G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
F-box protein 2
G00000489 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000002072 (Vega human gene)
ENSG00000116661 (Ensembl human gene)
26232 (Entrez Gene)
869 (G2Cdb plasticity & disease)
FBXO2 (GeneCards)
607112 (OMIM)
Marker Symbol
HGNC:13581 (HGNC)
Protein Sequence
Q9UK22 (UniProt)

Synonyms (4)

  • FBX2
  • Fbg1
  • Fbs1
  • Nfb42

Literature (10)

Pubmed - other

  • Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase.

    Mizushima T, Yoshida Y, Kumanomidou T, Hasegawa Y, Suzuki A, Yamane T and Tanaka K

    Department of Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.

    The ubiquitin ligase complex SCF(Fbs1), which contributes to the ubiquitination of glycoproteins, is involved in the endoplasmic reticulum-associated degradation pathway. In SCF ubiquitin ligases, a diverse array of F-box proteins confers substrate specificity. Fbs1/Fbx2, a member of the F-box protein family, recognizes high-mannose oligosaccharides. To elucidate the structural basis of SCF(Fbs1) function, we determined the crystal structures of the Skp1-Fbs1 complex and the sugar-binding domain (SBD) of the Fbs1-glycoprotein complex. The mechanistic model indicated by the structures appears to be well conserved among the SCF ubiquitin ligases. The structure of the SBD-glycoprotein complex indicates that the SBD primarily recognizes Man(3)GlcNAc(2), thereby explaining the broad activity of the enzyme against various glycoproteins. Comparison of two crystal structures of the Skp1-Fbs1 complex revealed the relative motion of a linker segment between the F-box and the SBD domains, which might underlie the ability of the complex to recognize different acceptor lysine residues for ubiquitination.

    Proceedings of the National Academy of Sciences of the United States of America 2007;104;14;5777-81

  • The DNA sequence and biological annotation of human chromosome 1.

    Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CC, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RI, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MR, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ES, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NS, McLaren S, Milne S, Mistry S, Moore MJ, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WD, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM and Prigmore E

    The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. sgregory@chg.duhs.duke.edu

    The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.

    Funded by: Medical Research Council: G0000107; Wellcome Trust

    Nature 2006;441;7091;315-21

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Replication-initiator protein (UL9) of the herpes simplex virus 1 binds NFB42 and is degraded via the ubiquitin-proteasome pathway.

    Eom CY and Lehman IR

    Department of Biochemistry, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.

    The ubiquitin-proteasome pathway plays a critical role in the degradation of short-lived and regulatory proteins in a variety of cellular processes. The F-box proteins are part of the ubiquitin-ligase complexes, which mediate ubiquitination and proteasome-dependent degradation of phosphorylated proteins. We previously identified NFB42, an F-box protein that is highly enriched in the nervous system, as a binding partner for the herpes simplex virus 1 UL9 protein, the viral replication-initiator protein, in a yeast two-hybrid screen. In the present work, we find that coexpression of NFB42 and UL9 genes in 293T cells leads to a significant decrease in the level of UL9 protein. Treatment with the 26S-proteasome inhibitor MG132 restores the UL9 protein to normal levels. We have observed also that the UL9 protein is polyubiquitinated in vivo and that the interaction between NFB42 and the UL9 protein is dependent upon phosphorylation of the UL9 protein. These results suggest that the interaction of the UL9 protein with NFB42 results in its polyubiquitination and subsequent degradation by the 26S proteasome. They suggest further a mechanism by which latency of herpes simplex virus 1 can be established in neuronal cells.

    Funded by: NIAID NIH HHS: AI 26538, R01 AI026538

    Proceedings of the National Academy of Sciences of the United States of America 2003;100;17;9803-7

  • A new subfamily of structurally related human F-box proteins.

