G2Cdb::Gene report

Gene id
G00001656
Gene symbol
ALDH1L1 (HGNC)
Species
Homo sapiens
Description
aldehyde dehydrogenase 1 family, member L1
Orthologue
G00000407 (Mus musculus)

Databases (7)

Gene
ENSG00000144908 (Ensembl human gene)
10840 (Entrez Gene)
750 (G2Cdb plasticity & disease)
ALDH1L1 (GeneCards)
Literature
600249 (OMIM)
Marker Symbol
HGNC:3978 (HGNC)
Protein Sequence
O75891 (UniProt)

Synonyms (1)

  • 10-fTHF

Literature (21)

Pubmed - other

  • Germline polymorphisms in the one-carbon metabolism pathway and DNA methylation in colorectal cancer.

    Hazra A, Fuchs CS, Kawasaki T, Kirkner GJ, Hunter DJ and Ogino S

    Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA. ahazra@hsph.harvard.edu

    Dietary intake of one-carbon nutrients (methyl donors) and germline variants in the one-carbon metabolism genes may influence global DNA methylation level and methylation in promoter CpG islands. In this study, we evaluated the relationship between single nucleotide polymorphisms (SNPs) in the one-carbon metabolism pathway and DNA methylation status in colorectal cancer. Utilizing 182 colorectal cancers cases in two prospective cohort studies, we determined the CpG island methylator phenotype (CIMP) status on eight CIMP-specific promoters and measured LINE-1 methylation level that correlates well with genome-wide DNA methylation level. We genotyped 23 nonsynonymous SNPs in the one-carbon metabolism genes using buffy coat DNA. Most of the 23 SNPs in the one-carbon metabolism pathway were not significantly associated with CIMP-high status (> or = 6/8 methylated promoters). However, the MTHFR 429 Ala/Ala variant (rs1801131) and the TCN2 259 Arg/Arg variant (rs1801198) were associated with CIMP-high status (MTHFR 429 multivariate odds ratio (MV OR) = 7.56; 95% confidence interval (CI), 1.32-43.3; p trend = 0.10; TCN2 259 Arg/Arg variant MV OR = 3.82; 95% CI, 1.02-14.4; p trend = 0.06). The one-carbon metabolism genotypes were not significantly associated with LINE-1 methylation, although there were modest differences in mean LINE-1 methylation levels between certain genotypes. Collectively, these exploratory data provide suggestive evidence for the association of MTHFR 429 Ala/ Ala and TCN2 259 Arg/Arg and CIMP status in colorectal cancer.

    Funded by: NCI NIH HHS: K07 CA122826, K07 CA122826-03, P01 CA055075, P01 CA055075-09, P01 CA087969, P01 CA087969-07, P01 CA55075, P01 CA87969, P50 CA127003, P50 CA127003-03, R01 CA070817, R01 CA070817-07, R03 CA133937, R03 CA133937-01A1, R03 CA142082, R03 CA142082-01, T-32 CA09001-30, T32 CA009001, U54 CA100971, U54 CA100971-05, U54 CA100971-05S1

    Cancer causes & control : CCC 2010;21;3;331-45

  • Genetic susceptibility to distinct bladder cancer subphenotypes.

    Guey LT, García-Closas M, Murta-Nascimento C, Lloreta J, Palencia L, Kogevinas M, Rothman N, Vellalta G, Calle ML, Marenne G, Tardón A, Carrato A, García-Closas R, Serra C, Silverman DT, Chanock S, Real FX, Malats N and EPICURO/Spanish Bladder Cancer Study investigators

    Spanish National Cancer Research Centre, Madrid, Spain.

    Background: Clinical, pathologic, and molecular evidence indicate that bladder cancer is heterogeneous with pathologic/molecular features that define distinct subphenotypes with different prognoses. It is conceivable that specific patterns of genetic susceptibility are associated with particular subphenotypes.

    Objective: To examine evidence for the contribution of germline genetic variation to bladder cancer heterogeneity.

