G2Cdb::Gene report

Gene id
G00002015
Gene symbol
GABARAPL2 (HGNC)
Species
Homo sapiens
Description
GABA(A) receptor-associated protein-like 2
Orthologue
G00000766 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000137613 (Vega human gene)
Gene
ENSG00000034713 (Ensembl human gene)
11345 (Entrez Gene)
1184 (G2Cdb plasticity & disease)
GABARAPL2 (GeneCards)
Literature
607452 (OMIM)
Marker Symbol
HGNC:13291 (HGNC)
Protein Sequence
P60520 (UniProt)

Synonyms (5)

  • ATG8
  • ATG8C
  • GATE-16
  • GATE16
  • GEF2

Literature (26)

Pubmed - other

  • Fine mapping and association studies of a high-density lipoprotein cholesterol linkage region on chromosome 16 in French-Canadian subjects.

    Dastani Z, Pajukanta P, Marcil M, Rudzicz N, Ruel I, Bailey SD, Lee JC, Lemire M, Faith J, Platko J, Rioux J, Hudson TJ, Gaudet D, Engert JC and Genest J

    Cardiovascular Genetics Laboratory, McGill University Health Centre, Royal Victoria Hospital, Montreal, Quebec, Canada.

    Low levels of high-density lipoprotein cholesterol (HDL-C) are an independent risk factor for cardiovascular disease. To identify novel genetic variants that contribute to HDL-C, we performed genome-wide scans and quantitative association studies in two study samples: a Quebec-wide study consisting of 11 multigenerational families and a study of 61 families from the Saguenay-Lac St-Jean (SLSJ) region of Quebec. The heritability of HDL-C in these study samples was 0.73 and 0.49, respectively. Variance components linkage methods identified a LOD score of 2.61 at 98 cM near the marker D16S515 in Quebec-wide families and an LOD score of 2.96 at 86 cM near the marker D16S2624 in SLSJ families. In the Quebec-wide sample, four families showed segregation over a 25.5-cM (18 Mb) region, which was further reduced to 6.6 Mb with additional markers. The coding regions of all genes within this region were sequenced. A missense variant in CHST6 segregated in four families and, with additional families, we observed a P value of 0.015 for this variant. However, an association study of this single-nucleotide polymorphism (SNP) in unrelated Quebec-wide samples was not significant. We also identified an SNP (rs11646677) in the same region, which was significantly associated with a low HDL-C (P=0.016) in the SLSJ study sample. In addition, RT-PCR results from cultured cells showed a significant difference in the expression of CHST6 and KIAA1576, another gene in the region. Our data constitute additional evidence for a locus on chromosome 16q23-24 that affects HDL-C levels in two independent French-Canadian studies.

    Funded by: Canadian Institutes of Health Research: MOP 62834; NHLBI NIH HHS: HL 28481, HL08276, HL095056, P01 HL028481, P01 HL028481-21A10011, P01 HL028481-220011, P01 HL028481-230011, P01 HL028481-240011, P01 HL028481-250011, R01 HL082762, R01 HL082762-01A1, R01 HL082762-02, R01 HL082762-03, R01 HL082762-04, R01 HL095056, R01 HL095056-01

    European journal of human genetics : EJHG 2010;18;3;342-7

  • Comparative modeling of human NSF reveals a possible binding mode of GABARAP and GATE-16.

    Thielmann Y, Weiergräber OH, Ma P, Schwarten M, Mohrlüder J and Willbold D

    Institut für Strukturbiologie und Biophysik 3 (Strukturbiochemie), Forschungszentrum Jülich, 52425 Jülich, Germany.

    Vesicular trafficking is an important homeostatic process in eukaryotic cells which critically relies on membrane fusion. One of the essential components of the universal membrane fusion machinery is NSF (N-ethylmaleimide-sensitive factor), a large hexameric ATPase involved in disassembly of SNARE (soluble NSF attachment protein receptor) complexes. To improve our understanding of this sophisticated molecular machine, we have modeled the structure of the NSF hexamer in two alternative assemblies. Our data suggest a mechanistic concept of the operating mode of NSF which helps to explain the functional impact of post-translational modifications and mutations reported previously. Furthermore, we propose a binding site for the ubiquitin-like proteins GABARAP and GATE-16, which is supported by experimental evidence, yielding a complex with favorable surface complementarity.

