamma 1, PI3-K, GAP and Raf-1 in vivo.

    Kozutsumi H, Toyoshima H, Hagiwara K, Yazaki Y and Hirai H

    Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.

    Leukocyte tyrosine kinase (ltk) is a receptor-type tyrosine kinase which is suggested to be expressed in hematopoietic cells and neuronal cells in human. Recently we have cloned a full sized human ltk cDNA which has a 423 amino acid extracellular domain which may bind to unknown ligand(s), and a 415 amino acid cytoplasmic domain which contains a tyrosine kinase domain. To identify the cellular signal transducer proteins binding to the ltk protein, we have analysed the recombinant ltk protein transiently expressed in COS cells. By an in vitro immune complex kinase assay, a major 140 kDa phosphoprotein and other cellular phosphoproteins were co-immunoprecipitated with the 100 kDa ltk protein using anti-ltk monoclonal antibodies. Western blot analysis revealed that the wild-type ltk protein was tyrosine-phosphorylated in vivo and associated with SH2 containing proteins, PLC-gamma 1, p85 subunit of PI3-K and GAP, in vivo. Furthermore, the wild-type ltk protein also binds to a serine/threonine kinase, Raf-1, in vivo. In contrast, none of these signal transducer proteins were associated with a kinase-negative ltk mutant (K544M-ltk) in which methionine at the putative ATP binding site was replaced with lysine. These results suggest that the associations of the ltk protein with those signaling molecules depend on the tyrosine kinase activity of the ltk protein. This is the first detection of cytoplasmic signal transducers that bind to the ltk protein in vivo.

    Oncogene 1994;9;10;2991-8

  • Heparan sulfate fibroblast growth factor receptor complex: structure-function relationships.

    McKeehan WL and Kan M

    Center for Cancer Biology, Albert B. Alkek Institute of Biosciences and Technology, Texas A & M University, Houston 77030.

    Splice variations in genes coding for the transmembrane FGF receptor (FGFR) result in isoforms that vary in the ectodomain, intracellular juxtamembrane domain, and the intracellular kinase domain. An analysis of biochemical functions of distinct recombinant isoforms expressed in baculoviral-infected insect cells allowed generation of models for function of splice variants in both the ecto- and intracellular domains. A structural model for the ectodomain of the FGFR is proposed as follows. Alternately-spliced immunoglobulin-like disulfide Loop I, which is not required for ligand-binding, is sufficiently interactive with the base FGF binding site formed by Loops II and III to modify ligand affinity and affect interaction of the receptor with heparan sulfate cofactor. The NH2-terminal domain of Loop II, which is highly conserved across all isoforms, exhibits a 19-residue heparin-binding domain which is obligatory for FGF binding. Heparin protects a 30-kDa ligand-binding fragment from proteolysis that is composed of Loop II, the inter-Loop II/III sequence, and the NH2-terminus of Loop III. This suggests that the high-affinity FGF receptor complex is an intimate ternary complex of transmembrane tyrosine kinase, heparan sulfate glycosaminoglycan, and FGF, each of which have interactive binding domains for the other and may contribute to specificity of the FGFR complex. Although Ig Loop II, the inter-Loop II/III sequence, and the NH2-terminus of Loop III with heparan sulfate form the base FGF binding site, mutually exclusive alternate splicing of two exons coding for the COOH-terminal half of Loop III determines which specific members of the FGF ligand family bind with high affinity to the base site. A kinase- and tyrosine phosphorylation site-defective splice variant, FGFR type 2, acts as a dominant-negative suppressor of phosphorylation of specifically tyr-653 in the catalytic domain of the kinase, with less effect on phosphorylation of tyr-766 in the COOH-terminal tail. We propose that phosphorylation of tyr-766, which is required for interaction of phospholipase C gamma 1 (PLC gamma 1) with the receptor, may occur by a cis-intramolecular mechanism within FGFR monomers, while phosphorylation of tyr-653, which is required for phosphorylation of PLC gamma 1, may occur by a trans-intermolecular mechanism between monomers within kinase homodimers. From the combined results, we propose a model whereby increasing concentrations of FGF may control FGF-mediated signal transduction by heterodimerization of different FGFR monomers. Different monomers arise by regulated combinatorial alternate splicing that alters both the extracellular and intracellular domains.

    Funded by: NCI NIH HHS: CA37589; NIDDK NIH HHS: DK35310, DK40739; ...

    Molecular reproduction and development 1994;39;1;69-81; discusison 81-2

  • Signal transduction by fibroblast growth factor receptor-4 (FGFR-4). Comparison with FGFR-1.

    Vainikka S, Joukov V, Wennström S, Bergman M, Pelicci PG and Alitalo K

    Department of Pathology, University of Helsinki, Finland.