    Ilyin GP, Sérandour AL, Pigeon C, Rialland M, Glaise D and Guguen-Guillouzo C

    INSERM U522, Hôpital Pontchaillou, Avenue de la Bataille Flandre-Dunkerque, 35033 Rennes, France. Guennadi.Iline@rennes.inserm.fr

    F-box proteins, a critical component of the evolutionary conserved ubiquitin-protein ligase complex SCF (Skp1/Cdc53-Cullin1/F-box), recruit substrates for ubiquitination and consequent degradation through their specific protein-protein interaction domains. Here, we report the identification of full-length cDNAs encoding three novel human F-box proteins named FBG3, FBG4 and FBG5 which display similarity with previously identified NFB42 (FBX2) and FBG2 (FBX6) proteins. All five proteins are characterized by an approximately 180-amino-acid (aa) conserved C-terminal domain and thus constitute a third subfamily of mammalian F-box proteins. Analysis of genomic organization of the five FBG genes revealed that all of them consist of six exons and five introns. FBG1, FBG2 and FBG3 genes are located in tandem on chromosome 1p36, and FBG4 and FBG5 are mapped to chromosome 19q13. FBG genes are expressed in a limited number of human tissues including kidney, liver, brain and muscle tissues. Expression of rat FBG2 gene was found related to differentiation/proliferation status of hepatocytes. Specifically, FBG2 mRNA was expressed in foetal liver, decreased after birth and re-accumulated in adult liver. Expression of FBG2 was strongly inhibited in hepatoma cells by okadaic acid.

    Gene 2002;296;1-2;11-20

  • E3 ubiquitin ligase that recognizes sugar chains.

    Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K and Tai T

    Department of Tumor Immunology, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan.

    N-glycosylation of proteins in the endoplasmic reticulum (ER) has a central role in protein quality control. Here we report that N-glycan serves as a signal for degradation by the Skp1-Cullin1-Fbx2-Roc1 (SCF(Fbx2)) ubiquitin ligase complex. The F-box protein Fbx2 (ref. 4) binds specifically to proteins attached to N-linked high-mannose oligosaccharides and subsequently contributes to ubiquitination of N-glycosylated proteins. Pre-integrin beta 1 is a target of Fbx2; these two proteins interact in the cytosol after inhibition of the proteasome. In addition, expression of the mutant Fbx2 Delta F, which lacks the F-box domain that is essential for forming the SCF complex, appreciably blocks degradation of typical substrates of the ER-associated degradation pathway. Our results indicate that SCF(Fbx2) ubiquitinates N-glycosylated proteins that are translocated from the ER to the cytosol by the quality control mechanism.

    Nature 2002;418;6896;438-42

  • A family of mammalian F-box proteins.

    Winston JT, Koepp DM, Zhu C, Elledge SJ and Harper JW

    Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA.

    Ubiquitin-mediated destruction of regulatory proteins is a frequent means of controlling progression through signaling pathways [1]. F-box proteins [2] are components of modular E3 ubiquitin protein ligases called SCFs, which function in phosphorylation-dependent ubiquitination ([3] [4] [5], reviewed in [6] [7]). F-box proteins contain a carboxy-terminal domain that interacts with substrates and a 42-48 amino-acid F-box motif which binds to the protein Skp1 [2] [3] [4]. Skp1 binding links the F-box protein with a core ubiquitin ligase composed of the proteins Cdc53/Cul1, Rbx1 (also called Hrt1 and Roc1) and the E2 ubiquitin-conjugating enzyme Cdc34 [8] [9] [10] [11]. The genomes of the budding yeast Saccharomyces cerevisiae and the nematode worm Caenorhabditis elegans contain, respectively, 16 and more than 60 F-box proteins [2] [7]; in S. cerevisiae, the F-box proteins Cdc4, Grr1 and Met30 target cyclin-dependent kinase inhibitors, G1 cyclins and transcriptional regulators for ubiquitination ([3] [4] [5] [8] [10], reviewed in [6] [7]). Only four mammalian F-box proteins (Cyclin F, Skp1, beta-TRCP and NFB42) have been identified so far [2] [12]. Here, we report the identification of a family of 33 novel mammalian F-box proteins. The large number of these proteins in mammals suggests that the SCF system controls a correspondingly large number of regulatory pathways in vertebrates. Four of these proteins contain a novel conserved motif, the F-box-associated (FBA) domain, which may represent a new protein-protein interaction motif. The identification of these genes will help uncover pathways controlled by ubiquitin-mediated proteolysis in mammals.