    Proteins 2009;77;3;637-46

  • The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice.

    Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K and Komatsu M

    Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan.

    Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12-Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.

    Molecular biology of the cell 2008;19;11;4762-75

  • Autophagy-independent incorporation of GFP-LC3 into protein aggregates is dependent on its interaction with p62/SQSTM1.

    Shvets E and Elazar Z

    Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.

    LC3 is a widely used marker of autophagosomes in mammalian cells. However, in addition to its autophagosomal localization, GFP-LC3 is often found associated with protein aggregates that are formed in an autophagy-independent manner. In addition, LC3 directly interacts with p62/SQSTM1 (hereafter named p62), a common constituent of protein aggregates. In our recent report, we mapped the regions in LC3 involved in its binding to p62 and showed that this binding is essential for the incorporation of p62 into autophagosomes. Here we demonstrate that the autophagy-unrelated association of GFP-LC3 with protein aggregates is dependent on its interaction with p62.

    Autophagy 2008;4;8;1054-6

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16.

    Sou YS, Tanida I, Komatsu M, Ueno T and Kominami E

    Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.

    In yeast, phosphatidylethanolamine is a target of the Atg8 modifier in ubiquitylation-like reactions essential for autophagy. Three human Atg8 (hAtg8) homologs, LC3, GABARAP, and GATE-16, have been characterized as modifiers in reactions mediated by hAtg7 (an E1-like enzyme) and hAtg3 (an E2-like enzyme) as in yeast Atg8 lipidation, but their final targets have not been identified. The results of a recent study in which COS7 cells were incubated with [14C]ethanolamine for 48 h suggested that phosphatidylethanolamine is a target of LC3. However, these results were not conclusive because of the long incubation time. To identify the phospholipid targets of Atg8 homologs, we reconstituted conjugation systems for mammalian Atg8 homologs in vitro using purified recombinant Atg proteins and liposomes. Each purified mutant Atg8 homolog with an exposed C-terminal Gly formed an E1-substrate intermediate with hAtg7 via a thioester bond in an ATP-dependent manner and formed an E2-substrate intermediate with hAtg3 via a thioester bond dependent on ATP and hAtg7. A conjugated form of each Atg8 homolog was observed in the presence of hAtg7, hAtg3, ATP, and liposomes. In addition to phosphatidylethanolamine, in vitro conjugation experiments using synthetic phospholipid liposomes showed that phosphatidylserine is also a target of LC3, GABARAP, and GATE-16. In contrast, thin layer chromatography of phospholipids released on hAtg4B-digestion from endogenous LC3-phospholipid conjugate revealed that phosphatidylethanolamine, but not phosphatidylserine, is the predominant target phospholipid of LC3 in vivo. The discrepancy between in vitro and in vivo reactions suggested that there may be selective factor(s) involved in the endogenous LC3 conjugation system.

    The Journal of biological chemistry 2006;281;6;3017-24

  • The LIFEdb database in 2006.

    Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, Bechtel S, Simpson J, Hofmann O, Hide W, Glatting KH, Huber W, Pepperkok R, Poustka A and Wiemann S

    Division Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany. a.mehrle@dkfz.de

    LIFEdb (http://www.LIFEdb.de) integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression ('Electronic Northern') of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface.

    Nucleic acids research 2006;34;Database issue;D415-8

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • Automated yeast two-hybrid screening for nuclear receptor-interacting proteins.

    Albers M, Kranz H, Kober I, Kaiser C, Klink M, Suckow J, Kern R and Koegl M

    PheneX Pharmaceuticals AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.

    High throughput analysis of protein-protein interactions is an important sector of hypothesis-generating research. Using an improved and automated version of the yeast two-hybrid system, we completed a large interaction screening project with a focus on nuclear receptors and their cofactors. A total of 425 independent yeast two-hybrid cDNA library screens resulted in 6425 potential interacting protein fragments involved in 1613 different interaction pairs. We show that simple statistical parameters can be used to narrow down the data set to a high confidence set of 377 interaction pairs where validated interactions are enriched to 61% of all pairs. Within the high confidence set, there are 64 novel proteins potentially binding to nuclear receptors or their cofactors. We discuss several examples of high interest, and we expect that communication of this huge data set will help to complement our knowledge of the protein interaction repertoire of this family of transcription factors and instigate the characterization of the various novel candidate interactors.