    We have studied the signal transduction pathways of fibroblast growth factor receptor-4 (FGFR-4) and FGFR-1, which showed virtually identical acidic fibroblast growth factor binding profiles as well as tyrosine autophosphorylation upon activation in transfected L6 rat myoblasts and NIH3T3 mouse fibroblasts. A prominently tyrosyl-phosphorylated doublet of polypeptides of 85 kDa coprecipitated with activated FGFR-4 from both cell lines studied, but these polypeptides were not detected upon immunoprecipitation of activated FGFR-1. Furthermore, FGFR-4 induced only a weak tyrosyl phosphorylation of phospholipase C-gamma and no detectable tyrosyl phosphorylation of the SHC adaptor proteins in contrast to FGFR-1. No phosphorylation of Ras GTPase-activating protein, p64 Syp/PTP1D tyrosine phosphatase, or association of the GRB2 adaptor protein SH2 domain with these receptors was detected. Unlike FGFR-1, FGFR-4 induced only a barely detectable phosphorylation of the cellular serine/threonine kinase Raf-1 and a weaker tyrosyl phosphorylation of mitogen-activated protein kinases than FGFR-1. Despite these differences, stimulation of both receptors resulted in increased DNA synthesis.

    The Journal of biological chemistry 1994;269;28;18320-6

  • A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family.

    Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, Panayotou G and Comoglio PM

    Department of Biomedical Sciences and Oncology, University of Torino Medical School, Italy.

    Signaling by tyrosine kinase receptors is mediated by selective interactions between individual Src homology 2 (SH2) domains of cytoplasmic effectors and specific phosphotyrosine residues in the activated receptor. Here, we report the existence in the hepatocyte growth factor/scatter factor (HGF/SF) receptor of a multifunctional docking site made of the tandemly arranged degenerate sequence YVH/NV. Phosphorylation of this site mediates intermediate- to high-affinity interactions with multiple SH2-containing signal transducers, including phosphatidylinositol 3-kinase, phospholipase C gamma, pp60c-src, and the GRB-2-Sos complex. Mutation of the two tyrosines results in loss of biological function, as shown by abrogation of the transforming activity in the oncogenic counterpart of the receptor. The same bidentate motif is conserved in the evolutionarily related receptors Sea and Ron, suggesting that in all members of the HGF/SF receptor family, signal transduction is channeled through a multifunctional binding site.

    Cell 1994;77;2;261-71

  • Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors.

    Boulton TG, Stahl N and Yancopoulos GD

    Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591.

    Ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), and interleukin-6 (IL6) compose a family of distantly related cytokines that initiate signaling by inducing either homodimerization of the "beta" signal transducing receptor component gp130 (in the case of IL6) or heterodimerization between gp130 and the gp130-related LIFR beta (in the case of CNTF, LIF, and OSM); dimerization of beta receptor components in turn activates members of the Jak/Tyk family of receptor-associated tyrosine kinases. Here we report that CNTF, LIF, OSM, and IL6 induce most of the same protein tyrosine phosphorylations, regardless of the cell type assayed or whether they initiate signaling by inducing homo- or heterodimerization of beta components. Although several of the protein tyrosine phosphorylations induced by the CNTF/LIF/OSM/IL6 family of factors may correspond to novel tyrosine kinase targets, we have been able to demonstrate the involvement of known signaling molecules, such as phospholipase C gamma, phosphoinositol 3-kinase, phosphotyrosine phosphatase (PTP1D), pp120, SHC, GRB2, STAT91, Raf-1, and the mitogen-activated protein kinases ERK1 and ERK2, revealing substantial convergence not only between the pathways activated by this cytokine family and other cytokines, but with pathways previously known to be activated only by factors that utilize receptor tyrosine kinases. Our data suggest the beta receptor components can form complexes with some of the signaling proteins identified and may play some role in their recruitment.

    The Journal of biological chemistry 1994;269;15;11648-55

  • Electrotransjection of pp60v-src monoclonal antibody inhibits activation of phospholipase C in platelets. A new mechanism for platelet-activating factor responses.

    Dhar A and Shukla SD

    Department of Pharmacology, University of Missouri School of Medicine, Columbia 65212.

    Antibodies to pp60v-arc and phosphotyrosine were introduced into rabbit platelets using an electropermeabilization technique. The presence of these antibodies inside platelets was detected by flow cytometry. Platelet-activating factor (PAF)-stimulated phospholipase C activity (inositol phosphate production) and aggregation were dramatically inhibited in platelets transjected with either of these antibodies. Incubation of these antibodies with intact cells (i.e. nonpermeabilized) or electrotransjection of several nonspecific antibodies/agents (e.g. goat anti-mouse IgG, mouse serum, human platelet glycoprotein Ib monoclonal antibody, and fetal calf serum) into platelets had no effect on the PAF responses. trpE (another isotype-matched control antibody of pp60v-src) and pp56lck polyclonal antibody (another src-related kinase not present in platelets) also had no effect on PAF-induced aggregation and inositol phosphate production in permeabilized platelets. This indicates that the effect of internalized pp60v-src antibody is direct and specific in platelets. Stimulation of platelets by PAF increased the association and phosphorylation of both pp60c-src (60 kDa) and phospholipase C gamma 1 (145 kDa). This study provides the first evidence in platelets for a direct and specific involvement of pp60c-src in PAF-mediated phospholipase C activation and aggregation response.

    Funded by: NIDDK NIH HHS: DK07182, R01 DK35170

    The Journal of biological chemistry 1994;269;12;9123-7

  • Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses.

    Stephens RM, Loeb DM, Copeland TD, Pawson T, Greene LA and Kaplan DR

    ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702.

