G2Cdb::Gene report

Gene id
G00002115
Gene symbol
GRIP1 (HGNC)
Species
Homo sapiens
Description
glutamate receptor interacting protein 1
Orthologue
G00000866 (Mus musculus)

Databases (7)

Gene
ENSG00000155974 (Ensembl human gene)
23426 (Entrez Gene)
459 (G2Cdb plasticity & disease)
GRIP1 (GeneCards)
Literature
604597 (OMIM)
Marker Symbol
HGNC:18708 (HGNC)
Protein Sequence
Q9Y3R0 (UniProt)

Literature (34)

Pubmed - other

  • Glucocorticoid receptor interacting protein-1 restores glucocorticoid responsiveness in steroid-resistant airway structural cells.

    Bhandare R, Damera G, Banerjee A, Flammer JR, Keslacy S, Rogatsky I, Panettieri RA, Amrani Y and Tliba O

    Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, 130 South 9th Street, Philadelphia, PA 19107-5233, USA.

    Glucocorticoid (GC) insensitivity represents a profound challenge in managing patients with asthma. The mutual inhibition of transcriptional activity between GC receptor (GR) and other regulators is one of the mechanisms contributing to GC resistance in asthma. We recently reported that interferon regulatory factor (IRF)-1 is a novel transcription factor that promotes GC insensitivity in human airway smooth muscle (ASM) cells by interfering with GR signaling (Tliba et al., Am J Respir Cell Mol Biol 2008;38:463-472). Here, we sought to determine whether the inhibition of GR function by IRF-1 involves its interaction with the transcriptional co-regulator GR-interacting protein 1 (GRIP-1), a known GR transcriptional co-activator. We here found that siRNA-mediated GRIP-1 depletion attenuated IRF-1-dependent transcription of the luciferase reporter construct and the mRNA expression of an IRF-1-dependent gene, CD38. In parallel experiments, GRIP-1 silencing significantly reduced GR-mediated transactivation activities. Co-immunoprecipitation and GST pull-down assays showed that GRIP-1, through its repression domain, physically interacts with IRF-1 identifying GRIP-1 as a bona fide transcriptional co-activator for IRF-1. Interestingly, the previously reported inhibition of GR-mediated transactivation activities by either TNF-alpha and IFN-gamma treatment or IRF-1 overexpression was fully reversed by increasing cellular levels of GRIP-1. Together, these data suggest that the cellular accumulation of IRF-1 may represent a potential molecular mechanism mediating altered cellular response to GC through the depletion of GRIP-1 from the GR transcriptional regulatory complexes.

    Funded by: NHLBI NIH HHS: HL089409-03, R00 HL089409, R00 HL089409-04, R01 HL-064063; NIAID NIH HHS: R01 AI068820

    American journal of respiratory cell and molecular biology 2010;42;1;9-15

  • Identification of new putative susceptibility genes for several psychiatric disorders by association analysis of regulatory and non-synonymous SNPs of 306 genes involved in neurotransmission and neurodevelopment.

    Gratacòs M, Costas J, de Cid R, Bayés M, González JR, Baca-García E, de Diego Y, Fernández-Aranda F, Fernández-Piqueras J, Guitart M, Martín-Santos R, Martorell L, Menchón JM, Roca M, Sáiz-Ruiz J, Sanjuán J, Torrens M, Urretavizcaya M, Valero J, Vilella E, Estivill X, Carracedo A and Psychiatric Genetics Network Group

    CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.

    A fundamental difficulty in human genetics research is the identification of the spectrum of genetic variants that contribute to the susceptibility to common/complex disorders. We tested here the hypothesis that functional genetic variants may confer susceptibility to several related common disorders. We analyzed five main psychiatric diagnostic categories (substance-abuse, anxiety, eating, psychotic, and mood disorders) and two different control groups, representing a total of 3,214 samples, for 748 promoter and non-synonymous single nucleotide polymorphisms (SNPs) at 306 genes involved in neurotransmission and/or neurodevelopment. We identified strong associations to individual disorders, such as growth hormone releasing hormone (GHRH) with anxiety disorders, prolactin regulatory element (PREB) with eating disorders, ionotropic kainate glutamate receptor 5 (GRIK5) with bipolar disorder and several SNPs associated to several disorders, that may represent individual and related disease susceptibility factors. Remarkably, a functional SNP, rs945032, located in the promoter region of the bradykinin receptor B2 gene (BDKRB2) was associated to three disorders (panic disorder, substance abuse, and bipolar disorder), and two additional BDKRB2 SNPs to obsessive-compulsive disorder and major depression, providing evidence for common variants of susceptibility to several related psychiatric disorders. The association of BDKRB2 (odd ratios between 1.65 and 3.06) to several psychiatric disorders supports the view that a common genetic variant could confer susceptibility to clinically related phenotypes, and defines a new functional hint in the pathophysiology of psychiatric diseases.

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2009;150B;6;808-16

  • Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation.

    Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V, Layet V, Rosier A, Briault S, Bonnet-Brilhault F, Laumonnier F, Odent S, Le Vacon G, Joly-Helas G, David V, Bendavid C, Pinoit JM, Henry C, Impallomeni C, Germano E, Tortorella G, Di Rosa G, Barthelemy C, Andres C, Faivre L, Frébourg T, Saugier Veber P and Campion D

    Institut National de la Santé et de la Recherche Médicale, Unité 614, Institut Hospitalo-Universitaire de Recherche Biomédicale, 76000 Rouen, France.

    Context: Results of comparative genomic hybridization studies have suggested that rare copy number variations (CNVs) at numerous loci are involved in the cause of mental retardation, autism spectrum disorders, and schizophrenia.

    Objectives: To provide an estimate of the collective frequency of a set of recurrent or overlapping CNVs in 3 different groups of cases compared with healthy control subjects and to assess whether each CNV is present in more than 1 clinical category.

    Design: Case-control study.

    Setting: Academic research.

    Participants: We investigated 28 candidate loci previously identified by comparative genomic hybridization studies for gene dosage alteration in 247 cases with mental retardation, in 260 cases with autism spectrum disorders, in 236 cases with schizophrenia or schizoaffective disorder, and in 236 controls.

    Collective and individual frequencies of the analyzed CNVs in cases compared with controls.

    Results: Recurrent or overlapping CNVs were found in cases at 39.3% of the selected loci. The collective frequency of CNVs at these loci is significantly increased in cases with autism, in cases with schizophrenia, and in cases with mental retardation compared with controls (P < .001, P = .01, and P = .001, respectively, Fisher exact test). Individual significance (P = .02 without correction for multiple testing) was reached for the association between autism and a 350-kilobase deletion located at 22q11 and spanning the PRODH and DGCR6 genes.

    Conclusions: Weakly to moderately recurrent CNVs (transmitted or occurring de novo) seem to be causative or contributory factors for these diseases. Most of these CNVs (which contain genes involved in neurotransmission or in synapse formation and maintenance) are present in the 3 pathologic conditions (schizophrenia, autism, and mental retardation), supporting the existence of shared biologic pathways in these neurodevelopmental disorders.

    Archives of general psychiatry 2009;66;9;947-56

  • Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease.

    Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH, Saykin AJ, Orro A, Lupoli S, Salvi E, Weiner M, Macciardi F and Alzheimer's Disease Neuroimaging Initiative

    Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA. sgpotkin@uci.edu

    Background: With the exception of APOE epsilon4 allele, the common genetic risk factors for sporadic Alzheimer's Disease (AD) are unknown.

    We completed a genome-wide association study on 381 participants in the ADNI (Alzheimer's Disease Neuroimaging Initiative) study. Samples were genotyped using the Illumina Human610-Quad BeadChip. 516,645 unique Single Nucleotide Polymorphisms (SNPs) were included in the analysis following quality control measures. The genotype data and raw genetic data are freely available for download (LONI, http://www.loni.ucla.edu/ADNI/Data/). Two analyses were completed: a standard case-control analysis, and a novel approach using hippocampal atrophy measured on MRI as an objectively defined, quantitative phenotype. A General Linear Model was applied to identify SNPs for which there was an interaction between the genotype and diagnosis on the quantitative trait. The case-control analysis identified APOE and a new risk gene, TOMM40 (translocase of outer mitochondrial membrane 40), at a genome-wide significance level of < or =10(-6) (10(-11) for a haplotype). TOMM40 risk alleles were approximately twice as frequent in AD subjects as controls. The quantitative trait analysis identified 21 genes or chromosomal areas with at least one SNP with a p-value < or =10(-6), which can be considered potential "new" candidate loci to explore in the etiology of sporadic AD. These candidates included EFNA5, CAND1, MAGI2, ARSB, and PRUNE2, genes involved in the regulation of protein degradation, apoptosis, neuronal loss and neurodevelopment. Thus, we identified common genetic variants associated with the increased risk of developing AD in the ADNI cohort, and present publicly available genome-wide data. Supportive evidence based on case-control studies and biological plausibility by gene annotation is provided. Currently no available sample with both imaging and genetic data is available for replication.

    Conclusions: Using hippocampal atrophy as a quantitative phenotype in a genome-wide scan, we have identified candidate risk genes for sporadic Alzheimer's disease that merit further investigation.

    Funded by: NCRR NIH HHS: P20 RR020837, P20 RR020837-01, U24 RR021992, U24-RR021992; NIA NIH HHS: 3 U01 AG024904-03S5, U01 AG024904, U01 AG024904-01, U19 AG010483, U24 AG021886

    PloS one 2009;4;8;e6501

  • Evaluating new candidate SNPs as low penetrance risk factors in sporadic breast cancer: a two-stage Spanish case-control study.

    Vega A, Salas A, Milne RL, Carracedo B, Ribas G, Ruibal A, de León AC, González-Hernández A, Benítez J and Carracedo A

    Fundación Pública Galega de Medicina Xenómica SERGAS, CIBERER, Santiago de Compostela, Galicia, Spain.

    Objectives: A polygenic model has been proposed in order to explain the genetic susceptibility to sporadic breast cancer. According to this model, common population variants would be responsible for low to modest effects on the risk of developing the disease. We have carried out a high-throughput SNP genotyping project in order to shed some light on the complex genetic aetiology of non-familial breast cancer.

    Methods: Ninety-one genes have been selected because of their implications in several candidate cell pathways for breast cancer. A total of 640 SNPs in these genes were genotyped in a series of 450 consecutive cases and 448 controls from mainland Spain. Promising SNPs were then studied in an independent series of 294 cases and 299 controls from the Canary Islands.

    Results: In the first case-control series we identified 25 SNPs with P-values below 0.05 (under a 1 df Chi-square test), five of them with P-values below 0.01 (best=0.0008). In the stage 2 Canary Islands series, odd ratios (OR) for two SNPs in HUS1 were in a consistent direction.

    Conclusions: SNPs located at the gene HUS1 are good candidates for further investigation in independent association studies and functional assays.

    Gynecologic oncology 2009;112;1;210-4

  • GRIP1-associated SET-domain methyltransferase in glucocorticoid receptor target gene expression.

    Chinenov Y, Sacta MA, Cruz AR and Rogatsky I

    Hospital for Special Surgery, Department of Microbiology and Immunology, Weill Medical College of Cornell University, 535 E70th Street, Research Building Rm. 425, New York, NY 10021, USA.

    Transcriptional regulators such as the glucocorticoid receptor (GR) recruit multiple cofactors to activate or repress transcription. Although most cofactors are intrinsically bifunctional, little is known about the molecular mechanisms dictating the specific polarity of regulation. Furthermore, chromatin modifications thought to be confined to silent loci appear in actively transcribed genes suggesting that similar enzymatic activities may mediate constitutive and transient chromatin states. GRIP1, a GR ligand-dependent coregulator of the p160 family can potentiate or inhibit transcription but the molecular contexts and mechanisms that enable GRIP1 corepressor activity are poorly understood. In a yeast 2-hybrid screen with GRIP1 repression domain (RD)-containing fragment, we repeatedly isolated the C-terminal region of a SET domain-containing protein subsequently identified as histone H4 lysine 20 trimethyltransferase, Suv4-20h1. We cloned a full-length Suv4-20h1 and dissected its interaction with GRIP1 in yeast, in vitro, and in mammalian cells. Strict nuclear localization and high salt concentration required for Suv4-20h1 extraction were consistent with its tight association with chromatin. Overexpression of Suv4-20h1 in human U2OS and A549 cells expressing integrated and endogenous GR, respectively, antagonized ligand-dependent induction of a subset of GR target genes, whereas Suv4-20h1 siRNA-mediated depletion had a reciprocal effect. Inhibition of GR transactivation required both the GRIP1 interacting region of Suv4-20h1 and its catalytic activity. Thus, Suv4-20h1 known exclusively as a factor involved in constitutive heterochromatin maintenance, actively participates in hormone-dependent transcriptional regulation affecting GR target gene expression in a promoter- and cell type-specific manner.

    Funded by: NCI NIH HHS: CA20535, R01 CA020535, R37 CA020535; NIAID NIH HHS: AI068820, R01 AI068820; NIAMS NIH HHS: T32 AR007517, T32 AR07517

    Proceedings of the National Academy of Sciences of the United States of America 2008;105;51;20185-90

  • Recruitment of coactivator glucocorticoid receptor interacting protein 1 to an estrogen receptor transcription complex is regulated by the 3',5'-cyclic adenosine 5'-monophosphate-dependent protein kinase.

    Fenne IS, Hoang T, Hauglid M, Sagen JV, Lien EA and Mellgren G

    Institute of Medicine, Section for Endocrinology, University of Bergen, Bergen, Norway.

