G2Cdb::Gene report

Gene id
G00002118
Gene symbol
DLGAP1 (HGNC)
Species
Homo sapiens
Description
discs, large (Drosophila) homolog-associated protein 1
Orthologue
G00000869 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000068212 (Vega human gene)
Gene
ENSG00000170579 (Ensembl human gene)
9229 (Entrez Gene)
37 (G2Cdb plasticity & disease)
DLGAP1 (GeneCards)
Literature
605445 (OMIM)
Marker Symbol
HGNC:2905 (HGNC)
Protein Sequence
O14490 (UniProt)

Synonyms (3)

  • DAP-1
  • GKAP
  • SAPAP1

Diseases (2)

Disease Nervous effect Mutations Found Literature Mutations Type Genetic association?
D00000166: Schizophrenia Y Y (12950712) Single nucleotide polymorphism (SNP) N
D00000228: Myopia N Y (15723005) Polymorphism (P) N
D00000228: Myopia N Y (15723005) Microinsertion (MI) N

References

  • Genomic structure and organization of the high grade Myopia-2 locus (MYP2) critical region: mutation screening of 9 positional candidate genes.

    Scavello GS, Paluru PC, Zhou J, White PS, Rappaport EF and Young TL

    Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.

    Purpose: Myopia is a common complex eye disorder, with implications for blindness due to increased risk of retinal detachment, chorioretinal degeneration, premature cataracts, and glaucoma. A genomic interval of 2.2 centiMorgans (cM) was defined on chromosome band 18p11.31 using 7 families diagnosed with autosomal dominant high myopia and was designated the MYP2 locus. To characterize this region, we analyzed 9 known candidate genes localized to within the 2.2 cM interval by direct sequencing.

    Methods: Using public databases, a physical map of the MYP2 interval was compiled. Gene expression studies in ocular tissues using complementary DNA library screens, microarray experiments, reverse transcription techniques, and expression data identified in external databases aided in prioritizing gene selection for screening. Coding regions, intron-exon boundaries and untranslated exons of all known genes [Clusterin-like 1 (CLUL1), elastin microfibril interfacer 2 (EMILIN2), lipin 2 (LPIN2), myomesin 1 (MYOM1), myosin regulatory light chain 3 (MRCL3), myosin regulatory light chain 2 (MRLC2), transforming growth beta-induced factor (TGIFbeta), large Drosophila homolog associated protein 1 (DLGAP1), and zinc finger protein 161 homolog (ZFP161)] were sequenced using genomic DNA samples from 9 affected and 6 unaffected MYP2 pedigree members, and from 5 external controls (4 unaffected and 1 affected). Gene sequence changes were compared to known variants from public single nucleotide polymorphism (SNP) databases.

    Results: In total, 103 polymorphisms were found by direct sequencing; 10 were missense, 14 were silent, 26 were not translated, 49 were intronic, 1 insertion, and 3 were homozygous deletions. Twenty-seven polymorphisms were novel. Novel SNPs were submitted to the public database; observed frequencies were submitted for known SNPs. No sequence alterations segregated with the disease phenotype.

    Conclusions: Mutation analysis of 9 encoded positional candidate genes on MYP2 loci did not identify sequence alterations associated with the disease phenotype. Further studies of MYP2 candidate genes, including analysis of putative genes predicted in silico, are underway.

    Funded by: BHP HRSA HHS: 2PEY01583-26; NEI NIH HHS: EY00376

    Molecular vision 2005;11;97-110

  • Mutation and association analysis of the DAP-1 gene with schizophrenia.

    Aoyama S, Shirakawa O, Ono H, Hashimoto T, Kajimoto Y and Maeda K

    Department of Environmental Health and Safety, Kobe University Graduate School of Medicine, Kobe, Japan.

    Glutamate dysfunction has been hypothesized to be involved in the pathophysiology of schizophrenia. The human homolog of Drosophila discs large protein (hDLG) and post-synaptic density-95-associated protein-1 (DAP-1) is one of the major proteins that are involved in intracellular signal transduction via N-methyl-d-aspartate receptors. In the present study 33 Japanese patients with schizophrenia were screened for mutations in the DAP-1 gene. A single nucleotide polymorphism was identified in the DAP-1 gene (1618A/G). A case-control study using a larger sample of unrelated patients and controls did not reveal a significant association between this polymorphism and schizophrenia. The results do not provide evidence that the DAP-1 gene is involved in vulnerability to schizophrenia.

    Psychiatry and clinical neurosciences 2003;57;5;545-7

Literature (20)

Pubmed - human_disease

  • Genomic structure and organization of the high grade Myopia-2 locus (MYP2) critical region: mutation screening of 9 positional candidate genes.

    Scavello GS, Paluru PC, Zhou J, White PS, Rappaport EF and Young TL

    Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.

    Purpose: Myopia is a common complex eye disorder, with implications for blindness due to increased risk of retinal detachment, chorioretinal degeneration, premature cataracts, and glaucoma. A genomic interval of 2.2 centiMorgans (cM) was defined on chromosome band 18p11.31 using 7 families diagnosed with autosomal dominant high myopia and was designated the MYP2 locus. To characterize this region, we analyzed 9 known candidate genes localized to within the 2.2 cM interval by direct sequencing.

    Methods: Using public databases, a physical map of the MYP2 interval was compiled. Gene expression studies in ocular tissues using complementary DNA library screens, microarray experiments, reverse transcription techniques, and expression data identified in external databases aided in prioritizing gene selection for screening. Coding regions, intron-exon boundaries and untranslated exons of all known genes [Clusterin-like 1 (CLUL1), elastin microfibril interfacer 2 (EMILIN2), lipin 2 (LPIN2), myomesin 1 (MYOM1), myosin regulatory light chain 3 (MRCL3), myosin regulatory light chain 2 (MRLC2), transforming growth beta-induced factor (TGIFbeta), large Drosophila homolog associated protein 1 (DLGAP1), and zinc finger protein 161 homolog (ZFP161)] were sequenced using genomic DNA samples from 9 affected and 6 unaffected MYP2 pedigree members, and from 5 external controls (4 unaffected and 1 affected). Gene sequence changes were compared to known variants from public single nucleotide polymorphism (SNP) databases.

    Results: In total, 103 polymorphisms were found by direct sequencing; 10 were missense, 14 were silent, 26 were not translated, 49 were intronic, 1 insertion, and 3 were homozygous deletions. Twenty-seven polymorphisms were novel. Novel SNPs were submitted to the public database; observed frequencies were submitted for known SNPs. No sequence alterations segregated with the disease phenotype.

    Conclusions: Mutation analysis of 9 encoded positional candidate genes on MYP2 loci did not identify sequence alterations associated with the disease phenotype. Further studies of MYP2 candidate genes, including analysis of putative genes predicted in silico, are underway.

    Funded by: BHP HRSA HHS: 2PEY01583-26; NEI NIH HHS: EY00376

    Molecular vision 2005;11;97-110

Pubmed - other

Component References failed to execute

Gene lists (11)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000038 G2C Homo sapiens Pocklington H7 Human orthologues of cluster 7 (mouse) from Pocklington et al (2006) 4
L00000049 G2C Homo sapiens TAP-PSD-95-CORE TAP-PSD-95 pull-down core list (ortho) 120
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.