    Molecular & cellular proteomics : MCP 2005;4;2;205-13

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • From ORFeome to biology: a functional genomics pipeline.

    Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H and Poustka A

    Molecular Genome Analysis, German Cancer Research Center, 69120 Heidelberg, Germany. s.wiemann@dkfz.de

    As several model genomes have been sequenced, the elucidation of protein function is the next challenge toward the understanding of biological processes in health and disease. We have generated a human ORFeome resource and established a functional genomics and proteomics analysis pipeline to address the major topics in the post-genome-sequencing era: the identification of human genes and splice forms, and the determination of protein localization, activity, and interaction. Combined with the understanding of when and where gene products are expressed in normal and diseased conditions, we create information that is essential for understanding the interplay of genes and proteins in the complex biological network. We have implemented bioinformatics tools and databases that are suitable to store, analyze, and integrate the different types of data from high-throughput experiments and to include further annotation that is based on external information. All information is presented in a Web database (http://www.dkfz.de/LIFEdb). It is exploited for the identification of disease-relevant genes and proteins for diagnosis and therapy.

    Genome research 2004;14;10B;2136-44

  • LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation.

    Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y and Yoshimori T

    Department of Cell Biology, National Institute for Basic Biology, Myodaiji 38, Okazaki 444-8585, Japan.

    Rat LC3, a homologue of yeast Atg8 (Aut7/Apg8), localizes to autophagosomal membranes after post-translational modifications. The C-terminal fragment of LC3 is cleaved immediately following synthesis to yield a cytosolic form called LC3-I. A subpopulation of LC3-I is further converted to an autophagosome-associating form, LC3-II. Because yeast Atg8 is conjugated with phosphatidylethanolamine (PE) by a ubiquitin-like system, it has been hypothesized that LC3 is modified in a similar manner. Here, we show that [(14)C]-ethanolamine was preferentially incorporated into LC3-II, suggesting that LC3-II is a PE-conjugated form. LC3-II can be a substrate of mammalian Atg4B, a homologue of yeast Atg8-PE deconjugase, supporting the idea that LC3-II is LC3-PE. Moreover, two other mammalian homologues of yeast Atg8, gamma-aminobutyric-acid-type-A-receptor-associated protein (GABARAP) and Golgi-associated ATPase enhancer of 16 kDa (GATE16) also generate form II, which are recovered in membrane fractions. Generation of the form II correlates with autophagosome association of GABARAP and GATE16. These results suggest that all mammalian Atg8 homologues receive a common modification to associate with autophagosomal membrane as the form II.

    Journal of cell science 2004;117;Pt 13;2805-12

  • The COOH terminus of GATE-16, an intra-Golgi transport modulator, is cleaved by the human cysteine protease HsApg4A.

    Scherz-Shouval R, Sagiv Y, Shorer H and Elazar Z

    Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.

    Docking of a vesicle at the appropriate target membrane involves an interaction between integral membrane proteins located on the vesicle (v-SNAREs) and those located on the target membrane (t-SNAREs). GATE-16 (Golgi-associated ATPase enhancer of 16 kDa) was shown to modulate the activity of SNAREs in the Golgi apparatus and is therefore an essential component of intra-Golgi transport and post-mitotic Golgi re-assembly. GATE-16 contains a ubiquitin fold subdomain, which is terminated at the carboxyl end by an additional amino acid after a conserved glycine residue. In the present study we tested whether the COOH terminus of GATE-16 undergoes post-translational cleavage by a protease which exposes the glycine 116 residue. We describe the isolation and characterization of HsApg4A as a human protease of GATE-16. We show that GATE-16 undergoes COOH-terminal cleavage both in vivo and in vitro, only when the conserved glycine 116 is present. We then utilize an in vitro assay to show that pure HsApg4A is sufficient to cleave GATE-16. The characterization of this protease may give new insights into the mechanism of action of GATE-16 and its other family members.