    Steroid receptor coactivators (SRCs), such as glucocorticoid receptor interacting protein 1 (GRIP1) are recruited to the DNA-bound nuclear receptors (NRs) and are also shown to enhance the gene transactivation by other transcription factors. In contrast to the two other members of the SRC family, SRC-1 and SRC-3/amplified in breast cancer 1, SRC-2/GRIP1 is regulated by the cAMP-dependent protein kinase [protein kinase A (PKA)] that stimulates its ubiquitination and degradation. In this report we demonstrate that COS-1 and MCF-7 cells treated with cAMP-elevating agents and 8-para-chlorophenylthio-cAMP for short periods of time showed an increase in GRIP1 coactivator function, whereas prolonged stimulation of the cAMP/PKA pathway led to a decline in GRIP1-mediated activation and protein levels. Furthermore, MCF-7 breast cancer cells were subjected to chromatin immunoprecipitation assays after stimulation of the cAMP/PKA pathway. cAMP/PKA initiated a rapid recruitment of GRIP1 to the endogenous estrogen receptor (ER)-alpha target pS2 gene promoter. In contrast to the estradiol-induced recruitment of GRIP1 to pS2, we observed an additional increase in GRIP1 recruitment on inhibition of the proteasome, suggesting that inhibition of GRIP1 degradation leads to accumulation at the pS2. Real-time PCR experiments confirmed that cAMP/PKA enhanced the expression of pS2. Moreover, confocal imaging of COS-1 cells transfected with yellow fluorescent protein-GRIP1 and cyan fluorescent protein-ERalpha revealed that PKA led to redistribution and colocalization of yellow fluorescent protein-GRIP1 and cyan fluorescent protein-ERalpha in subnuclear foci. In conclusion, these results suggest that activation of the cAMP/PKA pathway stimulates recruitment of GRIP1 to an ER-responsive gene promoter. The initial stimulation of GRIP1 coactivator function is followed by an increased turnover and subsequent degradation of GRIP1 protein.

    Endocrinology 2008;149;9;4336-45

  • Supramodular nature of GRIP1 revealed by the structure of its PDZ12 tandem in complex with the carboxyl tail of Fras1.

    Long J, Wei Z, Feng W, Yu C, Zhao YX and Zhang M

    Department of Biochemistry, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

    The scaffold protein GRIP1 (glutamate receptor interacting protein 1) binds to and regulates both the trafficking and membrane organization of a large number of transmembrane proteins. Mutation of GRIP1 in mice displays essentially the same phenotype of the mutations of Fras1 or Frem2, which are the animal models of the human genetic disorder Fraser syndrome. However, the molecular basis governing the interaction between GRIP1 and Fras1/Frem2 is unknown. Here, we show that interaction between Fras1 and GRIP1 requires the first two PDZ domains (PDZ1 and PDZ2) to be connected in tandem, as the folding of PDZ1 strictly depends on the covalent attachment of PDZ2. The crystal structure of GRIP1 PDZ12 in complex with the Fras1 C-terminal peptide reveals that the PDZ12 tandem forms a supramodule in which only the peptide-binding groove of PDZ1 is bound with the Fras1 peptide. The GRIP1 PDZ12/Fras1 peptide complex not only provides a mechanistic explanation of the link between GRIP1 and the Fraser syndrome but may also serve as a foundation for searching for potential mutations in GRIP1 that could lead to the Fraser syndrome.

    Journal of molecular biology 2008;375;5;1457-68

  • No association of GRIP1 gene polymorphisms with schizophrenia in Chinese population.

    Tsai SJ, Liou YJ, Liao DL, Cheng CY and Hong CJ

    Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan. sjtsai@vghtpe.gov.tw

    Disturbance in glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. Since glutamate receptor interacting protein 1 (GRIP1), a modular protein that enables anchoring of AMPA receptors via its PDZ (postsynaptic density-95/discs large/zona occludens-1) domain and modulates d-serine release, plays an important role in glutamatergic function, this study tests the hypothesis that GRIP1 genetic variants confer susceptibility to schizophrenia. This study investigated whether GRIP1 genetic polymorphisms (rs1038923 and rs4913301) cause a predisposal to schizophrenia. Two GRIP1 polymorphisms were studied in a sample population of 252 people with schizophrenia and 207 normal controls. Significant linkage disequilibrium was obtained between the two polymorphisms. Results demonstrated that neither single marker nor haplotype analysis revealed an association between variants at the GRIP1 locus and schizophrenia, suggesting that it is unlikely that the GRIP1 polymorphisms investigated play a substantial role in conferring susceptibility to schizophrenia. However, association between schizophrenia and other polymorphisms in the GRIP1 gene cannot be totally ruled out as the whole gene was not covered by the two polymorphisms studied.

    Progress in neuro-psychopharmacology & biological psychiatry 2007;31;3;752-5

  • Modulation of glucocorticoid receptor-interacting protein 1 (GRIP1) transactivation and co-activation activities through its C-terminal repression and self-association domains.

    Liu PY, Hsieh TY, Chou WY and Huang SM

    Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.

    Glucocorticoid receptor-interacting protein 1 (GRIP1), a p160 family nuclear receptor co-activator, possesses at least two autonomous activation domains (AD1 and AD2) in the C-terminal region. AD1 activity appears to be mediated by CBP/p300, whereas AD2 activity is apparently mediated through co-activator-associated arginine methyltransferase 1 (CARM1). The mechanisms responsible for regulating the activities of AD1 and AD2 are not well understood. We provide evidence that the GRIP1 C-terminal region may be involved in regulating its own transactivation and nuclear receptor co-activation activities through primary self-association and a repression domain. We also compared the effects of the GRIP1 C terminus with those of other factors that functionally interact with the GRIP1 C terminus, such as CARM1. Based on our results, we propose a regulatory mechanism involving conformational changes to GRIP1 mediated through its intramolecular and intermolecular interactions, and through modulation of the effects of co-repressors on its repression domains. These are the first results to indicate that the structural components of GRIP1, especially those of the C terminus, might functionally modulate its putative transactivation activities and nuclear receptor co-activator functions.

    The FEBS journal 2006;273;10;2172-83

  • The finished DNA sequence of human chromosome 12.

