G2Cdb::Gene report

Gene id
G00001626
Gene symbol
ACLY (HGNC)
Species
Homo sapiens
Description
ATP citrate lyase
Orthologue
G00000377 (Mus musculus)

Databases (7)

Gene
ENSG00000131473 (Ensembl human gene)
47 (Entrez Gene)
714 (G2Cdb plasticity & disease)
ACLY (GeneCards)
Literature
108728 (OMIM)
Marker Symbol
HGNC:115 (HGNC)
Protein Sequence
P53396 (UniProt)

Synonyms (3)

  • ACL
  • ATPCL
  • CLATP

Literature (22)

Pubmed - other

  • Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes.

    MacDonald MJ, Longacre MJ, Langberg EC, Tibell A, Kendrick MA, Fukao T and Ostenson CG

    Children's Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA. mjmacdon@wisc.edu

    Glucose-stimulated insulin secretion is defective in patients with type 2 diabetes. We sought to acquire new information about enzymes of glucose metabolism, with an emphasis on mitochondrial enzymes, by comparing pancreatic islets of type 2 diabetes patients with those of non-diabetic controls.

    Methods: Expression of genes encoding 13 metabolic enzymes was estimated with microarrays and activities of up to nine metabolic enzymes were measured.

    Results: The activities of the mitochondrial enzymes, glycerol phosphate dehydrogenase, pyruvate carboxylase (PC) and succinyl-CoA:3-ketoacid-CoA transferase (SCOT) were decreased by 73%, 65% and 92%, respectively, in the diabetic compared with the non-diabetic islets. ATP citrate lyase, a cytosolic enzyme of the mitochondrial citrate pyruvate shuttle, was decreased 57%. Activities of propionyl-CoA carboxylase, NADP-isocitrate dehydrogenase, cytosolic malic enzyme, aspartate aminotransferase and malate dehydrogenase were not significantly different from those of the control. The low activities of PC and SCOT were confirmed with western blots, which showed that their protein levels were low. The correlation of relative mRNA signals with enzyme activities was good in four instances, moderate in four instances and poor in one instance. In diabetic islets, the mRNA signal of the islet cell-enriched transcription factor musculoaponeurotic fibrosarcoma oncogene homologue A, which regulates expression of islet genes, including the PC gene, was decreased to 54% of the control level. PC activity and protein levels in the non-diabetic islets were significantly lower than in islets from non-diabetic rodents.

    Low levels of certain islet metabolic enzymes, especially mitochondrial enzymes, are associated with human type 2 diabetes.

    Funded by: NIDDK NIH HHS: DK28348, R01 DK028348, R01 DK028348-16, R01 DK028348-17, R01 DK028348-18, R01 DK028348-19, R01 DK028348-20, R01 DK028348-21, R01 DK028348-22, R01 DK028348-23, R01 DK028348-24, R01 DK028348-25, R01 DK028348-26, R01 DK028348-27

    Diabetologia 2009;52;6;1087-91

  • ATP-citrate lyase links cellular metabolism to histone acetylation.

    Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR and Thompson CB

    Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.

    Histone acetylation in single-cell eukaryotes relies on acetyl coenzyme A (acetyl-CoA) synthetase enzymes that use acetate to produce acetyl-CoA. Metazoans, however, use glucose as their main carbon source and have exposure only to low concentrations of extracellular acetate. We have shown that histone acetylation in mammalian cells is dependent on adenosine triphosphate (ATP)-citrate lyase (ACL), the enzyme that converts glucose-derived citrate into acetyl-CoA. We found that ACL is required for increases in histone acetylation in response to growth factor stimulation and during differentiation, and that glucose availability can affect histone acetylation in an ACL-dependent manner. Together, these findings suggest that ACL activity is required to link growth factor-induced increases in nutrient metabolism to the regulation of histone acetylation and gene expression.

    Funded by: NCI NIH HHS: R01 CA092660, R01 CA092660-09, R01 CA105463; NHLBI NIH HHS: T32-HL07439-27

    Science (New York, N.Y.) 2009;324;5930;1076-80

  • Proteomic analysis reveals Hrs ubiquitin-interacting motif-mediated ubiquitin signaling in multiple cellular processes.