    The Journal of biological chemistry 2003;278;16;14053-8

  • Characterisation of PDZ-GEFs, a family of guanine nucleotide exchange factors specific for Rap1 and Rap2.

    Kuiperij HB, de Rooij J, Rehmann H, van Triest M, Wittinghofer A, Bos JL and Zwartkruis FJ

    Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.

    PDZ-GEF1 (RA-GEF/nRapGEP/CNrasGEF) is a guanine nucleotide exchange factor (GEF) characterised by the presence of a PSD-95/DlgA/ZO-1 (PDZ) domain, a Ras-association (RA) domain and a region related to a cyclic nucleotide binding domain (RCBD). These domains are in addition to a Ras exchange motif (REM) and GEF domain characteristic for GEFs for Ras-like small GTPases. PDZ-GEF1 efficiently exchanges nucleotides of both Rap1 and Rap2, but has also been implicated in mediating cAMP-induced Ras activation through binding of cAMP to the RCBD. Here we describe a new family member, PDZ-GEF2, of which we isolated two splice variants (PDZ-GEF2A and 2B). PDZ-GEF2 contains, in addition to the domains characteristic for PDZ-GEF1, a second, less conserved RCBD at the N-terminus. PDZ-GEF2 is also specific for both Rap1 and Rap2. We further investigated the possibility that PDZ-GEF2, like PDZ-GEF1, is a cAMP-responsive GEF for Ras. However, in contrast to previous results, we did not find any effect of either PDZ-GEF1 or PDZ-GEF2 on Ras in the absence or presence of cAMP. Moreover, affinity measurements by isothermic calorimetry showed that the RCBD of PDZ-GEF1 does not bind cAMP with a physiologically relevant affinity. We conclude that both PDZ-GEF1 and 2 are specific for Rap1 and Rap2 and unresponsive to cAMP and various other nucleotides.

    Biochimica et biophysica acta 2003;1593;2-3;141-9

  • GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3.

    Tanida I, Komatsu M, Ueno T and Kominami E

    Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.

    GATE-16, GABARAP, and LC3 are three mammalian counterparts of yeast Apg8p/Aut7p. Here, we show that GATE-16 and GABARAP are authentic modifiers, as is the case of LC3 modification. The C-terminal Phe(117) of proGATE-16 and the C-terminal Leu(117) of proGABARAP are post-translationally cleaved to expose an essential Gly(116) within GATE-16 and GABARAP, with the products designated GATE-16-I and GABARAP-I, respectively. The Gly(116) within GATE-16 and GABARAP are essential for further formation of the intermediates between them and Apg7p(C572S) and Apg3p(C264S). When Apg7p and Apg3p are expressed, GATE-16-I and GABARAP-I are modified to a secondary ubiquitin-like modified form, GATE-16-II and GABARAP-II, respectively. GATE-16-I and GABARAP-I, but not LC3-I, localize to membrane compartments before their modification. These results indicate that GATE-16 and GABARAP are authentic modifiers, but that they have different biochemical characteristics from those of LC3.

    Biochemical and biophysical research communications 2003;300;3;637-44

  • Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p.

    Tanida I, Tanida-Miyake E, Komatsu M, Ueno T and Kominami E

    Department of Biochemistry, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.

    Autophagy is a process of bulk degradation of cytoplasmic components by the lysosome/vacuole and has a significant relationship to several neurodegenerative disorders and myopathies in mammals. One of APG gene products essential for autophagy in yeast, Apg3p, is a protein-conjugating enzyme for Apg8p lipidation (Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., and Ohsumi, Y. (2000) Nature 408, 488-492). In this study, the cloning of a human Apg3p homologue (hApg3p) as an E2 enzyme essential for human Apg8p homologues (i.e. GATE-16, GABARAP, and MAP-LC3) is shown, and its unique characteristics are described. The predicted amino acid sequence of the isolated clone shows 34.1% identity and 48.1% similarity to yeast Apg3p. Site-directed mutagenesis revealed that Cys(264) of hApg3p is an authentic active-site cysteine residue essential for the formation of hApg3p small middle dothApg8p homologue intermediates. Overexpression of hApg7p enhances the formation of a stable E2-substrate complex between hApg3p(C264S) and each of the hApg8p homologues, and MAP-LC3 is preferred as the substrate over the other two Apg8p homologues. These results indicate that hApg3p is an E2-like enzyme essential for three human Apg8p homologues. Co-immunoprecipitation of hApg7p with hApg3p indicates that hApg3p forms an E1.E2 complex with hApg7p as in the case of yeast Apg3p and Apg7p. Furthermore, hApg3p coimmunoprecipitates with hApg12p, and the overexpression of hApg3p facilitates the formation of the GFPhApg12p.thApg5p conjugate, suggesting that hApg3p cross-talks with the hApg12p conjugation system.

