G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
ATPase, Ca++ transporting, plasma membrane 3
G00000854 (Mus musculus)

Databases (9)

Curated Gene
OTTHUMG00000024202 (Vega human gene)
ENSG00000067842 (Ensembl human gene)
492 (Entrez Gene)
412 (G2Cdb plasticity & disease)
ATP2B3 (GeneCards)
300014 (OMIM)
Marker Symbol
Protein Expression
1583 (human protein atlas)
Protein Sequence
Q16720 (UniProt)

Synonyms (1)

  • PMCA3

Literature (15)

Pubmed - other

  • Case-control study of six genes asymmetrically expressed in the two cerebral hemispheres: association of BAIAP2 with attention-deficit/hyperactivity disorder.

    Ribasés M, Bosch R, Hervás A, Ramos-Quiroga JA, Sánchez-Mora C, Bielsa A, Gastaminza X, Guijarro-Domingo S, Nogueira M, Gómez-Barros N, Kreiker S, Gross-Lesch S, Jacob CP, Lesch KP, Reif A, Johansson S, Plessen KJ, Knappskog PM, Haavik J, Estivill X, Casas M, Bayés M and Cormand B

    Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain.

    Background: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disease that persists into adulthood in at least 30% of patients. There is evidence suggesting that abnormal left-right brain asymmetries in ADHD patients may be involved in a variety of ADHD-related cognitive processes, including sustained attention, working memory, response inhibition and planning. Although mechanisms underlying cerebral lateralization are unknown, left-right cortical asymmetry has been associated with transcriptional asymmetry at embryonic stages and several genes differentially expressed between hemispheres have been identified.

    Methods: We selected six functional candidate genes showing at least 1.9-fold differential expression between hemispheres (BAIAP2, DAPPER1, LMO4, NEUROD6, ATP2B3, and ID2) and performed a case-control association study in an initial Spanish sample of 587 ADHD patients (270 adults and 317 children) and 587 control subjects.

    Results: The single- and multiple-marker analysis provided evidence for a contribution of BAIAP2 to adulthood ADHD (p = .0026 and p = .0016, respectively). We thus tested BAIAP2 for replication in two independent adult samples from Germany (639 ADHD patients and 612 control subjects) and Norway (417 ADHD cases and 469 control subjects). While no significant results were observed in the Norwegian sample, we replicated the initial association between BAIAP2 and adulthood ADHD in the German population (p = .0062).

    Conclusions: Our results support the participation of BAIAP2 in the continuity of ADHD across life span, at least in some of the populations analyzed, and suggest that genetic factors potentially influencing abnormal cerebral lateralization may be involved in this disorder.

    Biological psychiatry 2009;66;10;926-34

  • Toward a confocal subcellular atlas of the human proteome.

    Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M and Andersson-Svahn H

    Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

    Molecular & cellular proteomics : MCP 2008;7;3;499-508

  • Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual.

    Martin R, Harvey NC, Crozier SR, Poole JR, Javaid MK, Dennison EM, Inskip HM, Hanson M, Godfrey KM, Cooper C, Lewis R and SWS Study Group

    Centre for the Developmental Origins of Health and Disease, University of Southampton, Southampton, UK.

    Evidence is accruing that environmental exposures during critical periods of early development induce persisting changes in skeletal growth, and alter fracture risk in later life. We have previously demonstrated that placental calcium transport, partly determined by maternal 25-(OH) vitamin D status, may underlie this phenomenon. However, the precise relationship between expression of calcium transport proteins in the human placenta, and neonatal bone mineral accrual in the offspring, remains unknown. Tissue samples from 70 human placentae were fast frozen in liquid nitrogen and stored at -70 degrees C. A quantitative real time reverse transcriptase polymerase chain reaction was used to measure the mRNA expression of PMCA isoforms 1-4, using beta-actin as a control gene. Neonatal whole body bone area, mineral content and areal density (BA, BMC, BMD) were measured within 2 weeks of birth using DXA. PMCA3 mRNA expression predicted BA (r=0.28, p=0.02), BMC (r=0.25, p=0.04), placental weight (r=0.26, p=0.04) and birth weight (r=0.33, p=0.006) of the neonate. In a multivariate model, the relationship between placental PMCA3 expression and neonatal BMC was independent of maternal height, pre-pregnant fat stores, parity, physical activity, smoking, and calcium intake (p<0.05). Expression of the placental calcium transporter PMCA3 mRNA predicts neonatal whole body bone mineral content. This association may explain, in part, the mechanism whereby a mother's 25(OH)-vitamin D stores influence her offspring's bone mass.