    In response to NGF, the Trk receptor tyrosine kinase forms a complex with SHC, a protein that couples receptor tyrosine kinases to p21ras. Complex formation between Trk and SHC, SHC tyrosine phosphorylation, and association of SHC with Grb2 were mediated by autophosphorylation at Y490 in Trk [sequence: see text]. To determine the role of SHC and other Trk substrates in NGF signaling, Trk receptors with mutations in Y490 and Y785 (the PLC-gamma 1 association site) were introduced into PC12nnr5 cells. NGF treatment of PC12nnr5 cells expressing Trk with mutations in either substrate-binding site resulted in normal neurite outgrowth and Erk1 activity and tyrosine phosphorylation. However, PC12nnr5 cells expressing Trk with mutations at both sites failed to stably extend neurites and efficiently induce Erk1 activity and tyrosine phosphorylation in response to NGF. We postulate that Trk receptors can activate Erk1 by either SHC- or PLC-gamma 1-dependent signaling pathways. These results suggest a model whereby Trk receptors utilize at least partially redundant signal transduction pathways to mediate NGF responses.

    Funded by: NCI NIH HHS: N01-CO-74101

    Neuron 1994;12;3;691-705

  • Phospholipase C-gamma 1 binding to intracellular receptors for activated protein kinase C.

    Disatnik MH, Hernandez-Sotomayor SM, Jones G, Carpenter G and Mochly-Rosen D

    Department of Molecular Pharmacology, School of Medicine, Stanford University, CA 94305-5332.

    Phospholipase C-gamma 1 (PLC-gamma 1; EC hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol 1,4,5-trisphosphate and is activated in response to growth factor stimulation and tyrosine phosphorylation. Concomitantly, the enzyme translocates from the cytosol to the particulate cell fraction. A similar process of activation-induced translocation from the cytosol to the cell particulate fraction has also been described for protein kinase C (PKC). We have previously shown that activated PKC binds to specific receptor proteins, receptors for activated C kinase, or RACKs, of approximately 30 kDa. Here, we show that PLC-gamma 1 bound to these RACKs and inhibited subsequent PKC binding to RACKs. However, unlike PKC, the binding of PLC-gamma 1 to RACKs did not require phospholipids and calcium. After epidermal growth factor treatment of intact A-431 cells, the binding of PLC-gamma 1 to RACKs increased as compared with PLC-gamma 1 from control cells. This increase in PLC-gamma 1 binding to RACKs was due to the phosphorylation of PLC-gamma 1. Additional data indicated that PLC-gamma 1 binds to RACKs in solution; epidermal growth factor receptor-dependent PLC-gamma 1 phosphorylation and activation decreased in the presence of RACKs. It is possible that, in vivo, PLC-gamma 1 associates with RACKs or with other PLC-gamma 1-specific anchoring proteins in the particulate cell fraction. Since a PKC C2 homologous region is present in PLC-gamma 1, the C2 region may mediate the activation-induced translocation of the enzyme to the cell particulate fraction and the anchoring protein-PLC-gamma 1 complex may be the active translocated form of PLC-gamma 1.

    Funded by: NCI NIH HHS: CA43720; NHLBI NIH HHS: HL43380; NIAAA NIH HHS: AA08353

    Proceedings of the National Academy of Sciences of the United States of America 1994;91;2;559-63

  • Identification of residues in the beta platelet-derived growth factor receptor that confer specificity for binding to phospholipase C-gamma 1.

    Larose L, Gish G, Shoelson S and Pawson T

    Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

    The SH2 domains of cytoplasmic signaling proteins bind to autophosphorylated growth factor receptors by direct recognition of specific phosphotyrosine-containing sites. To identify the phosphotyrosine involved in association of phospholipase C (PLC)-gamma 1 with the beta platelet-derived growth factor receptor (PDGFR), and to investigate which contiguous residues confer specificity for PLC-gamma 1, phosphotyrosine-containing glutathione S-transferase (GST) fusion proteins possessing different regions of the beta-PDGFR were incubated with lysates of Rat-2 cells that overexpress PLC-gamma 1. The phosphorylated C-terminal tail of the PDGFR bound PLC-gamma 1, but did not associate with phosphatidylinositol (PI) 3'-kinase or GTPase-activating protein (GAP). High-affinity binding of PLC-gamma 1 was dependent on phosphorylation of Tyr-1021. Creation of a new phosphorylation site by replacing Asp-1018 with tyrosine did not restore binding of PLC-gamma 1 in the absence of Tyr-1021, indicating that the location of the phosphorylated tyrosine is important for PLC-gamma 1 binding. Substitution of the proline at the +3 position relative to Tyr-1021 with methionine (Y1021IIP-->Y1021IIM) in the phosphorylated PDGFR tail did not alter PLC-gamma 1 association, but conferred binding activity towards PI 3'-kinase, indicating that this residue is critical in discriminating between PLC-gamma 1 and PI 3'-kinase. Progressive conversion of the three residues C-terminal to Tyr-1021 to the consensus for PI 3'-kinase binding (YMDM) allowed PI 3'-kinase association, but did not block PLC-gamma 1 binding, suggesting that additional residues other than the three residues immediately following the phosphotyrosine may contribute to the association of PLC-gamma 1 with the PDGFR. These results indicate that phosphorylation at Tyr-1021 in the tail of the PDGFR creates a specific binding site for PLC-gamma 1. Proline at the +3 position relative to Tyr-1021 is crucial in conferring specificity for binding to PLC-gamma 1.