    The Spanish Bladder Cancer/EPICURO Study is a case-control study based in 18 hospitals located in five areas in Spain. Cases were patients with a newly diagnosed, histologically confirmed, urothelial cell carcinoma of the bladder from 1998 to 2001. Case diagnoses were reviewed and uniformly classified by pathologists following the World Health Organisation/International Society of Urological Pathology 1999 criteria. Controls were hospital-matched patients (n=1149).

    Measurements: A total of 1526 candidate variants in 423 candidate genes were analysed. Three distinct subphenotypes were defined according to stage and grade: low-grade nonmuscle invasive (n=586), high-grade nonmuscle invasive (n=219), and muscle invasive (n=246). The association between each variant and subphenotype was assessed by polytomous risk models adjusting for potential confounders. Heterogeneity in genetic susceptibility among subphenotypes was also tested.

    Two established bladder cancer susceptibility genotypes, NAT2 slow-acetylation and GSTM1-null, exhibited similar associations among the subphenotypes, as did VEGF-rs25648, which was previously identified in our study. Other variants conferred risks for specific tumour subphenotypes such as PMS2-rs6463524 and CD4-rs3213427 (respective heterogeneity p values of 0.006 and 0.004), which were associated with muscle-invasive tumours (per-allele odds ratios [95% confidence interval] of 0.56 [0.41-0.77] and 0.71 [0.57-0.88], respectively) but not with non-muscle-invasive tumours. Heterogeneity p values were not robust in multiple testing according to their false-discovery rate.

    Conclusions: These exploratory analyses suggest that genetic susceptibility loci might be related to the molecular/pathologic diversity of bladder cancer. Validation through large-scale replication studies and the study of additional genes and single nucleotide polymorphisms are required.

    Funded by: Intramural NIH HHS: ZIA CP010136-16

    European urology 2010;57;2;283-92

  • Assessment of a polymorphism of SDK1 with hypertension in Japanese Individuals.

    Oguri M, Kato K, Yokoi K, Yoshida T, Watanabe S, Metoki N, Yoshida H, Satoh K, Aoyagi Y, Nozawa Y and Yamada Y

    Department of Cardiology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan.

    Background: Hypertension is a major risk factor for cardiovascular disease. Although genetic studies have suggested that several genetic variants increase the risk for hypertension, the genes that underlie genetic susceptibility to this condition remain to be identified definitively. The purpose of the present study was to identify genetic variants that confer susceptibility to hypertension in Japanese individuals.

    Methods: A total of 5,734 Japanese individuals from two independent populations were examined: subject panel A comprised 2,066 hypertensive individuals and 824 controls; and subject panel B comprised 834 hypertensive individuals and 2,010 controls. The 150 polymorphisms examined in the present study were selected by genome-wide association studies of myocardial infarction and ischemic stroke with the use of the GeneChip Human Mapping 500K Array Set (Affymetrix).

    Results: The chi(2)-test revealed that 10 polymorphisms were significantly (P < 0.05) related to the prevalence of hypertension in subject panel A. To validate the relations, these polymorphisms were examined in subject panel B. The A-->G polymorphism (rs645106) of SDK1 and the C-->G polymorphism (rs12078839) of RABGAP1L were significantly associated with hypertension in subject panel B. Multivariable logistic regression analysis with adjustment for covariates, as well as a stepwise forward selection procedure revealed that the A-->G polymorphism of SDK1 was significantly associated with hypertension in both subject panels A and B, with the G allele protecting against this condition.

    Conclusions: SDK1 may be a susceptibility gene for hypertension in Japanese individuals, although the functional relevance of the identified polymorphism was not determined.

    American journal of hypertension 2010;23;1;70-7

  • PTEN identified as important risk factor of chronic obstructive pulmonary disease.

    Hosgood HD, Menashe I, He X, Chanock S and Lan Q

    Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.