    Funded by: British Heart Foundation: RG/07/009/23120; Medical Research Council: MC_U147585827, MC_UP_A620_1014

    Bone 2007;40;5;1203-8

  • Calcium pumps of plasma membrane and cell interior.

    Strehler EE and Treiman M

    Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA.

    Calcium entering the cell from the outside or from intracellular organelles eventually must be returned to the extracellular milieu or to intracellular storage organelles. The two major systems capable of pumping Ca2+ against its large concentration gradient out of the cell or into the sarco/endoplasmatic reticulum are the plasma membrane Ca2+ ATPases (PMCAs) and the sarco/endoplasmic reticulum Ca2+ ATPases (SERCAs), respectively. In mammals, multigene families code for these Ca2+ pumps and additional isoform subtypes are generated via alternative splicing. PMCA and SERCA isoforms show developmental-, tissue- and cell type-specific patterns of expression. Different PMCA and SERCA isoforms are characterized by different regulatory and kinetic properties that likely are optimized for the distinct functional tasks fulfilled by each pump in setting resting cytosolic or intra-organellar Ca2+ levels, and in shaping intracellular Ca2+ signals with spatial and temporal resolution. The loss or malfunction of specific Ca2+ pump isoforms is associated with defects such as deafness, ataxia or heart failure. Understanding the involvement of different Ca2+ pump isoforms in the pathogenesis of disease allows their identification as therapeutic targets for the development of selective strategies to prevent or combat the progression of these disorders.

    Funded by: NIDCD NIH HHS: DC-04200; NIGMS NIH HHS: GM-58710

    Current molecular medicine 2004;4;3;323-35

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Expression and role of calcium-ATPase pump and sodium-calcium exchanger in differentiated trophoblasts from human term placenta.

    Moreau R, Daoud G, Masse A, Simoneau L and Lafond J

    Département des Sciences Biologiques, Université du Québec á Montréal, Québec, Canada.

    Although placental transfer of maternal calcium (Ca(2+)) is a crucial process for fetal development, the biochemical mechanisms are not completely elucidated. Especially, mechanisms of syncytiotrophoblast Ca(2+) extrusion into fetal circulation remain to be established. In the current study we have investigated the characteristics of Ca(2+) efflux in syncytiotrophoblast-like structure originating from the differentiation of cultured trophoblasts isolated from human term placenta. Time-courses of Ca(2+) uptake by differentiated human trophoblasts displayed rapid initial entry (initial velocity (V(i)) of 8.82 +/- 0.86 nmol/mg protein/min) and subsequent establishment of a plateau. Ca(2+) efflux studies with (45)Ca(2+)-loaded cells also showed rapid decline of cell-associated (45)Ca(2+) with a V(i) of efflux (V(ie)) of 8.90 +/- 0.96 nmol/mg protein/min. Expression of membrane systems responsible for intracellular Ca(2+) extrusion from differentiated human trophoblast were investigated by RT-PCR. Messenger RNAs of four known isoforms of PMCA (PMCA 1-4) were detected. Messenger RNAs of two cloned human NCX isoforms (NCX1 and NCX3) were also revealed. More specifically, both splice variants NCX1.3 and NCX1.4 were amplified by PCR with total RNA of differentiated human trophoblast cells. Ca(2+) flux studies in Na-free incubation medium indicated that NCX played a minimal role in the cell Ca(2+) fluxes. However, erythrosine B (inhibitor of PMCA) time- and dose-dependently increased cell associated (45)Ca(2+) suggesting a principal role of plasma membrane Ca(2+)-ATPase (PMCA) in the intracellular Ca(2+) extrusion of syncytiotrophoblast-like structure originating from the differentiation of cultured trophoblast cells isolated from human term placenta.

    Molecular reproduction and development 2003;65;3;283-8

  • Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps.

    Strehler EE and Zacharias DA

    Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic/Foundation, Rochester, Minnesota, USA. strehler.emanuel@mayo.edu