    Oncogene 1993;8;9;2493-9

  • Interactions between SH2 domains and tyrosine-phosphorylated platelet-derived growth factor beta-receptor sequences: analysis of kinetic parameters by a novel biosensor-based approach.

    Panayotou G, Gish G, End P, Truong O, Gout I, Dhand R, Fry MJ, Hiles I, Pawson T and Waterfield MD

    Ludwig Institute for Cancer Research, London, United Kingdom.

    The interaction between SH2 domains and phosphotyrosine-containing sequences was examined by real-time measurements of kinetic parameters. The SH2 domains of the p85 subunit of the phosphatidylinositol 3-kinase as well as of other signaling molecules were expressed in bacteria as glutathione S-transferase fusion proteins. Phosphotyrosine-containing peptides, corresponding to two autophosphorylation sites on the human platelet-derived growth factor beta-receptor that are responsible for phosphatidylinositol 3-kinase binding, were synthesized and used as capturing molecules, immobilized on a biosensor surface. The association and dissociation rate constants for binding to both sites were determined for intact p85 and the recombinant SH2 domains. High association rates were found to be coupled to very fast dissociation rates for all interactions studied. A binding specificity was observed for the two SH2 domains of p85, with the N-terminal SH2 binding with high affinity to the Tyr-751 site but not to the Tyr-740 site, and the C-terminal SH2 interacting strongly with both sites. This approach should be generally applicable to the study of the specificity inherent in the assembly of signaling complexes by activated protein-tyrosine kinase receptors.

    Molecular and cellular biology 1993;13;6;3567-76

  • In vitro tyrosine phosphorylation of PLC-gamma 1 and PLC-gamma 2 by src-family protein tyrosine kinases.

    Liao F, Shin HS and Rhee SG

    Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD 21205.

    The phosphorylation of purified phospholipase C-gamma 1 (PLC-gamma 1) and PLC-gamma 2 by src-family-protein tyrosine kinases (PTKs) P56lck, p53/56lyn, p59hck, p59fyn, and p60src was studied in vitro. All five PTKs phosphorylated PLC-gamma 1 and PLC-gamma 2, suggesting that both PLC-gamma isozymes can be phosphorylated in cells by any of the src-family PTKs in response to the activation of cell surface receptors. Comparison of the in vitro phosphorylation rates revealed no distinct specificity between PLC-gamma 1 and PLC-gamma 2, or between the five PTKs.

    Biochemical and biophysical research communications 1993;191;3;1028-33

  • Solution structure of the SH3 domain of phospholipase C-gamma.

    Kohda D, Hatanaka H, Odaka M, Mandiyan V, Ullrich A, Schlessinger J and Inagaki F

    Department of Molecular Physiology, Tokyo Metropolitan Institute of Medical Science, Japan.

    SH3 (Src homology 3) domains are found in many signaling proteins and appear to function as binding modules for cytoplasmic target proteins. The solution structure of the SH3 domain of human phospholipase C-gamma (PLC-gamma) was determined by two-dimensional 1H NMR analysis. This SH3 domain is composed of eight antiparallel beta strands consisting of two successive "Greek key" motifs, which form a barrel-like structure. The conserved aliphatic and aromatic residues form a hydrophobic pocket on the molecular surface, and the conserved carboxylic residues are localized to the periphery. The hydrophobic pocket may serve as a binding site for target proteins. Analysis of the slowly exchanging amide protons by NMR measurements indicates that despite containing a high content of beta structure, the SH3 domain of PLC-gamma is flexible.

    Cell 1993;72;6;953-60

  • Tyrosine 785 is a major determinant of Trk--substrate interaction.

    Obermeier A, Halfter H, Wiesmüller KH, Jung G, Schlessinger J and Ullrich A

    Department of Molecular Biology, Max-Planck-Institut für Biochemie, Martinsried, Germany.

    Interaction of the nerve growth factor (NGF) receptor/Trk with cellular substrates was investigated by transient co-overexpression in human 293 fibroblasts using ET-R, a chimeric receptor consisting of the epidermal growth factor receptor (EGF-R) extracellular ligand binding domain and the Trk transmembrane and intracellular signal-generating sequences. The chimera was fully functional, and associated with and phosphorylated phospholipase C gamma (PLC gamma), ras GTPase-activating protein (GAP) and the non-catalytic subunit of phosphatidylinositol-3'-kinase, p85, in a ligand-dependent manner. Deletion of 15 C-terminal amino acids, including tyrosine 785 (Y-785) abrogated receptor and substrate phosphorylation activities. Mutation of Y-785 to phenylalanine somewhat impaired receptor phosphorylation activity, which was reflected in reduced GAP and p85 phosphorylation. In contrast, ET-YF phosphorylation of PLC gamma was significantly reduced, while the high affinity association potential with this substrate was abrogated by this point mutation in vitro and in intact cells. Furthermore, a tyrosine-phosphorylated synthetic C-terminal peptide competitively inhibited Trk cytoplasmic domain association with PLC gamma. Thus, the short C-terminal tail appears to be a crucial structural element of the Trk cytoplasmic domain, and phosphorylated Y-785 is a major and selective interaction site for PLC gamma.