    Common genetic variation may play an important role in altering chronic obstructive pulmonary disease (COPD) risk. In Xuanwei, China, the COPD rate is more than twice the Chinese national average, and COPD is strongly associated with in-home coal use. To identify genetic variation that may be associated with COPD in a population with substantial in-home coal smoke exposures, we evaluated 1261 single nucleotide polymorphisms (SNPs) in 380 candidate genes potentially relevant for cancer and other human diseases in a population-based case-control study in Xuanwei (53 cases; 107 controls). PTEN was the most significantly associated gene with COPD in a minP analysis using 20,000 permutations (P=0.00005). SNP-based analyses found that homozygote variant carriers of PTEN rs701848 (OR(TT)=0.12, 95% CI=0.03-0.47) had a significant decreased risk of COPD. PTEN, or phosphatase and tensin homolog, is an important regulator of cell cycle progression and cellular survival via the AKT signaling pathway. Our exploratory analysis suggests that genetic variation in PTEN may be an important risk factor of COPD in Xuanwei. However, due to the small sample size, additional studies are needed to evaluate these associations within Xuanwei and other populations with coal smoke exposures.

    Funded by: Intramural NIH HHS: Z99 CA999999

    Respiratory medicine 2009;103;12;1866-70

  • Association study between single-nucleotide polymorphisms in 199 drug-related genes and commonly measured quantitative traits of 752 healthy Japanese subjects.

    Saito A, Kawamoto M and Kamatani N

    Division of Genomic Medicine, Department of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan. a-saito@horae.dti.ne.jp

    With dense single-nucleotide polymorphism (SNP) maps for 199 drug-related genes, we examined associations between 4190 SNPs and 38 commonly measured quantitative traits using data from 752 healthy Japanese subjects. On analysis, we observed a strong association between five SNPs within the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene and serum total bilirubin levels (minimum P-value in Mann-Whitney test=1.82 x 10(10)). UGT1A1 catalyzes the conjugation of bilirubin with glucuronic acid, thus enhancing bilirubin elimination. This enzyme is known to play an important role in the variation of serum bilirubin levels. The five SNPs, including a nonsynonymous SNP-rs4148323 (211G>A or G71R variant allele known as UGT1A1*6)-showed strong linkage disequilibrium with each other. No other genes were clearly associated with serum total bilirubin levels. Results of linear multiple regression analysis on serum total bilirubin levels followed by analysis of variance showed that at least 13% of the variance in serum total bilirubin levels could be explained by three haplotype-tagging SNPs in the UGT1A1 gene.

    Journal of human genetics 2009;54;6;317-23

  • Oral facial clefts and gene polymorphisms in metabolism of folate/one-carbon and vitamin A: a pathway-wide association study.

    Boyles AL, Wilcox AJ, Taylor JA, Shi M, Weinberg CR, Meyer K, Fredriksen A, Ueland PM, Johansen AM, Drevon CA, Jugessur A, Trung TN, Gjessing HK, Vollset SE, Murray JC, Christensen K and Lie RT

    Epidemiology Branch, NIEHS/NIH, Durham, North Carolina 27709, USA. boylesa@niehs.nih.gov

    An increased risk of facial clefts has been observed among mothers with lower intake of folic acid or vitamin A around conception. We hypothesized that the risk of clefts may be further moderated by genes involved in metabolizing folate or vitamin A. We included 425 case-parent triads in which the child had either cleft lip with or without cleft palate (CL/P) or cleft palate only (CPO), and no other major defects. We analyzed 108 SNPs and one insertion in 29 genes involved in folate/one-carbon metabolism and 68 SNPs from 16 genes involved in vitamin A metabolism. Using the Triad Multi-Marker (TRIMM) approach we performed SNP, gene, chromosomal region, and pathway-wide association tests of child or maternal genetic effects for both CL/P and CPO. We stratified these analyses on maternal intake of folic acid or vitamin A during the periconceptional period. As expected with this high number of statistical tests, there were many associations with P-values<0.05; although there were fewer than predicted by chance alone. The strongest association in our data (between fetal FOLH1 and CPO, P=0.0008) is not in agreement with epidemiologic evidence that folic acid reduces the risk of CL/P in these data, not CPO. Despite strong evidence for genetic causes of oral facial clefts and the protective effects of maternal vitamins, we found no convincing indication that polymorphisms in these vitamin metabolism genes play an etiologic role.