    Calcium pumps of the plasma membrane (also known as plasma membrane Ca(2+)-ATPases or PMCAs) are responsible for the expulsion of Ca(2+) from the cytosol of all eukaryotic cells. Together with Na(+)/Ca(2+) exchangers, they are the major plasma membrane transport system responsible for the long-term regulation of the resting intracellular Ca(2+) concentration. Like the Ca(2+) pumps of the sarco/endoplasmic reticulum (SERCAs), which pump Ca(2+) from the cytosol into the endoplasmic reticulum, the PMCAs belong to the family of P-type primary ion transport ATPases characterized by the formation of an aspartyl phosphate intermediate during the reaction cycle. Mammalian PMCAs are encoded by four separate genes, and additional isoform variants are generated via alternative RNA splicing of the primary gene transcripts. The expression of different PMCA isoforms and splice variants is regulated in a developmental, tissue- and cell type-specific manner, suggesting that these pumps are functionally adapted to the physiological needs of particular cells and tissues. PMCAs 1 and 4 are found in virtually all tissues in the adult, whereas PMCAs 2 and 3 are primarily expressed in excitable cells of the nervous system and muscles. During mouse embryonic development, PMCA1 is ubiquitously detected from the earliest time points, and all isoforms show spatially overlapping but distinct expression patterns with dynamic temporal changes occurring during late fetal development. Alternative splicing affects two major locations in the plasma membrane Ca(2+) pump protein: the first intracellular loop and the COOH-terminal tail. These two regions correspond to major regulatory domains of the pumps. In the first cytosolic loop, the affected region is embedded between a putative G protein binding sequence and the site of phospholipid sensitivity, and in the COOH-terminal tail, splicing affects pump regulation by calmodulin, phosphorylation, and differential interaction with PDZ domain-containing anchoring and signaling proteins. Recent evidence demonstrating differential distribution, dynamic regulation of expression, and major functional differences between alternative splice variants suggests that these transporters play a more dynamic role than hitherto assumed in the spatial and temporal control of Ca(2+) signaling. The identification of mice carrying PMCA mutations that lead to diseases such as hearing loss and ataxia, as well as the corresponding phenotypes of genetically engineered PMCA "knockout" mice further support the concept of specific, nonredundant roles for each Ca(2+) pump isoform in cellular Ca(2+) regulation.

    Funded by: NIGMS NIH HHS: GM-58710

    Physiological reviews 2001;81;1;21-50

  • Comparative genome sequence analysis of the Bpa/Str region in mouse and Man.

    Mallon AM, Platzer M, Bate R, Gloeckner G, Botcherby MR, Nordsiek G, Strivens MA, Kioschis P, Dangel A, Cunningham D, Straw RN, Weston P, Gilbert M, Fernando S, Goodall K, Hunter G, Greystrong JS, Clarke D, Kimberley C, Goerdes M, Blechschmidt K, Rump A, Hinzmann B, Mundy CR, Miller W, Poustka A, Herman GE, Rhodes M, Denny P, Rosenthal A and Brown SD

    MRC UK Mouse Genome Centre and Mammalian Genetics Unit, Harwell, Oxon, UK.

    The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions.

    Funded by: NINDS NIH HHS: R01 NS34953

    Genome research 2000;10;6;758-75

  • Primary structure of human plasma membrane Ca(2+)-ATPase isoform 3.

    Brown BJ, Hilfiker H, DeMarco SJ, Zacharias DA, Greenwood TM, Guerini D and Strehler EE

    Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic/Foundation, Rochester, MN 55905, USA.

    The complete coding sequence of the human plasma membrane calcium ATPase (PMCA) isoform 3 was determined from overlapping genomic and cDNA clones. The cDNAs for the two major alternative splice variants 3a (3CII) and 3b (3CI) code for proteins of 1173 and 1220 amino-acid residues, respectively, which show 98% identity with the corresponding rat isoforms. On a multiple human tissue Northern blot, a major PMCA3 transcript of about 7 kb was detected exclusively in the brain, demonstrating the highly restricted pattern of expression of this isoform to human neuronal tissues. With the elucidation of the human PMCA3 primary structure, complete sequence information is now available for the entire family of human PMCA isoforms.

    Biochimica et biophysica acta 1996;1283;1;10-3

  • Structural organization, ion transport, and energy transduction of P-type ATPases.

    Møller JV, Juul B and le Maire M

    Department of Biophysics, University of Aarhus, Denmark.

    Biochimica et biophysica acta 1996;1286;1;1-51

  • Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes.

    Stauffer TP, Hilfiker H, Carafoli E and Strehler EE

    The Journal of biological chemistry 1994;269;50;32022

  • Localization of two genes encoding plasma membrane Ca2+ ATPases isoforms 2 (ATP2B2) and 3 (ATP2B3) to human chromosomes 3p26-->p25 and Xq28, respectively.

    Wang MG, Yi H, Hilfiker H, Carafoli E, Strehler EE and McBride OW

    Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

    The plasma membrane Ca2+ ATPases (PMCA) represent a highly conserved, widely dispersed, multigene family in eukaryotes consisting of at least four functional genes. The genes for PMCA isoforms 1 and 4 (ATP2B1 and ATP2B4) have been previously localized to human chromosomes 12q21-->q23 and 1q25-->q32, respectively. Based upon results of fluorescence in situ hybridization (FISH), analysis of somatic cell hybrids, and genetic linkage analyses, we now report localization of ATP2B3 (PMCA isoform 3) to human chromosome Xq28, and confirm the recent localization of ATP2B2 (PMCA isoform 2) to chromosome 3p26-->p25. In contrast to ATP2B1 and ATP2B4, recent studies have suggested tissue specific regulation of expression of both ATP2B2 and ATP2B3 particularly in the nervous system. The genes for several neurological and neuromuscular diseases have been assigned to the distal portion of Xq, and ATP2B3 is a candidate gene for these diseases.