    Scherer SE, Muzny DM, Buhay CJ, Chen R, Cree A, Ding Y, Dugan-Rocha S, Gill R, Gunaratne P, Harris RA, Hawes AC, Hernandez J, Hodgson AV, Hume J, Jackson A, Khan ZM, Kovar-Smith C, Lewis LR, Lozado RJ, Metzker ML, Milosavljevic A, Miner GR, Montgomery KT, Morgan MB, Nazareth LV, Scott G, Sodergren E, Song XZ, Steffen D, Lovering RC, Wheeler DA, Worley KC, Yuan Y, Zhang Z, Adams CQ, Ansari-Lari MA, Ayele M, Brown MJ, Chen G, Chen Z, Clerc-Blankenburg KP, Davis C, Delgado O, Dinh HH, Draper H, Gonzalez-Garay ML, Havlak P, Jackson LR, Jacob LS, Kelly SH, Li L, Li Z, Liu J, Liu W, Lu J, Maheshwari M, Nguyen BV, Okwuonu GO, Pasternak S, Perez LM, Plopper FJ, Santibanez J, Shen H, Tabor PE, Verduzco D, Waldron L, Wang Q, Williams GA, Zhang J, Zhou J, Allen CC, Amin AG, Anyalebechi V, Bailey M, Barbaria JA, Bimage KE, Bryant NP, Burch PE, Burkett CE, Burrell KL, Calderon E, Cardenas V, Carter K, Casias K, Cavazos I, Cavazos SR, Ceasar H, Chacko J, Chan SN, Chavez D, Christopoulos C, Chu J, Cockrell R, Cox CD, Dang M, Dathorne SR, David R, Davis CM, Davy-Carroll L, Deshazo DR, Donlin JE, D'Souza L, Eaves KA, Egan A, Emery-Cohen AJ, Escotto M, Flagg N, Forbes LD, Gabisi AM, Garza M, Hamilton C, Henderson N, Hernandez O, Hines S, Hogues ME, Huang M, Idlebird DG, Johnson R, Jolivet A, Jones S, Kagan R, King LM, Leal B, Lebow H, Lee S, LeVan JM, Lewis LC, London P, Lorensuhewa LM, Loulseged H, Lovett DA, Lucier A, Lucier RL, Ma J, Madu RC, Mapua P, Martindale AD, Martinez E, Massey E, Mawhiney S, Meador MG, Mendez S, Mercado C, Mercado IC, Merritt CE, Miner ZL, Minja E, Mitchell T, Mohabbat F, Mohabbat K, Montgomery B, Moore N, Morris S, Munidasa M, Ngo RN, Nguyen NB, Nickerson E, Nwaokelemeh OO, Nwokenkwo S, Obregon M, Oguh M, Oragunye N, Oviedo RJ, Parish BJ, Parker DN, Parrish J, Parks KL, Paul HA, Payton BA, Perez A, Perrin W, Pickens A, Primus EL, Pu LL, Puazo M, Quiles MM, Quiroz JB, Rabata D, Reeves K, Ruiz SJ, Shao H, Sisson I, Sonaike T, Sorelle RP, Sutton AE, Svatek AF, Svetz LA, Tamerisa KS, Taylor TR, Teague B, Thomas N, Thorn RD, Trejos ZY, Trevino BK, Ukegbu ON, Urban JB, Vasquez LI, Vera VA, Villasana DM, Wang L, Ward-Moore S, Warren JT, Wei X, White F, Williamson AL, Wleczyk R, Wooden HS, Wooden SH, Yen J, Yoon L, Yoon V, Zorrilla SE, Nelson D, Kucherlapati R, Weinstock G, Gibbs RA and Baylor College of Medicine Human Genome Sequencing Center Sequence Production Team

    Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. sscherer@bcm.tmc.edu

    Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.

    Nature 2006;440;7082;346-51

  • Differential use of functional domains by coiled-coil coactivator in its synergistic coactivator function with beta-catenin or GRIP1.

    Yang CK, Kim JH, Li H and Stallcup MR

    Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90089, USA.

    beta-Catenin, a pivotal component of the Wnt-signaling pathway, binds to and serves as a transcriptional coactivator for the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcriptional activator proteins and for the androgen receptor (AR), a nuclear receptor. Three components of the p160 nuclear receptor coactivator complex, including CARM1, p300/CBP, and GRIP1 (one of the p160 coactivators), bind to and cooperate with beta-catenin to enhance transcriptional activation by TCF/LEF and AR. Here we report that another component of the p160 nuclear receptor coactivator complex, the coiled-coil coactivator (CoCoA), directly binds to and cooperates synergistically with beta-catenin as a coactivator for AR and TCF/LEF. CoCoA uses different domains to bind GRIP1 and beta-catenin, and it uses different domains to transmit the activating signal to the transcription machinery, depending on whether it is bound to GRIP1 or beta-catenin. CoCoA associated specifically with the promoters of transiently transfected and endogenous target genes of TCF/LEF, and reduction of the endogenous CoCoA level decreased the ability of TCF/LEF and beta-catenin to activate transcription of transient and endogenous target genes. Thus, CoCoA uses different combinations of functional domains to serve as a physiologically relevant component of the Wnt/beta-catenin signaling pathway and the androgen signaling pathway.

    Funded by: NIDDK NIH HHS: DK43093, R01 DK043093

    The Journal of biological chemistry 2006;281;6;3389-97

  • The GRIP1:IRF3 interaction as a target for glucocorticoid receptor-mediated immunosuppression.

    Reily MM, Pantoja C, Hu X, Chinenov Y and Rogatsky I

    Hospital for Special Surgery, Department of Microbiology & Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.

    Glucocorticoids dramatically inhibit cytokine and chemokine production. They act through the glucocorticoid receptor (GR), a ligand-dependent transcription factor that binds to and represses activities of other DNA-bound regulators, activator protein 1 and nuclear factor kappaB, utilizing a p160 GRIP1 as a corepressor. A yeast two-hybrid screen with the GRIP1 corepression domain (RD) yielded interferon (IFN) regulatory factor (IRF)3-a downstream effector of Toll-like receptors (TLR) 3/4 and an essential activator of several IFN and chemokine genes. We defined the GRIP1:IRF3 interface and showed that endogenous GRIP1 and IRF3 interact in mammalian cells. Interestingly, GR and IRF3 competed for GRIP1 binding; GR activation or GRIP1 knockdown in macrophages blocked whereas GRIP1 overexpression rescued IRF3-dependent gene expression. GR interference persisted in MyD88- and IFNA receptor-deficient mice, suggesting a specific disruption of TLR3-IRF3 pathway, not of autocrine IFN signaling. Finally, IRF3-stimulated response elements were necessary and sufficient for TLR3-dependent induction and glucocorticoid inhibition. Thus, GRIP1 plays a cofactor role in innate immunity. Competition with GR for GRIP1 antagonizes IRF3-mediated transcription, identifying the GRIP1:IRF3 interaction as a novel target for glucocorticoid immunosuppression.

    Funded by: NCI NIH HHS: CA20535, R01 CA020535, R37 CA020535

    The EMBO journal 2006;25;1;108-17

  • PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking.

    Lu W and Ziff EB

    Program in Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016, USA.

    PICK1 and ABP/GRIP bind to the AMPA receptor (AMPAR) GluR2 subunit C terminus. Transfer of the receptor from ABP/GRIP to PICK1, facilitated by GluR2 S880 phosphorylation, may initiate receptor trafficking. Here we report protein interactions that regulate these steps. The PICK1 BAR domain interacts intermolecularly with the ABP/GRIP linker II region and intramolecularly with the PICK1 PDZ domain. Binding of PKCalpha or GluR2 to the PICK1 PDZ domain disrupts the intramolecular interaction and facilitates the PICK1 BAR domain association with ABP/GRIP. Interference with the PICK1-ABP/GRIP interaction impairs S880 phosphorylation of GluR2 by PKC and decreases the constitutive surface expression of GluR2, the NMDA-induced endocytosis of GluR2, and recycling of internalized GluR2. We suggest that the PICK1 interaction with ABP/GRIP is a critical step in controlling GluR2 trafficking.

    Funded by: NIMH NIH HHS: MH067229

    Neuron 2005;47;3;407-21

  • Transcriptional regulation of human UGT1A1 gene expression: activated glucocorticoid receptor enhances constitutive androstane receptor/pregnane X receptor-mediated UDP-glucuronosyltransferase 1A1 regulation with glucocorticoid receptor-interacting protein 1.

    Sugatani J, Nishitani S, Yamakawa K, Yoshinari K, Sueyoshi T, Negishi M and Miwa M

    Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.