    The EMBO journal 1993;12;3;933-41

  • Phosphorylation sites at the C-terminus of the platelet-derived growth factor receptor bind phospholipase C gamma 1.

    Kashishian A and Cooper JA

    Fred Hutchinson Cancer Research Center, Seattle, Washington 98104.

    We have identified two tyrosine phosphorylation sites, Tyr 1009 and Tyr 1021, in the C-terminal noncatalytic region of the human platelet-derived growth factor (PDGF) receptor beta subunit. Mutant receptors with phenylalanine substitutions at either or both of these tyrosines were expressed in dog epithelial cells. Mutation of Tyr 1021 markedly reduced the PDGF-stimulated binding of phospholipase C (PLC) gamma 1 but had no effect on binding of the GTPase activator protein of Ras or of phosphatidylinositol 3 kinase. Mutation of Tyr 1009 reduced binding of PLC gamma 1 less severely. Mutation of Tyr 1021, or both Tyr 1009 and Tyr 1021, also reduced the PDGF-dependent binding of a transiently expressed fusion protein containing the two Src-homology 2 domains from PLC gamma 1. Mutation of Tyr 1021, or both Tyr 1009 and Tyr 1021, greatly reduced PDGF-stimulated tyrosine phosphorylation of PLC gamma 1 but did not prevent the tyrosine phosphorylation of other cell proteins, including mitogen-activated protein kinase. We conclude that Tyr 1021, and possibly Tyr 1009, is a binding site for PLC gamma 1.

    Funded by: NCI NIH HHS: CA-54786

    Molecular biology of the cell 1993;4;1;49-57

  • The role of the CD28 receptor during T cell responses to antigen.

    Linsley PS and Ledbetter JA

    Department of Cellular Immunology, Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121.

    The CD28 receptor is stimulated during the contact of T cells with antigen-presenting cells. A counter-receptor for CD28 is the B7 molecule expressed on activated B cells, dendritic cells, and macrophages. B7 also binds to CTLA-4, a receptor that is structurally related to CD28. CTLA-4 is expressed in low copy number by T cells only after activation, but it binds B7 with approximately 20-fold higher affinity than CD28. Inhibition of B7-CD28 interactions blocks immune responses in vitro and in vivo. Therefore, CD28 receptor stimulation is required for T cell responses to antigens and for B cell responses to T-dependent antigens. During T cell responses to antigens, CD28 receptor stimulation may be required to prevent clonal inactivation or anergy. CD28 receptor ligation induces tyrosine phosphorylation of specific substrates, including phospholipase C gamma 1, and triggers both calcium-dependent and calcium-independent signals. The CD28 costimulatory receptor represents a novel target for immunosuppressive drugs.

    Annual review of immunology 1993;11;191-212

  • A limited set of SH2 domains binds BCR through a high-affinity phosphotyrosine-independent interaction.

    Muller AJ, Pendergast AM, Havlik MH, Puil L, Pawson T and Witte ON

    Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.

    SH2 (src homology region 2) domains are implicated in protein-protein interactions involved in signal transduction pathways. Isolated SH2 domains bind proteins that are tyrosine phosphorylated. A novel, phosphotyrosine-independent binding interaction between BCR, the Philadelphia chromosome breakpoint cluster region gene product, and the SH2 domain of its translocation partner c-ABL has recently been reported. We have examined the ability of additional SH2 domains to bind phosphotyrosine-free BCR and compared this with their ability to bind tyrosine-phosphorylated c-ABL 1b. Of 11 individual SH2 domains examined, 8 exhibited relatively high affinity for c-ABL 1b, whereas only 4 exhibited relatively high affinity for BCR. Binding of tyrosine-phosphorylated c-ABL 1b by the relatively high-affinity ABL and ARG SH2 domains was quantitatively analyzed, and equilibrium dissociation constants for both interactions were estimated to be in the range of 5 x 10(-7) M. The ABL SH2 domain exhibited relatively high affinity for phosphotyrosine-free BCR as well; however, this interaction appears to be about two orders of magnitude weaker than binding of tyrosine-phosphorylated c-ABL 1b. The ARG SH2 domain exhibited relatively weak affinity for BCR and was determined to bind about 10-fold less strongly than the ABL SH2 domain. The ABL and ARG SH2 domains differ by only 10 of 91 amino acids, and the substitution of ABL-specific amino acids into either the amino- or carboxy-terminal half of the ARG SH2 domain was found to increase its affinity for BCR. We discuss these results in terms of a model which has been proposed for peptide binding by class I histocompatibility glycoproteins.

    Molecular and cellular biology 1992;12;11;5087-93

  • Association of the tyrosine kinase LCK with phospholipase C-gamma 1 after stimulation of the T cell antigen receptor.

    Weber JR, Bell GM, Han MY, Pawson T and Imboden JB

    Department of Medicine, University of California, San Francisco.