    The Journal of biological chemistry 2002;277;16;13739-44

  • Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs.

    Tanida I, Tanida-Miyake E, Nishitani T, Komatsu M, Yamazaki H, Ueno T and Kominami E

    Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.

    Apg7p is a unique E1 enzyme which is essential for both the Apg12p- and Apg8p-modification systems, and plays indispensable roles in yeast autophagy. A cDNA encoding murine Apg7p homolog (mApg7p) was isolated from a mouse brain cDNA library. The predicted amino acid sequence of the clone shows a significant homology to human Apg7p and yeast Apg7p. Murine Apg12p as well as the three mammalian Apg8p homologs co-immunoprecipitate with mApg7p. Site-directed mutagenesis revealed that an active-site cysteine within mApg7p is Cys(567), indicating that mApg7p is an authentic E1 enzyme for murine Apg12p and mammalian Apg8p homologs. The mutagenesis study also revealed that Apg12p has a substrate preference for mApg7p over the three Apg8p homologs, suggesting that the Apg12p conjugation by Apg7p occurs preferentially in mammalian cells compared with the modification of the three Apg8p homologs. We also report here on the ubiquitous expression of human APG7 mRNA in human adult and fetal tissues and of rat Apg7p in adult tissues.

    Biochemical and biophysical research communications 2002;292;1;256-62

  • Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein.

    Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R and Zhao S

    State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200433, People's Republic of China.

    Type A receptors of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, contain alpha, beta, delta, gamma, and rho subunits. The gamma subunit has four subtypes: gamma1, gamma2, gamma3, andgamma4. GABA(A) receptor-associated protein (GABARAP) was previously demonstrated to act as a linker protein between microtubules and the gamma2 subunit of GABA(A) receptors. However, no other linker proteins have been identified as mediating the linkage of microtubules and the remaining subunits of GABA(A) receptors. In this study we identified three human paralogues (GABARAPL1, GABARAPL2, and GABARAPL3) and two mouse orthologues (Gabarapl1 and Gabarapl2) of human GABARAP, all of which encoded 117 amino acids, as does Gabarapl. The expression patterns of GABARAPL1, GABARAPL2, and GABARAP in 16 adult tissues showed that they were expressed ubiquitously. The expression levels of GABARAPL1 as a 2.3-kb transcript were very high in brain, heart, peripheral blood leukocytes, liver, kidney, placenta, and skeletal muscle, very low in thymus and small intestine, and moderate in other tissues tested. The unique 1.35-kb transcript of GABARAPL2 was expressed at high levels in heart, brain, testis, prostate, ovary, spleen, and skeletal muscle, at very low levels in lung, thymus, and small intestine, and moderately in other tissues tested. For GABARAP, a 1.3-kb transcript was abundantly expressed in all tested tissues with small variation. The expression patterns of Gabarapl1 and Gabarapl2 were similar to those of their counterparts in human. In addition, GABARAPL1 was localized to human chromosome 12p12.3 and GABARAPL2 to 16q22.3-q24.1 by RH mapping, while GABARAP and GABARAPL3 were found to be localized at chromosomes 17p13.2 and 15q25.1, respectively, by searching the related databases. Sequence comparison of the cDNAs and their corresponding genomic sequences shows that GABARAP, GABARAPL1, and GABARAPL2 are composed of four exons each, while GABARAPL3 is distributed only at one exon.

    Genomics 2001;74;3;408-13

  • The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3.

    Tanida I, Tanida-Miyake E, Ueno T and Kominami E

    Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.