    UDP-glucuronosyltransferase (UGT) 1A1 glucuronidates endogenous metabolites, such as bilirubin, and exogenous substances, and plays a critical role in their detoxification and excretion. In a previous article, we described the phenobarbital response activity to a 290-base pair (bp) distal enhancer sequence (-3499/-3210) of the human UGT1A1 gene that is activated by the constitutive androstane receptor (CAR). Here, we show that dexamethasone at submicromolar concentrations enhances the pregnane X receptor (PXR) activator-mediated expression of the UGT1A1 gene and protein in HepG2 cells. We investigated the molecular mechanism of UGT1A1 induction by glucocorticoids at submicromolar concentrations and PXR activators and the functional cross-talk between the glucocorticoid receptor (GR) and CAR/PXR. The glucocorticoid-response element (GRE) was characterized by cotransfection experiments, site-directed mutagenesis, and electrophoretic mobility shift assays. Analysis of the human UGT1A1 promoter revealed GREs at -3404/-3389 and -3251/-3236 close to the CAR/PXR response element gtNR1 (-3382/-3367). Furthermore, in an in vitro reporter gene assay, dexamethasone effectively enhanced CAR/PXR-mediated transactivation of the 290-bp distal enhancer module in HepG2 cells and CV-1 cells in the presence of exogenously expressed GR and glucocorticoid receptor-interacting protein 1 (GRIP1). In glutathione S-transferase pull-down experiments, CAR and PXR interacted with GRIP1. Together, these results demonstrate a rational mechanistic basis for UGT1A1 induction by glucocorticoids and PXR activators, showing that activated GR enhances CAR/PXR-mediated UGT1A1 regulation with the transcriptional cofactor GRIP1 and that GR may be involved synergistically in the xenobiotic-responsive regulation of UGT1A1 by CAR/PXR.

    Molecular pharmacology 2005;67;3;845-55

  • Negative modulation of androgen receptor transcriptional activity by Daxx.

    Lin DY, Fang HI, Ma AH, Huang YS, Pu YS, Jenster G, Kung HJ and Shih HM

    Division of Molecular and Genomic Medicine, National Health Research Institutes, 128 Sec 2 Yen-Chiu-Yuan Rd., Taipei 11529, Taiwan.

    The transcriptional activity of the androgen receptor (AR) modulated by positive or negative regulators plays a critical role in controlling the growth and survival of prostate cancer cells. Although numerous positive regulators have been identified, negative regulators of AR are less well understood. We report here that Daxx functions as a negative AR coregulator through direct protein-protein interactions. Overexpression of Daxx suppressed AR-mediated promoter activity in COS-1 and LNCaP cells and AR-mediated prostate-specific antigen expression in LNCaP cells. Conversely, downregulation of endogenous Daxx expression by RNA interference enhances androgen-induced prostate-specific antigen expression in LNCaP cells. In vitro and in vivo interaction studies revealed that Daxx binds to both the amino-terminal and the DNA-binding domain of the AR. Daxx proteins interfere with the AR DNA-binding activity both in vitro and in vivo. Moreover, sumoylation of AR at its amino-terminal domain is involved in Daxx interaction and trans-repression. Together, these findings not only provide a novel role of Daxx in controlling AR transactivation activity but also uncover the mechanism underlying sumoylation-dependent transcriptional repression of the AR.

    Molecular and cellular biology 2004;24;24;10529-41

  • A four PDZ domain-containing splice variant form of GRIP1 is localized in GABAergic and glutamatergic synapses in the brain.

    Charych EI, Yu W, Li R, Serwanski DR, Miralles CP, Li X, Yang BY, Pinal N, Walikonis R and De Blas AL

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA.

    We have isolated, from a rat brain cDNA library, a clone corresponding to a 2779-bp cDNA encoding a novel splice form of the glutamate receptor interacting protein-1 (GRIP1). We call this 696-amino acid splice form GRIP1c 4-7 to differentiate it from longer splice forms of GRIP1a/b containing seven PDZ domains. The four PDZ domains of GRIP1c 4-7 are identical to PDZ domains 4-7 of GRIP1a/b. GRIP1c 4-7 also contains 35 amino acids at the N terminus and 12 amino acids at the C terminus that are different from GRIP1a/b. In transfected HEK293 cells, a majority of GRIP1c 4-7 was associated with the plasma membrane. GRIP1c 4-7 interacted with GluR2/3 subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor. In low density hippocampal cultures, GRIP1c 4-7 clusters colocalized with GABAergic (where GABA is gamma-aminobutyric acid) and glutamatergic synapses, although a higher percentage of GRIP1c 4-7 clusters colocalized with gamma-aminobutyric acid, type A, receptor (GABA(A)R) clusters than with alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor clusters. Transfection of hippocampal neurons with hemagglutinin-tagged GRIP1c 4-7 showed that it could target to the postsynaptic complex of GABAergic synapses colocalizing with GABA(A)R clusters. GRIP1c 4-7-specific antibodies, which did not recognize previously described splice forms of GRIP1, recognized a 75-kDa protein that is enriched in a postsynaptic density fraction isolated from rat brain. EM immunocytochemistry experiments showed that in intact brain GRIP1c 4-7 concentrates at postsynaptic complexes of both type I glutamatergic and type II GABAergic synapses although it is also presynaptically localized. These results indicate that GRIP1c 4-7 plays a role not only in glutamatergic synapses but also in GABAergic synapses.

    Funded by: NINDS NIH HHS: NS38752

    The Journal of biological chemistry 2004;279;37;38978-90

  • Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity.

    Lee YH, Campbell HD and Stallcup MR

    Department of Pathology, University of Southern California, Los Angeles, California 90089-9092, USA.

    Hormone-activated nuclear receptors (NR) activate transcription by recruiting multiple coactivator complexes to the promoters of target genes. One important coactivator complex includes a p160 coactivator (e.g., GRIP1, SRC-1, or ACTR) that binds directly to activated NR, the histone acetyltransferase p300 or CBP, and the arginine-specific histone methyltransferase CARM1. We previously demonstrated that the coactivator function of CARM1 depends both on the methyltransferase activity and on additional unknown proteins that bind to CARM1. In this study a yeast two-hybrid screen for proteins that bind CARM1 identified the protein Flightless I (Fli-I), which has essential roles in Drosophila and mouse development. Fli-I bound to CARM1, GRIP1, and NRs and cooperated synergistically with CARM1 and GRIP1 to enhance NR function. Fli-I bound poorly to and did not cooperate with PRMT1, a CARM1-related protein arginine methyltransferase that also functions as an NR coactivator. The synergy between GRIP1, CARM1, and Fli-I required the methyltransferase activity of CARM1. The C-terminal AD1 (binding site for p300/CBP) and AD2 (binding site for CARM1) activation domains of GRIP1 contributed to the synergy but were less stringently required than the N-terminal region of GRIP1, which is the binding site for Fli-I. Endogenous Fli-I was recruited to the estrogen-regulated pS2 gene promoter of MCF-7 cells in response to the hormone, and reduction of endogenous Fli-I levels by small interfering RNA reduced hormone-stimulated gene expression by the endogenous estrogen receptor. A fragment of Fli-I that is related to the actin binding protein gelsolin enhanced estrogen receptor activity, and mutations that reduced actin binding also reduced the coactivator function of this Fli-I fragment. These data suggest that Fli-I may facilitate interaction of the p160 coactivator complex with other coactivators or coactivator complexes containing actin or actin-like proteins.