    Cytogenetics and cell genetics 1994;67;1;41-5

  • Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes.

    Stauffer TP, Hilfiker H, Carafoli E and Strehler EE

    Laboratory for Biochemistry, Swiss Federal Institute of Technology (ETH), Zurich.

    The alternative splicing options and the quantitative tissue distribution of the transcripts of the four currently known human plasma membrane calcium pump (PMCA) genes have been analyzed in seven tissues (cerebral cortex, skeletal and heart muscle, stomach, liver, lung, and kidney) by quantitative polymerase chain reaction on reverse transcribed mRNA with glyceraldehyde-3-phosphate dehydrogenase as the internal standard. The mRNAs of genes 1 and 4 were found to be present in similar amounts in all tissues, whereas the transcripts of genes 2 and 3 were expressed in a tissue-specific manner, i.e. their amounts were highest in fetal skeletal muscle and brain. Alternative splicing was found to occur in the PMCA transcripts at two major regulatory sites (sites A and C), adjacent to the amino-terminal phospholipid-responsive region and within the carboxyl-terminal calmodulin binding domain, respectively. Novel splicing variants not described previously for human genes were detected for hPMCA3 and 4 at site A and for hPMCA1, 2, and 3 at site C. For all genes a common splice variant was found at both splice sites. The common splice variant at site A was characterized by the inclusion of a small exon (hPMCA1, 39 base pairs (bp); hPMCA2, 42 bp; hPMCA3, 42 bp; hPMCA4, 36 bp). In the common splice variant at site C, an exon (hPMCA1, 154 bp; hPMCA2, 227 bp; hPMCA3, 154 bp; hPMCA4, 178 bp) was excluded in the mRNA. All genes normally express these main splice variants in all tissues in which the corresponding isoform is present. The splicing complexity at site C was found to be augmented in the transcripts of PMCA2 and PMCA3 through the use of additional exons, and in PMCA1 and 3 through the use of additional internal splice sites in the single alternatively spliced 154-base pair exon.

    The Journal of biological chemistry 1993;268;34;25993-6003

  • Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels.

    Brandt P, Neve RL, Kammesheidt A, Rhoads RE and Vanaman TC

    Department of Psychobiology, University of California, Irvine 92717.

    The plasma membrane Ca(2+)-pumping ATPase (Ca(2+)-ATPase) mRNAs are encoded on four different genes designated PMCA1-PMCA4. The primary transcripts from some of these genes are known to be alternately spliced in the region encoding the regulatory domains of the enzymes. The known alternately spliced forms of these Ca(2+)-ATPase mRNAs and a new spliced variant of PMCA4 (PMCA4b), presented here, represent at least nine different mRNAs encoding the Ca(2+)-ATPases. In this report, the examination of the tissue-specific distribution of these alternately spliced mRNAs using polymerase chain reaction amplification of cDNA coupled with Southern blotting revealed that each spliced variant had a unique tissue distribution. PMCA1b and PMCA4a were present in all tissues examined. PMCA1a, PMCA1b, and PMCA4b were expressed in excitable tissues, whereas PMCA1d was expressed only in muscle tissues. PMCA2 was found in liver, adrenal gland, spinal cord, and brain. PMCA3a was present in spinal cord, and PMCA3b in thymus, adrenal gland, spinal cord, and brain. The mRNA for a new spliced variant of PMCA4 (PMCA4b) was detected in this study. Complementary DNAs for this isoform were isolated and characterized from human and bovine brain. This alternately spliced form of the PMCA4 mRNA contained an exon inserted at the splice junction immediately following the sequence encoding the calmodulin-binding domain. As has also been shown for PMCA1a, this insertion produced a shift in the reading frame at the 3'-end of the PMCA4 mRNA that yielded a sequence encoding a Ca(2+)-ATPase lacking a large portion of the C-terminal regulatory domain. When the human PMCA4 gene spanning this region of variable exon splicing was sequenced, it confirmed the intron-exon boundaries where alternate splicing occurs to produce PMCA4a and PMCA4b.

    Funded by: NIGMS NIH HHS: GM20818; NINDS NIH HHS: NS21868, NS28406

    The Journal of biological chemistry 1992;267;7;4376-85

Gene lists (8)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.