G2Cdb::Gene report

Gene id
G00002073
Gene symbol
D630045J12Rik
Species
Homo sapiens
Description
Orthologue
G00000824 (Mus musculus)

Databases (4)

Curated Gene
OTTHUMG00000022934 (Vega human gene)
Gene
ENSG00000122778 (Ensembl human gene)
57670 (Entrez Gene)
1253 (G2Cdb plasticity & disease)

Literature (5)

Pubmed - other

  • Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas.

    Jones DT, Kocialkowski S, Liu L, Pearson DM, Bäcklund LM, Ichimura K and Collins VP

    Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Cambridge, United Kingdom. davidjones@cantab.net

    Brain tumors are the most common solid tumors of childhood, and pilocytic astrocytomas (PA) are the most common central nervous system tumor in 5 to 19 year olds. Little is known about the genetic alterations underlying their development. Here, we describe a tandem duplication of approximately 2 Mb at 7q34 occurring in 66% of PAs. This rearrangement, which was not observed in a series of 244 higher-grade astrocytomas, results in an in-frame fusion gene incorporating the kinase domain of the BRAF oncogene. We further show that the resulting fusion protein has constitutive BRAF kinase activity and is able to transform NIH3T3 cells. This is the first report of BRAF activation through rearrangement as a frequent feature in a sporadic tumor. The frequency and specificity of this change underline its potential both as a therapeutic target and as a diagnostic tool.

    Funded by: Cancer Research UK: A6618

    Cancer research 2008;68;21;8673-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs.

    Nakayama M, Kikuno R and Ohara O

    Department of Human Gene Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan. nmanabu@kazusa.or.jp

    Large proteins have multiple domains that are potentially capable of binding many kinds of partners. It is conceivable, therefore, that such proteins could function as an intricate framework of assembly protein complexes. To comprehensively study protein-protein interactions between large KIAA proteins, we have constructed a library composed of 1087 KIAA cDNA clones based on prior functional classifications done in silico. We were guided by two principles that raise the success rate for detecting interactions per tested combination: we avoided testing low-probability combinations, and reduced the number of potential false negatives that arise from the fact that large proteins cannot reliably be expressed in yeast. The latter was addressed by constructing a cDNA library comprised of random fragments encoding large proteins. Cytoplasmic domains of KIAA transmembrane proteins (>1000 amino acids) were used as bait for yeast two-hybrid screening. Our analyses reveal that several KIAA proteins bearing a transmembrane region have the capability of binding to other KIAA proteins containing domains (e.g., PDZ, SH3, rhoGEF, and spectrin) known to be localized to highly specialized submembranous sites, indicating that they participate in cellular junction formation, receptor or channel clustering, and intracellular signaling events. Our representative library should be a very useful resource for detecting previously unidentified interactions because it complements conventional expression libraries, which seldom contain large cDNAs.

    Genome research 2002;12;11;1773-84

  • Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.

    Nagase T, Kikuno R, Nakayama M, Hirosawa M and Ohara O

    Kazusa DNA Research Institute, Kisarazu, Chiba, Japan. nagase@kazusa.or.jp

    In our series of human cDNA projects for accumulating sequence information on the coding sequences of unidentified genes, we herein present the entire sequences of 100 cDNA clones of unidentified genes, named KIAA1544 to KIAA1643, from two sets of size-fractionated human adult and fetal brain cDNA libraries. The average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here reached 4.6 kb and 2.8 kb (930 amino acid residues), respectively. By computer-assisted database search of the deduced amino acid sequences, 48 predicted gene products were classified into the five functional categories of proteins relating to cell signaling/communication, nucleic acid management, cell structure/motility, protein management and metabolism. Homology search against the databases for proteins deduced from yeast, nematode and fly full genome sequences revealed only one gene (KIAA1630) was entirely conserved among human and these three organisms in the 100 genes reported here. Additionally, their chromosomal loci were determined by using human-rodent hybrid panels unless they were already assigned in the public databases. Furthermore, the expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.

    DNA research : an international journal for rapid publication of reports on genes and genomes 2000;7;4;273-81

Gene lists (3)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.