    Funded by: NIDDK NIH HHS: DK43093, R01 DK043093

    Molecular and cellular biology 2004;24;5;2103-17

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • TES is a novel focal adhesion protein with a role in cell spreading.

    Coutts AS, MacKenzie E, Griffith E and Black DM

    Cancer Research UK Laboratories, Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.

    Previously, we identified TES as a novel candidate tumour suppressor gene that mapped to human chromosome 7q31.1. In this report we demonstrate that the TES protein is localised at focal adhesions, actin stress fibres and areas of cell-cell contact. TES has three C-terminal LIM domains that appear to be important for focal adhesion targeting. Additionally, the N-terminal region is important for targeting TES to actin stress fibres. Yeast two-hybrid and biochemical analyses yielded interactions with several focal adhesion and/or cytoskeletal proteins including mena, zyxin and talin. The fact that TES localises to regions of cell adhesion suggests that it functions in events related to cell motility and adhesion. In support of this, we demonstrate that fibroblasts stably overexpressing TES have an increased ability to spread on fibronectin.

    Journal of cell science 2003;116;Pt 5;897-906

  • Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP.

    Hirbec H, Francis JC, Lauri SE, Braithwaite SP, Coussen F, Mulle C, Dev KK, Coutinho V, Meyer G, Isaac JT, Collingridge GL, Henley JM and Couthino V

    MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom.

    We identified four PDZ domain-containing proteins, syntenin, PICK1, GRIP, and PSD95, as interactors with the kainate receptor (KAR) subunits GluR5(2b,) GluR5(2c), and GluR6. Of these, we show that both GRIP and PICK1 interactions are required to maintain KAR-mediated synaptic function at mossy fiber-CA3 synapses. In addition, PKC alpha can phosphorylate ct-GluR5(2b) at residues S880 and S886, and PKC activity is required to maintain KAR-mediated synaptic responses. We propose that PICK1 targets PKC alpha to phosphorylate KARs, causing their stabilization at the synapse by an interaction with GRIP. Importantly, this mechanism is not involved in the constitutive recycling of AMPA receptors since blockade of PDZ interactions can simultaneously increase AMPAR- and decrease KAR-mediated synaptic transmission at the same population of synapses.

    Funded by: Medical Research Council: G9629038; Wellcome Trust: 059917

    Neuron 2003;37;4;625-38

  • The proteoglycan NG2 is complexed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ glutamate receptor interaction protein (GRIP) in glial progenitor cells. Implications for glial-neuronal signaling.

    Stegmüller J, Werner H, Nave KA and Trotter J

    Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, Germany.

    The proteoglycan NG2 is expressed by immature glial cells in the developing and adult central nervous system. Using the COOH-terminal region of NG2 as bait in a yeast two-hybrid screen, we identified the glutamate receptor interaction protein GRIP1, a multi-PDZ domain protein, as an interacting partner. NG2 exhibits a PDZ binding motif at the extreme COOH terminus which binds to the seventh PDZ domain of GRIP1. In addition to the published expression in neurons, GRIP1 is expressed by immature glial cells. GRIP1 is known to bind to the GluRB subunit of the AMPA glutamate receptor expressed by subpopulations of neurons and immature glial cells. In cultures of primary oligodendrocytes, cells coexpress GluRB and NG2. A complex of NG2, GRIP1, and GluRB can be precipitated from transfected mammalian cells and from cultures of primary oligodendrocytes. Furthermore, NG2 and GRIP can be coprecipitated from developing brain tissue. These data suggest that GRIP1 acts as a scaffolding molecule clustering NG2 and AMPA receptors in immature glia. In view of the presence of synaptic contacts between neurons and NG2-positive glial cells in the hippocampus and the close association of NG2-expressing glial cells with axons, we suggest a role for the NG2.AMPA receptor complex in glial-neuronal recognition and signaling.

    The Journal of biological chemistry 2003;278;6;3590-8

  • Inhibitory cross-talk between estrogen receptor (ER) and constitutively activated androstane receptor (CAR). CAR inhibits ER-mediated signaling pathway by squelching p160 coactivators.

    Min G, Kim H, Bae Y, Petz L and Kemper JK

    Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA.

    Estrogen receptor (ER) activity can be modulated by the action of other nuclear receptors. To study whether ER activity is altered by orphan nuclear receptors that mediate the cellular response to xenobiotics, cross-talk between ER and constitutive androstane receptor (CAR), steroid and xenobiotic receptor, or peroxisome proliferator-activated receptor gamma was examined in HepG2 cells. Of these receptors, CAR substantially inhibited ER-mediated transcriptional activity of the vitellogenin B1 promoter as well as a synthetic estrogen responsive element (ERE)-containing promoter. Treatment with an agonist of CAR, 1,4-bis-(2-(3,5-dichloropyridoxyl))benzene, potentiated CAR-mediated transcriptional repression. In contrast, an antagonist of CAR, androstenol, alleviated the repression effect. Although CAR interacted with the ER in solution, CAR did not interact with the ER bound to the ERE. CAR/retinoid X receptor bound to the ERE but with much lower affinity than ER. Incremental amounts of CAR elicited a progressive reduction of the ER activity induced by the p160 coactivator glucocorticoid receptor interacting protein 1 (GRIP-1). In turn, increasing amounts of GRIP-1 progressively reversed the depression of ER activity by CAR. An agonist or antagonist of CAR potentiated or alleviated, respectively, the CAR-mediated repression of the GRIP-1-enhanced ER activity, which is consistent with the ability of theses ligands to increase or decrease, respectively, the interaction of CAR with GRIP-1. A CAR mutant that did not interact with GRIP-1 did not inhibit ER-mediated transactivation. Our data demonstrate that xenobiotic nuclear receptor CAR antagonizes ER-mediated transcriptional activity by squelching limiting amounts of p160 coactivator and imply that xenobiotics may influence ER function of female reproductive physiology, cell differentiation, tumorigenesis, and lipid metabolism.

    The Journal of biological chemistry 2002;277;37;34626-33

  • The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1.

    Kotaja N, Karvonen U, Jänne OA and Palvimo JJ

    Biomedicum Helsinki, Institute of Biomedicine, University of Helsinki and Helsinki University Central Hospital, FIN-00014 Helsinki, Finland.

    The steroid receptor coactivator (SRC) proteins comprise a well-characterized family of nuclear receptor (NR) coactivators that increase transcriptional activation by NRs via covalent modification of chromatin proteins and recruitment of other coactivators. We have recently shown that the SRC family member GRIP1 interacts with a class of SUMO-1 (small ubiquitin-like modifier 1) E3 ligases, the PIAS proteins, and that the coactivator is subjected to SUMO-1 modifications (sumoylation). In this work, we demonstrate that lysine residues 239, 731, and 788 of GRIP1 serve as principal attachment sites for SUMO-1. Lys-731 and Lys-788 are located in the NR interaction domain (NID), and their substitution by arginines impairs the ability of GRIP1 to colocalize with androgen receptor (AR) in nuclei. Likewise, Lys-731 and Lys-788 mutants of GRIP1 have attenuated ability to enhance AR-dependent transcription and fail to synergize with PIASx beta-mediated activation of AR function, indicating that sumoylation modifies the ability of GRIP1 to function as a steroid receptor coactivator. The Lys-731 sumoylation site is conserved in SRC-3 and SRC-1, and the NIDs of the latter coactivators harbor one or two additional sites matching with the consensus sites for SUMO-1 attachment, respectively, suggesting a more general role for the modification in the regulation of SRC protein activity.