    Stimulation of the T cell antigen receptor (TCR) activates a protein tyrosine kinase and leads to the tyrosine phosphorylation of phosphoinositide-specific phospholipase C-gamma 1 (PLC gamma 1). The molecular interactions involved in this phosphorylation are not known. After stimulation of the TCR on Jurkat T cells, tyrosine-phosphorylated proteins of 36, 38, 58, and 63 kD coprecipitate with PLC gamma 1. An identical pattern of proteins precipitate with TrpE fusion proteins that contain the Src homology (SH) 2 domains of PLC gamma 1, indicating that these regions of PLC gamma 1 are responsible for binding. TCR stimulation leads to an association between the SH2 domains of PLC gamma 1 and a protein tyrosine kinase, which, by peptide mapping, is identical to p56lck. These studies establish that p56lck associates with PLC gamma 1 as a result of TCR stimulation of Jurkat cells, suggesting that p56lck plays a central role in coupling the TCR to the activation of PLC gamma 1.

    Funded by: NIAID NIH HHS: R01 AI-26644; NIDDK NIH HHS: DK-07007

    The Journal of experimental medicine 1992;176;2;373-9

  • A microsatellite polymorphism associated with the PLC1 (phospholipase C) locus: identification, mapping, and linkage to the MODY locus on chromosome 20.

    Rothschild CB, Akots G, Fajans SS and Bowden DW

    Department of Biochemistry, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27157.

    A highly polymorphic (dC-dA)n.(dG-dT)n dinucleotide repeat at the PLC1 locus on human chromosome 20 has been identified. Primers flanking the dinucleotide repeat were used for PCR amplification of the repeat region in 37 informative kindreds from the Centre d'Etude du Polymorphisme Humain. Two-point linkage analysis indicates that PLC1 is closely linked to several chromosome 20 markers, including D20S16 (Zmax = 41.25; theta = 0.07), D20S17 (Zmax = 42.81; theta = 0.09), and ADA (Zmax = 57.24; theta = 0.05). Multipoint linkage analysis places the PLC1 locus between D20S18 and D20S17, 11.2 and 6.6 cM, respectively, from these loci (sex-averaged distances). In addition, the PLC1 gene shows linkage to the maturity-onset diabetes of the young (MODY) locus on chromosome 20 with a lod score of 4.57 at theta = 0.089.

    Funded by: NIDDK NIH HHS: R01-DK41269

    Genomics 1992;13;3;560-4

  • Epidermal growth factor receptor: elements of intracellular communication.

    Hernández-Sotomayor SM and Carpenter G

    Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.

    While EGF has an important function in cell growth regulation, the molecular mechanisms by which intracellular signal connect the EGF: receptor complex on the plasma membrane with the initiation of DNA synthesis and mitogenesis is not well understood. The discovery that rasGAP, PI-3 kinase and PLC-gamma 1 are substrates for the EGF receptor tyrosine kinase has provided a beginning in understanding the biochemistry underlying growth factor receptor transduction.

    Funded by: FIC NIH HHS: TW 04600; NCI NIH HHS: CA24071, CA43720

    The Journal of membrane biology 1992;128;2;81-9

  • Elevated content of the tyrosine kinase substrate phospholipase C-gamma 1 in primary human breast carcinomas.

    Arteaga CL, Johnson MD, Todderud G, Coffey RJ, Carpenter G and Page DL

    Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232.

    Phospholipase C-gamma 1 (PLC-gamma 1) is a substrate for several receptor tyrosine kinases and its catalytic activity is increased by tyrosine phosphorylation. However, the biological significance of this molecule in normal or malignant human epithelial cell proliferation is unknown. We determined the relative content of PLC-gamma 1 in primary human mammary carcinomas and in nonmalignant mammary tissues. By Western blot and immunohistochemistry, considerably higher levels of PLC-gamma 1 protein were detectable in the majority of carcinomas and in one of two benign fibroadenomas compared to normal breast tissues. In 18 of 21 carcinomas that contained high levels of PLC-gamma 1, the presence of phosphotyrosine on PLC-gamma 1 could also be detected. All carcinomas in which tyrosine phosphorylated PLC-gamma 1 was present also expressed detectable levels of the epidermal growth factor receptor or erbB-2, two tyrosine kinases known to phosphorylate this enzyme. Thus, a high percentage of mammary carcinomas concomitantly display increased levels of receptor tyrosine kinases and a direct tyrosine phosphorylation substrate, thereby potentially amplifying two successive steps in a signal transduction pathway.

    Funded by: NCI NIH HHS: CA43720; NIADDK NIH HHS: AM07491

    Proceedings of the National Academy of Sciences of the United States of America 1991;88;23;10435-9

  • Nerve growth factor binds to the 140 kd trk proto-oncogene product and stimulates its association with the src homology domain of phospholipase C gamma 1.

    Ohmichi M, Decker SJ, Pang L and Saltiel AR

    Department of Physiology, University of Michigan School of Medicine, Ann Arbor 48109.