    Autophagy is a process that involves the bulk degradation of cytoplasmic components by the lysosomal/vacuolar system. In the yeast, Saccharomyces cerevisiae, an autophagosome is formed in the cytosol. The outer membrane of the autophagosome is fused with the vacuole, releasing the inner membrane structure, an autophagic body, into the vacuole. The autophagic body is subsequently degraded by vacuolar hydrolases. Taking advantage of yeast genetics, apg (autophagy-defective) mutants were isolated that are defective in terms of formation of autophagic bodies under nutrient starvation conditions. One of the APG gene products, Apg12p, is covalently attached to Apg5p via the C-terminal Gly of Apg12p as in the case of ubiquitylation, and this conjugation is essential for autophagy. Apg7p is a novel E1 enzyme essential for the Apg12p-conjugation system. In mammalian cells, the human Apg12p homolog (hApg12p) also conjugates with the human Apg5p homolog. In this study, the unique characteristics of hApg7p are shown. A two-hybrid experiment indicated that hApg12p interacts with hApg7p. Site-directed mutagenesis revealed that Cys(572) of hApg7p is an authentic active site cysteine residue essential for the formation of the hApg7p.hApg12p intermediate. Overexpression of hApg7p enhances the formation of the hApg5p.hApg12p conjugate, indicating that hApg7p is an E1-like enzyme essential for the hApg12p conjugation system. Cross-linking experiments and glycerol-gradient centrifugation analysis showed that the mammalian Apg7p homolog forms a homodimer as in yeast Apg7p. Each of three human Apg8p counterparts, i.e. the Golgi-associated ATPase enhancer of 16 kDa, GABA(A) receptor-associated protein, and microtubule-associated protein light chain 3, coimmunoprecipitates with hApg7p and conjugates with mutant hApg7p(C572S) to form a stable intermediate via an ester bond. These results indicate that hApg7p is an authentic protein-activating enzyme for hApg12p and the three Apg8p homologs.

    The Journal of biological chemistry 2001;276;3;1701-6

  • Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation.

    Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, Koga H and Muramatsu M

    Helix Research Institute, 1532-3 Yana, Kisarazu-city, Chiba 292-0812, Japan. okazaki@hri.co.jp

    We identified two mammalian ULK1 (Unc-51-like kinase involved in neurite extension) binding proteins by yeast two-hybrid screening. Both proteins showed high structural similarity to microtubule-associated protein (MAP) light chain 3 (LC3). One is identical to the Golgi-associated ATPase Enhancer of 16 kDa (GATE-16), an essential factor for intra-Golgi transport [39]. The other is identical to the gamma 2-subunit of GABA-A receptor associated protein (GABARAP) which has a possible role in receptor transport [46]. Using the yeast two-hybrid system and the in vitro GST pull-down assay, we found that the N-terminal proline/serine rich (PS) domain of ULK1 (amino acid 287-416) is required for ULK1-GATE-16 and ULK1-GABARAP protein interactions. However, the kinase activity of ULK1 affected neither ULK1-GATE-16 nor ULK1-GABARAP interaction. Immunohistochemical analysis using ULK1 and GABARAP antibodies showed that the ULK1 and the GABARAP proteins co-localized to many kind of neurons such as pyramidal cells of the hippocampus, mitral cells of the olfactory bulb, and Purkinje cells of the cerebellum. In HeLa cells, endogenous ULK1 and tagged GABARAP showed punctate structures in the cytosol, and were colocalized. These results suggest that the interaction of ULK1 and GABARAP is important to vesicle transport and axonal elongation in mammalian neurons.

    Brain research. Molecular brain research 2000;85;1-2;1-12

  • DNA cloning using in vitro site-specific recombination.

    Hartley JL, Temple GF and Brasch MA

    Life Technologies, Inc., Rockville, Maryland 20850, USA. jhartley@lifetech.com

    As a result of numerous genome sequencing projects, large numbers of candidate open reading frames are being identified, many of which have no known function. Analysis of these genes typically involves the transfer of DNA segments into a variety of vector backgrounds for protein expression and functional analysis. We describe a method called recombinational cloning that uses in vitro site-specific recombination to accomplish the directional cloning of PCR products and the subsequent automatic subcloning of the DNA segment into new vector backbones at high efficiency. Numerous DNA segments can be transferred in parallel into many different vector backgrounds, providing an approach to high-throughput, in-depth functional analysis of genes and rapid optimization of protein expression. The resulting subclones maintain orientation and reading frame register, allowing amino- and carboxy-terminal translation fusions to be generated. In this paper, we outline the concepts of this approach and provide several examples that highlight some of its potential.