    Funded by: Intramural NIH HHS; NHGRI NIH HHS: N01HG65403; NIDCR NIH HHS: DE085592, P50 DE-16215, R01 DE-11948-04, R01 DE011948, R01 DE011948-04, R37 DE-0559, R37 DE008559, R37 DE008559-18, R37 DE008559-19; NIEHS NIH HHS: Z01 ES040007, Z01 ES049027, Z01 ES049027-11

    Genetic epidemiology 2009;33;3;247-55

  • An association study of 45 folate-related genes in spina bifida: Involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1 (TRDMT1).

    Franke B, Vermeulen SH, Steegers-Theunissen RP, Coenen MJ, Schijvenaars MM, Scheffer H, den Heijer M and Blom HJ

    Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands. b.franke@antrg.umcn.nl

    Background: Spina bifida is a class of neural tube defects, which are congenital malformations of the central nervous system with a prevalence of 0.5 to 12 per 1000 births globally. In this article we attempt to identify genes related to folate and its metabolic pathways that are involved in the etiology of spina bifida.

    Methods: We selected 50 folate metabolism-related genes and genotyped polymorphisms in those genes. Eighty-seven polymorphisms in 45 genes passed quality controls. Associations with spina bifida were investigated in 180 patients and 190 controls. For those polymorphisms that were nominally associated with spina bifida risk, the relation with serum and red blood cell folate, vitamin B(12), and homocysteine was evaluated in controls.

    Results: A polymorphism in CUBN was significantly associated with decreased spina bifida risk, after correction for multiple testing, and was related to increased vitamin B(12) (p = 0.039) and red blood cell folate (p = 0.001). The CUBN gene encodes the intrinsic factor-cobalamin receptor (or cubilin), a peripheral membrane protein that acts as a receptor for intrinsic factor-vitamin B(12) complexes. Vitamin B(12) is an important cofactor in the folate metabolism, and low B(12) status in mothers has been linked to neural tube defects in children. Other interesting findings include nominally significant associations with polymorphisms in TRDMT1, ALDH1L1, SARDH, and SLCA19A1 (RFC1).

    Conclusion: Our study indicates interesting new candidate genes and functional pathways for further study and confirms earlier findings. None of the genes CUBN, TRDMT1, ALDH1L1, or SARDH have been investigated previously for association with spina bifida.

    Birth defects research. Part A, Clinical and molecular teratology 2009;85;3;216-26

  • Polymorphisms in DNA repair and one-carbon metabolism genes and overall survival in diffuse large B-cell lymphoma and follicular lymphoma.

    Wang SS, Maurer MJ, Morton LM, Habermann TM, Davis S, Cozen W, Lynch CF, Severson RK, Rothman N, Chanock SJ, Hartge P and Cerhan JR

    Funded by: Intramural NIH HHS; NCI NIH HHS: N01 PC065064, N01 PC067008, N01 PC067009, N01 PC067010, P50 CA097274, P50-CA97274, R01 CA096704, R01 CA096704-01, R01-CA96704

    Leukemia 2009;23;3;596-602

  • No association of single nucleotide polymorphisms in one-carbon metabolism genes with prostate cancer risk.

    Stevens VL, Rodriguez C, Sun J, Talbot JT, Thun MJ and Calle EE

    Epidemiology and Surveillance Research, American Cancer Society, 250 Williams Street, Northwest, Atlanta, GA 30303-1002, USA. Victoria.Stevens@cancer.org

    One-carbon metabolism mediates the interconversion of folates for the synthesis of precursors used in DNA synthesis, repair, and methylation. Inadequate folate nutrition or compromised metabolism can disrupt these processes and facilitate carcinogenesis. In this study, we investigated associations of 39 candidate single nucleotide polymorphisms (SNP) in 9 one-carbon metabolism genes with risk of prostate cancer using 1,144 cases and 1,144 controls from the Cancer Prevention Study-II Nutrition Cohort. None of these SNPs were significantly associated with prostate cancer risk, either overall or in cases with advanced prostate cancer. Thus, our findings do not support the hypothesis that common genetic variation in one-carbon metabolism genes influences prostate cancer risk.