    The cellular actions of nerve growth factor (NGF) involve regulation of protein phosphorylation. In PC-12 pheochromocytoma cells, exposure of [125I]NGF followed by crosslinking indicates that the ligand binds to two discreet receptors, the previously described 75 kd protein, as well as the trk proto-oncogene product pp140c-trk. Competition experiments reveal that of the two, pp 140c-trk binds to NGF with higher affinity. Following exposure to NGF, pp140c-trk undergoes a rapid autophosphorylation on tyrosine residues, and concomitantly phosphorylates and associates with phospholipase C gamma 1 (PLC gamma 1), through interaction with its src homology domains. The binding of NGF to pp140c-trk with high affinity, the NGF-dependent homology domains. The binding of NGF to pp140c-trk with high affinity, the NGF-dependent activation of its tyrosine kinase activity and the specific association with the effector molecule, PLC gamma 1, suggests that this is the biologically relevant signaling receptor for NGF.

    Funded by: NCI NIH HHS: CA37754; NIDDK NIH HHS: DK33804

    Biochemical and biophysical research communications 1991;179;1;217-23

  • Oncogenic forms of the neu/HER2 tyrosine kinase are permanently coupled to phospholipase C gamma.

    Peles E, Levy RB, Or E, Ullrich A and Yarden Y

    Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel.

    The neu/HER2 proto-oncogene encodes a transmembrane tyrosine kinase homologous to receptors for polypeptide growth factors. The oncogenic potential for the presumed receptor is released through multiple genetic mechanisms including a specific point mutation, truncation at the extracellular domain and overexpression of the protooncogene. Here we show that all these modes of oncogenic activation result in a constitutively phosphorylated neu protein and an increase in tyrosine phosphorylation of a phosphatidylinositol-specific phospholipase (PLC gamma). The examined transforming neu/HER2 proteins, unlike the normal gene product, also co-immunoprecipitated with PLC gamma molecules. A kinase-defective mutant of a transforming neu failed to mediate both tyrosine phosphorylation and association with PLC gamma, suggesting direct interaction of the neu kinase with PLC gamma. This possibility was examined by employing a chimeric protein composed of the extracellular ligand-binding domain of the epidermal growth factor receptor and the neu cytoplasmic portion. The chimeric receptor mediated rapid ligand-dependent modification of PLC gamma on tyrosine residues. It also physically associated, in a ligand-dependent manner, with the phosphoinositidase. Based on the presented results we suggest that the mechanism of cellular transformation by the neu/HER2 receptor involves tyrosine phosphorylation and activation of PLC gamma.

    Funded by: NCI NIH HHS: R01 CA51712

    The EMBO journal 1991;10;8;2077-86

  • The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-gamma.

    Margolis B, Li N, Koch A, Mohammadi M, Hurwitz DR, Zilberstein A, Ullrich A, Pawson T and Schlessinger J

    Department of Pharmacology, New York University Medical Center, NY 10016.

    Phospholipase C-gamma (PLC-gamma) and GTPase activating protein (GAP) are substrates of EGF, PDGF and other growth factor receptors. Since either PLC-gamma or GAP also bind to the activated receptors it was suggested that their SH2 domains are mediating this association. We attempted to delineate the specific region of the EGF receptor that is responsible for the binding, utilizing EGF receptor mutants, PLC-gamma, and a bacterially expressed TRP E fusion protein containing the SH2 domains of GAP. As previously shown, tyrosine autophosphorylation of the wild-type receptor wsa crucial in mediating the association and in agreement, a kinase negative EGF receptor could bind PLC-gamma or TRP E GAP SH2, but only when cross tyrosine phosphorylated by an active EGF receptor kinase. The importance of autophosphorylation for association was confirmed by demonstrating that a carboxy-terminal deletion of the EGFR missing four autophosphorylation sites bound these proteins poorly. To study the role of EGF receptor autophosphorylation further, a 203 amino acid EGF receptor fragment was generated with cyanogen bromide that contained all known tyrosine autophosphorylation sites. This fragment bound both TRP E GAP SH2 and PLC-gamma but only when tyrosine phosphorylated. This data localizes a major binding site for SH2 domain containing proteins to the carboxy-terminus of the EGF receptor and points to the importance of tyrosine phosphorylation in mediating this association.

    The EMBO journal 1990;9;13;4375-80

  • Human immunodeficiency virus-1 glycoproteins gp120 and gp160 specifically inhibit the CD3/T cell-antigen receptor phosphoinositide transduction pathway.

    Cefai D, Debre P, Kaczorek M, Idziorek T, Autran B and Bismuth G

    Laboratoire d'Immunologie Cellulaire et Tissulaire, Group Hospitalier (GH) Pitié-Salpétrière, Paris, France.