    Funded by: NIA NIH HHS: AG-11085

    Current biology : CB 1999;9;20;1180-2

  • Identification of a family of human F-box proteins.

    Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M and Pagano M

    Department of Pathology, Kaplan Comprehensive Cancer Center, MSB 548, New York University School of Medicine 550 First Avenue, New York, New York, 10016, USA.

    F-box proteins are an expanding family of eukaryotic proteins characterized by an approximately 40 aminoacid motif, the F box (so named because cyclin F was one of the first proteins in which this motif was identified) [1]. Some F-box proteins have been shown to be critical for the controlled degradation of cellular regulatory proteins [2] [3]. In fact, F-box proteins are one of the four subunits of ubiquitin protein ligases called SCFs. The other three subunits are the Skp1 protein; one of the cullin proteins (Cul1 in metazoans and Cdc53 or Cul A in the yeast Saccharomyces cerevisiae); and the recently identified Roc1 protein (also called Rbx1 or Hrt1). SCF ligases bring ubiquitin conjugating enzymes (either Ubc3 or Ubc4) to substrates that are specifically recruited by the different F-box proteins. The need for high substrate specificity and the large number of known F-box proteins in yeast and worms [2] [4] suggest the existence of a large family of mammalian F-box proteins. Using Skp1 as a bait in a yeast two-hybrid screen and by searching DNA databases, we identified a family of 26 human F-box proteins, 25 of which were novel. Some of these proteins contained WD-40 domains or leucine-rich repeats; others contained either different protein-protein interaction modules or no recognizable motifs. We have named the F-box proteins that contain WD-40 domains Fbws, those containing leucine-rich repeats, Fbls, and the remaining ones Fbxs. We have further characterized representative members of these three classes of F-box proteins.

    Funded by: NCI NIH HHS: R01 CA76584; NIGMS NIH HHS: R01 GM57587

    Current biology : CB 1999;9;20;1177-9

  • A novel F box protein, NFB42, is highly enriched in neurons and induces growth arrest.

    Erhardt JA, Hynicka W, DiBenedetto A, Shen N, Stone N, Paulson H and Pittman RN

    Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA. erhardt@pharm.med.upenn.edu

    NFB42 (neural F Box 42 kDa) is a novel gene product that is highly enriched in the nervous system. Its predicted protein contains an F box, a motif recently shown to couple cell cycle regulation to the proteasome pathway (Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J. W., and Elledge, S. (1996) Cell 86, 263-274). NFB42 mRNA and protein are expressed in all major areas of the adult rat brain but are not detected in non-neural tissues. NFB42 protein is localized primarily to the cytoplasm of neurons and does not appear to be present in glia. The presence of an F box in NFB42 suggests that it may be involved in cell cycle regulation; however, its expression in postmitotic neurons indicates that it is not involved in regulating typical cell cycle events. In an initial attempt to characterize the function of this protein, NFB42 was transfected into N1E-115 neuroblastoma and Chinese hamster ovary cells. The expression of full-length NFB42, but not an F box deletion mutant, inhibits proliferation in both cell lines. Additional experiments demonstrate that NFB42 interacts with Skp1p, a component of the proteasome pathway, and deletion of the F box also inhibits this interaction. Overall, the expression pattern of NFB42, along with the presence of an F box domain and the ability to inhibit growth, suggests that it may play a role in maintaining neurons in a postmitotic state.

    Funded by: NINDS NIH HHS: NS32465

    The Journal of biological chemistry 1998;273;52;35222-7

Gene lists (4)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.