    Funded by: NCI NIH HHS: R03 CA108374-01

    Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2008;17;12;3612-4

  • Pathway-based evaluation of 380 candidate genes and lung cancer susceptibility suggests the importance of the cell cycle pathway.

    Hosgood HD, Menashe I, Shen M, Yeager M, Yuenger J, Rajaraman P, He X, Chatterjee N, Caporaso NE, Zhu Y, Chanock SJ, Zheng T and Lan Q

    Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. hosgoodd@mail.nih.gov

    Common genetic variation may play an important role in altering lung cancer risk. We conducted a pathway-based candidate gene evaluation to identify genetic variations that may be associated with lung cancer in a population-based case-control study in Xuan Wei, China (122 cases and 111 controls). A total of 1260 single-nucleotide polymorphisms (SNPs) in 380 candidate genes for lung cancer were successfully genotyped and assigned to one of 10 pathways based on gene ontology. Logistic regression was used to assess the marginal effect of each SNP on lung cancer susceptibility. The minP test was used to identify statistically significant associations at the gene level. Important pathways were identified using a test of proportions and the rank truncated product methods. The cell cycle pathway was found as the most important pathway (P = 0.044) with four genes significantly associated with lung cancer (PLA2G6 minP = 0.001, CCNA2 minP = 0.006, GSK3 beta minP = 0.007 and EGF minP = 0.013), after adjusting for multiple comparisons. Interestingly, most cell cycle genes that were associated with lung cancer in this analysis were concentrated in the AKT signaling pathway, which is essential for regulation of cell cycle progression and cellular survival, and may be important in lung cancer etiology in Xuan Wei. These results should be viewed as exploratory until they are replicated in a larger study.

    Funded by: Intramural NIH HHS; NCI NIH HHS: TU2 CA105666

    Carcinogenesis 2008;29;10;1938-43

  • One-carbon metabolism gene polymorphisms and risk of non-Hodgkin lymphoma in Australia.

    Lee KM, Lan Q, Kricker A, Purdue MP, Grulich AE, Vajdic CM, Turner J, Whitby D, Kang D, Chanock S, Rothman N and Armstrong BK

    Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, 6120 Executive Blvd. EPS 8118, Bethesda, MD 20892-7240, USA. leekyou@mail.nih.gov

    Dysregulation of the one-carbon metabolic pathway, which controls nucleotide synthesis and DNA methylation, may promote lymphomagenesis. We evaluated the association between polymorphisms in one-carbon metabolism genes and risk of non-Hodgkin lymphoma (NHL) in a population-based case-control study in Australia. Cases (n = 561) and controls (n = 506) were genotyped for 14 selected single-nucleotide polymorphisms in 10 genes (CBS, FPGS, FTHFD, MTHFR, MTHFS, MTR, SHMT1, SLC19A1, TCN1, and TYMS). We also conducted a meta-analysis of all studies of Caucasian populations investigating the association between MTHFR Ex5+79C > T (a.k.a., 677C>T) and NHL risk. A global test of 13 genotypes was statistically significant for diffuse large B-cell lymphoma (DLBCL; P = 0.008), but not for follicular lymphoma (FL; P = 0.27) or all NHL (P = 0.17). The T allele at MTHFR Ex5+79 was marginally significantly associated with all NHL (OR = 1.25, 95% CI = 0.98-1.59) and DLBCL (1.36, 0.96-1.93). The T allele at TYMS Ex8+157 was associated with a reduced risk of FL (0.64, 0.46-0.91). An elevated risk of NHL was also observed among carriers of the G allele at FTHFD Ex21+31 (all NHL, 1.31, 1.02-1.69; DLBCL, 1.50, 1.05-2.14). A meta-analysis of 11 studies conducted in Caucasian populations of European origin (4,121 cases and 5,358 controls) supported an association between the MTHFR Ex5+79 T allele and increased NHL risk (additive model, P = 0.01). In conclusion, the results of this study suggest that genetic polymorphisms of one-carbon metabolism genes such as MTHFR and TYMS may influence susceptibility to NHL.