    The interference of the recombinant HIV-1 glycoproteins gp160 and gp120 with the CD3/T cell antigen receptor (TcR)-mediated activation process has been investigated in the CD4+ diphtheria toxoid-specific human P28D T cell clone. Both glycoproteins clearly inhibit the T cell proliferation induced in an antigen-presenting cell (APC)-free system by various cross-linked monoclonal antibodies specific for the CD3 molecule or the TcR alpha chain (up to 80% inhibition). Biochemical studies further demonstrate that exposure of the T cell clone to both glycoproteins (gps) specifically inhibits the CD3/TcR phospholipase C (PLC) transduction pathway, without affecting the CD3/TcR cell surface expression. Thus, inositol phosphate production, phosphatidic acid turnover, intracellular free calcium, and intracellular pH increase induced by CD3/TcR-specific MAbs are specifically impaired in gps-treated P28D T cells. Addition of purified soluble CD4 prevents binding of gps to T cells and overcomes all observed inhibitions. Maximal inhibitions are obtained for long-term exposure of the T cell clone to gps (16 h). No early effect of gps is observed. By contrast, gp160 and gp120 fail to suppress the CD2-triggered functional and biochemical P28D T cell responses. These results demonstrate that, in addition to their postulated role in the alteration of the interaction between CD4 on T lymphocytes and MHC class II molecules on APC, soluble HIV-1 envelope glycoproteins may directly and specifically impair the CD3/TcR-mediated activation of PLC in uninfected T cells via the CD4 molecule.

    The Journal of clinical investigation 1990;86;6;2117-24

  • Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors.

    Anderson D, Koch CA, Grey L, Ellis C, Moran MF and Pawson T

    Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

    Phospholipase C gamma 1 (PLC gamma 1) and p21ras guanosine triphosphatase (GTPase) activating protein (GAP) bind to and are phosphorylated by activated growth factor receptors. Both PLC gamma 1 and GAP contain two adjacent copies of the noncatalytic Src homology 2 (SH2) domain. The SH2 domains of PLC gamma 1 synthesized individually in bacteria formed high affinity complexes with the epidermal growth factor (EGF)- or platelet derived growth factor (PDGF)-receptors in cell lysates, and bound synergistically to activated receptors when expressed together as one bacterial protein. In vitro complex formation was dependent on prior growth factor stimulation and was competed by intracellular PLC gamma 1. Similar results were obtained for binding of GAP SH2 domains to the PDGF-receptor. The isolated SH2 domains of other signaling proteins, such as p60src and Crk, also bound activated PDGF-receptors in vitro. SH2 domains, therefore, provide a common mechanism by which enzymatically diverse regulatory proteins can physically associate with the same activated receptors and thereby couple growth factor stimulation to intracellular signal transduction pathways.

    Science (New York, N.Y.) 1990;250;4983;979-82

  • Characterization and cDNA cloning of phospholipase C-gamma, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinase.

    Burgess WH, Dionne CA, Kaplow J, Mudd R, Friesel R, Zilberstein A, Schlessinger J and Jaye M

    American Red Cross, Rockville, Maryland 20855.

    Heparin-binding growth factors (HBGFs) bind to high-affinity cell surface receptors which possess intrinsic tyrosine kinase activity. A Mr 150,000 protein phosphorylated on tyrosine in response to class 1 HBGF (HBGF-1) was purified and partially sequenced. On the basis of this sequence, cDNA clones were isolated from a human endothelial cell library and identified as encoding phospholipase C-gamma. Phosphorylation of phospholipase C-gamma in intact cells treated with HBGF-1 was directly demonstrated by using antiphospholipase C-gamma antibodies. Thus, HBGF-1 joins epidermal growth factor and platelet-derived growth factor, whose receptor activation leads to tyrosine phosphorylation and probable activation of phospholipase C-gamma.

    Funded by: NHLBI NIH HHS: HL 32398, HL 35627, HL 35762

    Molecular and cellular biology 1990;10;9;4770-7

  • Tyrosine residues in bovine phospholipase C-gamma phosphorylated by the epidermal growth factor receptor in vitro.

    Kim JW, Sim SS, Kim UH, Nishibe S, Wahl MI, Carpenter G and Rhee SG

    Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

    We have identified the sites phosphorylated in vitro by epidermal growth factor (EGF) receptor kinase in bovine brain phospholipase C-gamma (PLC-gamma). They are tyrosine residues 472, 771, 783, and 1254. The rate of phosphorylation was fastest with the sites at 771 and 783, then at 1254, and slowest at 472. PLC-gamma isolated from cells treated with EGF is known to contain at least four tyrosine phosphate-containing peptides and two of them are identified to be residues 771 and 1254 in the accompanying paper (Wahl, M. I., Nishibe, S., Kim, J. W., Kim, H., Rhee, S. G., and Carpenter, G. (1990) J. Biol. Chem. 265, 3944-3948). The 3 residues 472, 771, and 783 are located closely to the regions of PLC-gamma which exhibit a high sequence similarity to the regulatory domain of the src family tyrosine kinases. Nevertheless, the tyrosine phosphorylation did not affect the catalytic activity of PLC-gamma in vitro. We propose, therefore, that the phosphorylation of PLC-gamma by EGF receptor kinase alters its interaction with putative inhibitory proteins and leads to its activation.

    The Journal of biological chemistry 1990;265;7;3940-3

  • Phospholipase C-148: chromosomal location and deletion mapping of functional domains.

    Bristol A, Hall SM, Kriz RW, Stahl ML, Fan YS, Byers MG, Eddy RL, Shows TB and Knopf JL

    Genetics Institute, Inc., Cambridge, Massachusetts 02140.

    Cold Spring Harbor symposia on quantitative biology 1988;53 Pt 2;915-20

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000034 G2C Homo sapiens Pocklington H3 Human orthologues of cluster 3 (mouse) from Pocklington et al (2006) 30
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.