    The Journal of biological chemistry 2002;277;33;30283-8

  • Differential roles for NSF and GRIP/ABP in AMPA receptor cycling.

    Braithwaite SP, Xia H and Malenka RC

    Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304-5485, USA.

    alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) stability and movement at synapses are important factors controlling synaptic strength. Here, we study the roles of proteins [N-ethylmaleimide-sensitive fusion protein (NSF), glutamate receptor AMPAR binding protein (ABP)-interacting protein (GRIP)/(ABP), and protein interacting with C-kinase-1 (PICK1) that interact with the GluR2 subunit in the control of the surface expression and cycling of AMPARs. Epitope-tagged GluR2 formed functional receptors that exhibited targeting to synaptic sites. Constructs in which binding to NSF, PDZ proteins (GRIP/ABP and PICK1), or GRIP/ABP alone was eliminated each exhibited normal surface targeting and constitutive cycling. The lack of NSF binding, however, resulted in receptors that were endocytosed to a greater extent than wild-type receptors in response to application of AMPA or N-methyl-d-aspartate (NMDA). Conversely, the behavior of the GluR2 mutants incapable of binding to GRIP/ABP suggests that these PDZ proteins play a role in the stabilization of an intracellular pool of AMPARs that have been internalized on stimulation, thus inhibiting their recycling to the synaptic membrane. These results provide further evidence for distinct functional roles of GluR2-interacting proteins in AMPAR trafficking.

    Proceedings of the National Academy of Sciences of the United States of America 2002;99;10;7096-101

  • The PDZ proteins PICK1, GRIP, and syntenin bind multiple glutamate receptor subtypes. Analysis of PDZ binding motifs.

    Hirbec H, Perestenko O, Nishimune A, Meyer G, Nakanishi S, Henley JM and Dev KK

    Department of Anatomy, Medical Research Council Centre of Synaptic Plasticity, Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom.

    Using sequence homology searches, yeast two-hybrid assays and glutathione S-transferase (GST)-pull-down approaches we have identified a series of glutamate receptor subunits that interact differentially with the PDZ proteins GRIP, PICK1, and syntenin. GST-pull-down experiments identified more interactions than detected by yeast two-hybrid assays. We report several receptor-protein interactions, strong ones include: (i) GRIP and syntenin with mGluR7a, mGluR4a, and mGluR6; (ii) PICK1 and GRIP with mGluR3; and (iii) syntenin with all forms of GluR1-4 and mGluR7b. We further characterized the novel mGluR7a-GRIP interaction found both in yeast two-hybrid and GST-pull-down assays and observed that mGluR7a localization overlapped with GRIP with in hippocampal neurons. The wide range of targets for PICK1, GRIP, and syntenin suggests they may represent a molecular mechanism that can concentrate and/or regulate a number of different receptors at a common site on a synapse. These data also suggest that the structural determinants involved in PDZ interactions are more complex than originally envisaged.

    Funded by: Medical Research Council: G9629038

    The Journal of biological chemistry 2002;277;18;15221-4

  • The carboxyl terminus of the prolactin-releasing peptide receptor interacts with PDZ domain proteins involved in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor clustering.

    Lin SH, Arai AC, Wang Z, Nothacker HP and Civelli O

    Department of Pharmacology, College of Medicine, University of California, Irvine, 92697, USA.

    PDZ domain proteins use the PDZ domain binding motif to bind to the C-terminal sequence of membrane proteins to help scaffold them and spatially organize the components of the intracellular signaling machinery. We have identified a sequence at the C terminus of a G protein-coupled receptor, the PrRP receptor, that shares similarities with the C-terminal sequence of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPA-R) subunits that interact with PDZ domain proteins. When coexpressed in human embryonic kidney 293 cells, PrRP receptor was able to coimmunoprecipitate the three PDZ domain proteins known to interact with AMPA receptors: glutamate receptor interacting protein (GRIP), AMPA binding protein (ABP), and protein that interacts with C-kinase (PICK1), but not the PDZ domain protein PSD-95, which does not interact with AMPA receptors. These interactions are sequence-selective as determined by mutagenesis. Furthermore, we show that PrRP receptor forms intracellular clusters when coexpressed with PICK1, and that this clustering effect is dependent on the interaction between the PICK1 PDZ domain and the last four amino acids of PrRP receptor. We found that PrRP receptor interaction with GRIP is not protein kinase C-regulated but may be regulated by other unidentified kinase because okadaic acid dramatically reduced GRIP interaction. By in situ hybridization, we show that the PrRP receptor is expressed in neurons that also express these PDZ domain proteins. We thus demonstrate that PrRP receptor interacts with the same PDZ domain proteins as the AMPA-Rs, raising the possibility that these two proteins could be scaffolded together at the synapse. These results may help to gain important insights into PrRP functions within the central nervous system.

    Funded by: NCRR NIH HHS: P41RR01192; NIMH NIH HHS: MH60231

    Molecular pharmacology 2001;60;5;916-23

  • Characterization of the physical interaction between estrogen receptor alpha and JUN proteins.

    Teyssier C, Belguise K, Galtier F and Chalbos D

    Institut National de la Santé et de la Recherche Médicale, Endocrinologie Moléculaire et Cellulaire des Cancers (U 540), 60 Rue de Navacelles, Montpellier 34090, France.

    Activated estrogen receptor alpha (ERalpha) modulates transcription triggered by the transcription factor activator protein-1 (AP-1), which consists of Jun-Jun homodimers and Jun-Fos heterodimers. Previous studies have demonstrated that the interference occurs without binding of ERalpha to DNA but probably results from protein.protein interactions. However, involvement of a direct interaction between ERalpha and AP-1 is still debated. Using glutathione S-transferase pull-down assays, we demonstrated that ERalpha bound directly to c-Jun and JunB but not to FOS family members, in a ligand-independent manner. The interaction could occur when c-Jun was bound onto DNA, as shown in a protein-protein-DNA assay. It implicated the C-terminal part of c-Jun and amino acids 259-302 present in the ERalpha hinge domain. ERalpha but not an ERalpha mutant deleted of amino acids 250-303 (ER241G), also associated with c-Jun in intact cells, in the presence of estradiol, as shown by two-hybrid and coimmunoprecipitation assays. We also show that ERalpha, c-Jun, and the p160 coactivator GRIP1 can form a multiprotein complex in vitro and in intact cells and that the ERalpha.c-Jun interaction could be crucial for the stability of this complex. VP16-ERalpha and c-Jun, which both interact with GRIP1, had synergistic effect on GAL4-GRIP1-induced transcription in the presence of estradiol, and this synergistic effect was not observed with the ERalpha mutant VP16-ER241G or when c-Fos, which bound GRIP1 but not ERalpha, was used instead of c-Jun. Finally, ER241G was inefficient for regulation of AP-1 activity, and an ERalpha truncation mutant encompassing the hinge domain had a dominant negative effect on ERalpha action. These results altogether demonstrate that ERalpha can bind to c-Jun in vitro and in intact cells and that this interaction, by stabilizing a multiprotein complex containing p160 coactivator, is likely to be involved in estradiol regulation of AP-1 responses.