    Genome research 2000;10;11;1788-95

  • Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing.

    Simpson JC, Wellenreuther R, Poustka A, Pepperkok R and Wiemann S

    Department of Cell Biology and Biophysics, EMBL Heidelberg, Germany.

    As a first step towards a more comprehensive functional characterization of cDNAs than bioinformatic analysis, which can only make functional predictions for about half of the cDNAs sequenced, we have developed and tested a strategy that allows their systematic and fast subcellular localization. We have used a novel cloning technology to rapidly generate N- and C-terminal green fluorescent protein fusions of cDNAs to examine the intracellular localizations of > 100 expressed fusion proteins in living cells. The entire analysis is suitable for automation, which will be important for scaling up throughput. For > 80% of these new proteins a clear intracellular localization to known structures or organelles could be determined. For the cDNAs where bioinformatic analyses were able to predict possible identities, the localization was able to support these predictions in 75% of cases. For those cDNAs where no homologies could be predicted, the localization data represent the first information.

    EMBO reports 2000;1;3;287-92

  • GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28.

    Sagiv Y, Legesse-Miller A, Porat A and Elazar Z

    Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel.

    Membrane proteins located on vesicles (v-SNAREs) and on the target membrane (t-SNAREs) mediate specific recognition and, possibly, fusion between a transport vesicle and its target membrane. The activity of SNARE molecules is regulated by several soluble cytosolic proteins. We have cloned a bovine brain cDNA encoding a conserved 117 amino acid polypeptide, denoted Golgi-associated ATPase Enhancer of 16 kDa (GATE-16), that functions as a soluble transport factor. GATE-16 interacts with N-ethylmaleimidesensitive factor (NSF) and significantly stimulates its ATPase activity. It also interacts with the Golgi v-SNARE GOS-28 in an NSF-dependent manner. We propose that GATE-16 modulates intra-Golgi transport through coupling between NSF activity and SNAREs activation.

    The EMBO journal 2000;19;7;1494-504

  • Cloning, expression and characterization of an A6-related protein.

    Rohwer A, Kittstein W, Marks F and Gschwendt M

    German Cancer Research Center, Heidelberg, Germany.

    By interaction cloning (yeast two-hybrid system) using the catalytic domain of protein kinase Czeta (PKCzeta) as bait, we cloned a human full-length cDNA with 62% nucleotide homology to the A6 protein recently cloned and characterized by Beeler et al. [Beeler, J.F., LaRochelle, W.J., Chedid, M., Tronick, S.R. & Aaronson, S. A. (1994) Mol. Cell. Biol. 14, 982-988]. The deduced amino acid sequence (349 amino acids) of the A6-related protein (A6rp) contained potential actin-binding sites and ATP-binding sites. We also cloned the murine homolog of A6rp. Human A6rp was expressed in an in-vitro transcriptional/translational system with an apparent molecular mass of 40 kDa and as a glutathione S-transferase (GST) fusion protein in bacteria. A polyclonal anti-(A6rp) was raised in rabbits and used for the identification of A6rp by immunoblotting. A6rp was found to be expressed at the mRNA and the protein levels in all cells and tissues investigated. GST-A6rp was phosphorylated by PKCzeta but not significantly by other PKC isoenzymes. Moreover, it was phosphorylated by casein kinase 2 and most effectively by the tyrosine kinase Src. In contrast to GST-A6rp, GST-A6 was also phosphorylated by PKC isoforms other than PKCzeta and strongly by CK2, but just weakly by Src. In contrast to the results of Beeler et al. on beta-galactosidase-A6, we were unable to demonstrate autokinase activity or tyrosine phosphorylation of either GST-A6 or GST-A6rp. In accordance with the potential ATP-binding sites, both proteins were able to bind ATP.

    European journal of biochemistry 1999;263;2;518-25

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.