    Funded by: Intramural NIH HHS

    Human genetics 2007;122;5;525-33

  • Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence.

    Stevens VL, McCullough ML, Pavluck AL, Talbot JT, Feigelson HS, Thun MJ and Calle EE

    Department of Epidemiology and Surveillance Research, American Cancer Society, Northeastern, Atlanta, GA 30329, USA. Victoria.Stevens@cancer.org

    The interconversion of folates by the one-carbon metabolism pathway is essential for the synthesis of precursors used in DNA synthesis, repair, and methylation. Perturbations in this pathway can disrupt these processes and are hypothesized to facilitate carcinogenesis. We investigated associations of 25 candidate polymorphisms in nine one-carbon metabolism genes with risk of postmenopausal breast cancer using 502 cases and 505 controls from the Cancer Prevention II Nutrition Cohort. Four single nucleotide polymorphisms (SNP) in three different genes were significantly associated with breast cancer. The nonsynonymous R134K SNP in methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthase [MTHFD1; odds ratio (OR), 1.40; 95% confidence interval (95% CI), 1.06-1.85 for CT + TT] and an intronic SNP in formyltetrahydrofolate dehydrogenase (FTHFD; OR, 2.23; 95% CI, 1.09-4.54 for CC) were associated with a significant increase in risk. Significantly decreased risk was associated with an intronic SNP in FTHFD (OR, 0.75; 95% CI, 0.58-0.98 for CT + CC) and the A360A SNP in cystathionine beta-synthase (CBS; OR, 0.63; 95% CI, 0.41-0.96 for TT). The presence of at least one variant from both the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C SNPs was also associated with increased risk (OR, 2.16; 95% CI, 1.34-3.48 for 677 CT + TT/1,298 AC + CC). Investigations into interactions of the associated SNPs with each other and with dietary factors yielded inconclusive results. Our findings indicate that genetic variation in multiple one-carbon metabolism genes may influence risk of postmenopausal breast cancer and may involve changes in methyl donor synthesis. However, larger studies are needed to further examine gene/gene and gene/diet interactions in this pathway.

    Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2007;16;6;1140-7

  • Gene-nutrient interactions among determinants of folate and one-carbon metabolism on the risk of non-Hodgkin lymphoma: NCI-SEER case-control study.

    Lim U, Wang SS, Hartge P, Cozen W, Kelemen LE, Chanock S, Davis S, Blair A, Schenk M, Rothman N and Lan Q

    Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Rockville, MD 20852, USA. limu@mail.nih.gov

    We previously reported a lower risk of non-Hodgkin lymphoma (NHL) associated with high consumption of vitamin B6 and methionine, dietary determinants of one-carbon metabolism. Evidence has linked genetic variants involved in one-carbon metabolism to NHL. We investigated 30 polymorphisms in 18 genes for their main effect on NHL among 1141 incident cases and 949 population-based controls and examined gene-nutrient interactions in a subgroup of 386 cases and 319 controls who provided detailed food-frequency information. Odds ratios (ORs) and 95% confidence intervals (CIs) were adjusted for age, sex, and race. We observed a decreased risk of NHL over-all with BHMTEx8+453A>T and increased risk with CBS Ex13+41C>T, FPGS Ex15-263T>C, and SHMT1 Ex12+138C>T and Ex12+236C>T. Furthermore, significant gene-nutrient interactions limited the protective association comparing high versus low vitamin B6 to FPGS Ex15-263T>C CC (OR = 0.22; 95% CL = 0.10-0.52), MTHFS IVS2-1411T>G TT/TG (OR = 0.54; 95% CI = 0.36-0.81), and MTR Ex26-20A>G AA (OR = 0.55; 95% CI = 0.35-0.86) genotypes, and the protective association of methionine to FTHFD Ex10-40G>TGG (OR = 0.63; 95% CI = 0.44-0.91), MTHFR Ex8-62A>C CC (OR = 0.13; 95% CI = 0.04-0.39), and MTRR Ex5+136T>CTT (OR = 0.67; 95% CI = 0.47-0.97) genotypes. Warranting replication, our finding of gene-nutrient interactions in one-carbon metabolism supports their etiologic involvement in lymphomagenesis.