    The Journal of biological chemistry 2001;276;39;36361-9

  • GRASP-1: a neuronal RasGEF associated with the AMPA receptor/GRIP complex.

    Ye B, Liao D, Zhang X, Zhang P, Dong H and Huganir RL

    Howard Hughes Medical Institute, Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

    The PDZ domain-containing proteins, such as PSD-95 and GRIP, have been suggested to be involved in the targeting of glutamate receptors, a process that plays a critical role in the efficiency of synaptic transmission and plasticity. To address the molecular mechanisms underlying AMPA receptor synaptic localization, we have identified several GRIP-associated proteins (GRASPs) that bind to distinct PDZ domains within GRIP. GRASP-1 is a neuronal rasGEF associated with GRIP and AMPA receptors in vivo. Overexpression of GRASP-1 in cultured neurons specifically reduced the synaptic targeting of AMPA receptors. In addition, the subcellular distribution of both AMPA receptors and GRASP-1 was rapidly regulated by the activation of NMDA receptors. These results suggest that GRASP-1 may regulate neuronal ras signaling and contribute to the regulation of AMPA receptor distribution by NMDA receptor activity.

    Neuron 2000;26;3;603-17

  • Transcription activation by the orphan nuclear receptor, chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI). Definition of the domain involved in the glucocorticoid response of the phosphoenolpyruvate carboxykinase gene.

    Sugiyama T, Wang JC, Scott DK and Granner DK

    Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.

    Chicken ovalbumin upstream promoter-transcription factors (COUP-TFs), orphan members of the nuclear receptor superfamily, play a key role in the regulation of organogenesis, neurogenesis, and cellular differentiation during embryogenic development. COUP-TFs are also involved in the regulation of several genes that encode metabolic enzymes. Although COUP-TFs function as potent transcription repressors, there are at least three different molecular mechanisms of activation of gene expression by COUP-TFs. First, as we have previously shown, COUP-TF is required as an accessory factor for the complete induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. This action is mediated by the binding of COUP-TF to the glucocorticoid accessory factor 1 (gAF1) and 3 (gAF3) elements in the phosphoenolpyruvate carboxykinase gene glucocorticoid response unit. In addition, COUP-TF1 binds to DNA elements in certain genes and transactivates directly. Finally, COUP-TF1 serves as a coactivator through DNA-bound hepatic nuclear factor 4. Here we show that the same region of COUP-TFI, located between amino acids 184 and 423, is involved in these three mechanisms of transactivation by COUP-TFI. Furthermore, we show that GRIP1 and SRC-1 potentiate the activity of COUP-TFI and that COUP-TFI associates with these coactivators in vivo using the same region required for transcription activation. Finally, overexpression of GRIP1 or SRC-1 does not convert COUP-TFI from a transcriptional repressor into a transcriptional activator in HeLa cells.

    Funded by: NIDDK NIH HHS: DK 20593, DK 35107

    The Journal of biological chemistry 2000;275;5;3446-54

  • Inhibition of p160-mediated coactivation with increasing androgen receptor polyglutamine length.

    Irvine RA, Ma H, Yu MC, Ross RK, Stallcup MR and Coetzee GA

    Department of Urology, University of Southern California-Norris Cancer Center, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA.

    Normal polymorphic size variation of the exon 1 CAG microsatellite of the androgen receptor (AR) is associated with prostate cancer, benign prostatic hyperplasia and male infertility. Furthermore, abnormal expansion of the satellite leads to Kennedy's disease. We have shown recently that the AR N-terminal domain (NTD), which contains the polyglutamine (polyQ) stretch (encoded by the CAG repeat), functionally interacts with the C-termini of p160 coactivators. In the present study we explored possible AR CAG size effects on the p160 coactivator-mediated transactivation activity of the receptor. First, we mapped the p160 coactivator interaction on the AR NTD and found an interaction surface between amino acids 351 and 537. Although this region is 'downstream' from the polyQ stretch, it is still within the AR NTD, is implicated in constitutive transactivation activity of the receptor, and thus might be subject to polyQ size modulation. Indeed, cotrans- fection experiments in cultured prostate epithelial cells, using AR constructs of varying CAG sizes and p160 coactivator expression vectors, revealed that increased polyQ length, up to a size of 42 repeats, inhibited both basal and coactivator-mediated AR transactivation activity. AR expression in these cells, on the other hand, was unaffected by the same increased CAG repeat size range. We conclude that the AR NTD contributes to AR transactivation activity via functional interactions with p160 coactivators and that increasing polyQ length negatively affects p160-mediated coactivation of the AR. This molecular mechanism thus might explain, at least in part, the observed phenotypic effects of the AR CAG size polymorphism.

    Funded by: NCI NIH HHS: 5 T32 CA 09569, CA/OD 72821; NIDDK NIH HHS: DK 43093; ...

    Human molecular genetics 2000;9;2;267-74

  • EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains.

    Brückner K, Pablo Labrador J, Scheiffele P, Herb A, Seeburg PH and Klein R

    Developmental Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany.

    Transmembrane ephrinB proteins have important functions during embryonic patterning as ligands for Eph receptor tyrosine kinases and presumably as signal-transducing receptor-like molecules. Consistent with "reverse" signaling, ephrinB1 is localized in sphingo-lipid/cholesterol-enriched raft microdomains, platforms for the localized concentration and activation of signaling molecules. Glutamate receptor-interacting protein (GRIP) and a highly related protein, which we have termed GRIP2, are recruited into these rafts through association with the C-terminal PDZ target site of ephrinB1. Stimulation of ephrinB1 with soluble EphB2 receptor ectodomain causes the formation of large raft patches that also contain GRIP proteins. Moreover, a GRIP-associated serine/threonine kinase activity is recruited into ephrinB1-GRIP complexes. Our findings suggest that GRIP proteins provide a scaffold for the assembly of a multiprotein signaling complex downstream of ephrinB ligands.

    Neuron 1999;22;3;511-24

  • PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands.

    Torres R, Firestein BL, Dong H, Staudinger J, Olson EN, Huganir RL, Bredt DS, Gale NW and Yancopoulos GD

    Regeneron Pharmaceuticals, Tarrytown, New York 10591-6707, USA.

    Localizing cell surface receptors to specific subcellular positions can be critical for their proper functioning, as most notably demonstrated at neuronal synapses. PDZ proteins apparently play critical roles in such protein localizations. Receptor tyrosine kinases have not been previously shown to interact with PDZ proteins in vertebrates. We report that Eph receptors and their membrane-linked ligands all contain PDZ recognition motifs and can bind and be clustered by PDZ proteins. In addition, we find that Eph receptors and ligands colocalize with PDZ proteins at synapses. Thus, PDZ proteins may play critical roles in localizing vertebrate receptor tyrosine kinases and/or their ligands and may be particularly important for Eph function in guidance or patterning or at the synapse.

    Neuron 1998;21;6;1453-63

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000013 G2C Homo sapiens Human mGluR5 Human orthologues of mouse mGluR5 complex adapted from Collins et al (2006) 52
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.