    Funded by: Intramural NIH HHS; NCI NIH HHS: N01 PC065064, N01 PC067008, N01 PC067009, N01 PC067010

    Blood 2007;109;7;3050-9

  • Ectopic expression of 10-formyltetrahydrofolate dehydrogenase in A549 cells induces G1 cell cycle arrest and apoptosis.

    Oleinik NV and Krupenko SA

    Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.

    We have recently shown that transient expression of 10-formyltetrahydrofolate dehydrogenase (FDH) strongly inhibits proliferation of several cancer cell lines and ultimately results in cell death. In the present studies using Tet-On system, we have generated a stable A549 lung carcinoma cell line capable of inducible FDH expression. Using this system, we were able to express FDH at different levels depending on concentration of the inducer, doxycycline, and we have observed that inhibition of proliferation depends on FDH intracellular levels. We have further shown that induction of FDH expression results in initiation of apoptosis beginning 24 h post-induction. Apoptotic cells revealed cleavage of poly-(ADP-ribose) polymerase and general caspase inhibitor zVAD-fmk protected cells against FDH-induced apoptosis. FDH-expressing cells showed accumulation of cells in G(0)-G(1) phase and a sharp decrease of cells in S phase. Accumulation of intracellular FDH was followed by accumulation of the tumor suppressor protein p53 and its downstream target p21. These results indicate that FDH antiproliferative effects on A549 cells include both G(1) cell cycle arrest and caspase-dependent apoptosis.

    Funded by: NIDDK NIH HHS: DK54388

    Molecular cancer research : MCR 2003;1;8;577-88

  • 10-formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells.

    Krupenko SA and Oleinik NV

    Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston 29425, USA. krupenko@musc.edu

    Our studies showed that an abundant folate enzyme, 10-formyltetrahydrofolatedehydrogenase (FDH), is strongly down-regulated in several types of cancer on both the mRNA and the protein level. Transient expression of FDH in several human prostate cancer cell lines, a hepatocarcinoma cell line, HepG2, and a lung cancer cell line, A549, suppressed proliferation and resulted in cytotoxicity. In contrast, overexpression of a catalytically inactive FDH mutant did not inhibit proliferation, which suggests that the suppressor effect of FDH is a result of its enzymatic function. Because the FDH substrate, 10-formyltetrahydrofolate, is required for de novo purine biosynthesis, we hypothesized that the inhibitory effects of FDH occur through the depletion of intracellular 10-formyltetrahydrofolate followed by the loss of de novo purine biosynthesis. The ultimate impact is diminished DNA/RNA biosynthesis. Indeed, supplementation of FDH-overexpressing cells with 5-formyltetrahydrofolate or hypoxanthine reversed the FDH growth-inhibitory effects. Hence, down-regulation of FDH in tumors is proposed to be one of the cellular mechanisms that enhance proliferation.

    Funded by: NIDDK NIH HHS: DK54388

    Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 2002;13;5;227-36

  • Isolation and characterization of cDNA clone for human liver 10-formyltetrahydrofolate dehydrogenase.

    Hong M, Lee Y, Kim JW, Lim JS, Chang SY, Lee KS, Paik SG and Choe IS

    Korea Research Institute of Bioscience and Biotechnology, Taejon, Korea.

    A cDNA clone encoding 10-formyltetrahydrofolate dehydrogenase (10-FTHFDH) was isolated from a human fetal liver cDNA library. It contained the open reading frame of 2,709 base pairs and predicted a protein comprising 902 amino acids with a calculated molecular weight of 98,700 Da. The deduced protein showed about 93.6% homology (90.5% identity, 3.1% favored substitutions) when compared with rat 10-FTHFDH. The distribution of 10-FTHFDH transcript in various human tissues was studied by Northern blot analysis using poly(A+) RNAs from different tissues. The 10-FTHFDH transcript with an approximate size of 2.7 kb was mainly expressed in human kidney, skeletal muscle, and liver and rarely expressed in other tissues.

    Biochemistry and molecular biology international 1999;47;3;407-15

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice.

    Champion KM, Cook RJ, Tollaksen SL and Giometti CS

    Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, IL 60439-4833.

    During the analysis of liver protein expression in the offspring of male mice irradiated with fission-spectrum neutrons, one offspring displayed a heritable 50% decrease in the abundance of two proteins. Homozygous mice lacking detectable quantities of these proteins were obtained through breeding. Characterization of this protein deficiency has identified these liver proteins as forms of the enzyme 10-formyltetrahydrofolate dehydrogenase (10-formyl-THF DH; 10-formyltetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.6). NH2-terminal sequence analysis demonstrated that both proteins share identical sequences in the first 25 residues, and this sequence matches (96% identity) that of rat and human 10-formyl-THF DH. In addition, these proteins showed cross-reactivity to polyclonal antiserum raised against purified rat 10-formyl-THF DH. Southern (DNA) blot analysis revealed a restriction fragment length polymorphism consistent with a deletion mutation in the 10-formyl-THF DH structural gene in homozygous mice. Results of Northern (RNA) blot analysis demonstrated the absence of 10-formyl-THF DH mRNA in mice lacking 10-formyl-THF DH protein. Furthermore, liver cytosolic 10-formyl-THF DH enzymatic activity was undetectable in homozygotes. Measurement of hepatic folate pools showed that in homozygotes the total folate pool is decreased and the level of tetrahydrofolate is markedly depleted.

    Funded by: NIDDK NIH HHS: DK15289

    Proceedings of the National Academy of Sciences of the United States of America 1994;91;24;11338-42

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

  • Studies on the mechanism of methanol poisoning: purification and comparison of rat and human liver 10-formyltetrahydrofolate dehydrogenase.

    Johlin FC, Swain E, Smith C and Tephly TR

    Department of Internal Medicine, University of Iowa, Iowa City 52242.

    Methanol poisoning in primates and humans is due to formate accumulation as a result of low rates of formate oxidation. This toxicity is not seen in rats, where formate oxidation rates are high. Formate oxidation in vivo is dependent on hepatic tetrahydrofolate levels and on the activity of the enzyme 10-formyl-tetrahydrofolate (10-formyl-H4folate) dehydrogenase (EC 1.5.1.6). Because hepatic 10-formyl-H4folate dehydrogenase activity is lower in human liver than in rat liver, studies were performed investigating the properties of this enzyme in rat and human liver. 10-Formyl-H4folate dehydrogenase was purified to homogeneity from rat and human liver and was found to possess similar subunit molecular weights on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (96,000). N-Terminal amino acid analysis of the pure proteins showed an identical sequence for the first 16 amino acids. Antibodies raised in rabbits against the rat liver enzyme were inhibitory toward the activity of both rat and human liver enzymes and appeared to recognize only the 10-formyl-H4folate dehydrogenase in cytosolic preparations of rat and human liver. Immunoblots of pure rat and human liver 10-formyl-H4folate dehydrogenase showed similar staining intensity. It is concluded that rat and human liver 10-formyl-H4folate dehydrogenase possess very similar properties and that the activity of the enzyme in human liver is lower than that of rat liver, due to a reduced amount of enzyme protein in human liver. This may be an important factor in regulating formate oxidation in humans and may explain, in part, the accumulation of formate and the mechanism of toxicity of methanol in humans.

    Funded by: NIGMS NIH HHS: GM-19420

    Molecular pharmacology 1989;35;6;745-50

Gene lists (3)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.