    Pridgeon JW, Webber EA, Sha D, Li L and Chin LS

    Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.

    Despite the critical importance of protein ubiquitination in the regulation of diverse cellular processes, the molecular mechanisms by which cells recognize and transmit ubiquitin signals remain poorly understood. The endosomal sorting machinery component hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) contains a ubiquitin-interacting motif (UIM), which is believed to bind ubiquitinated membrane cargo proteins and mediate their sorting to the lysosomal degradation pathway. To gain insight into the role of Hrs UIM-mediated ubiquitin signaling in cells, we performed a proteomic screen for Hrs UIM-interacting ubiquitinated proteins in human brain by using an in vitro expression cloning screening approach. We have identified 48 ubiquitinated proteins that are specifically recognized by the UIM domain of Hrs. Among them, 12 are membrane proteins that are likely to be Hrs cargo proteins, and four are membrane protein-associated adaptor proteins whose ubiquitination may act as a signal to target their associated membrane cargo for Hrs-mediated endosomal sorting. Other classes of the identified proteins include components of the vesicular trafficking machinery, cell signaling molecules, proteins associated with the cytoskeleton and cytoskeleton-dependent transport, and enzymes involved in ubiquitination and metabolism, suggesting the involvement of Hrs UIM-mediated ubiquitin signaling in the regulation of multiple cellular processes. We have characterized the ubiquitination of two identified proteins, Munc18-1 and Hsc70, and their interaction with Hrs UIM, and provided functional evidence supporting a role for Hsc70 in the regulation of Hrs-mediated endosome-to-lysosome trafficking.

    Funded by: NIGMS NIH HHS: GM082828, R01 GM082828, R01 GM082828-01A1, R01 GM082828-02, R01 GM082828-02S1; NINDS NIH HHS: NS047575, NS050650, R01 NS047575, R01 NS047575-01, R01 NS047575-02, R01 NS047575-03, R01 NS047575-04, R01 NS050650, R01 NS050650-01A1, R01 NS050650-02, R01 NS050650-03, R01 NS050650-04, T32 NS007480, T32 NS007480-05, T32 NS007480-06, T32 NS007480-07, T32 NS007480-08, T32 NS007480-09, T32NS007480

    The FEBS journal 2009;276;1;118-31

  • Multiple genetic variants along candidate pathways influence plasma high-density lipoprotein cholesterol concentrations.

    Lu Y, Dollé ME, Imholz S, van 't Slot R, Verschuren WM, Wijmenga C, Feskens EJ and Boer JM

    Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands. kevin.lu@wur.nl

    The known genetic variants determining plasma HDL cholesterol (HDL-C) levels explain only part of its variation. Three hundred eighty-four single nucleotide polymorphisms (SNPs) across 251 genes based on pathways potentially relevant to HDL-C metabolism were selected and genotyped in 3,575 subjects from the Doetinchem cohort, which was examined thrice over 11 years. Three hundred fifty-three SNPs in 239 genes passed the quality-control criteria. Seven SNPs [rs1800777 and rs5882 in cholesteryl ester transfer protein (CETP); rs3208305, rs328, and rs268 in LPL; rs1800588 in LIPC; rs2229741 in NRIP1] were associated with plasma HDL-C levels with false discovery rate (FDR) adjusted q values (FDR_q) < 0.05. Five other SNPs (rs17585739 in SC4MOL, rs11066322 in PTPN11, rs4961 in ADD1, rs6060717 near SCAND1, and rs3213451 in MBTPS2 in women) were associated with plasma HDL-C levels with FDR_q between 0.05 and 0.2. Two less well replicated associations (rs3135506 in APOA5 and rs1800961 in HNF4A) known from the literature were also observed, but their significance disappeared after adjustment for multiple testing (P = 0.008, FDR_q = 0.221 for rs3135506; P = 0.018, FDR_q = 0.338 for rs1800961, respectively). In addition to replication of previous results for candidate genes (CETP, LPL, LIPC, HNF4A, and APOA5), we found interesting new candidate SNPs (rs2229741 in NRIP1, rs3213451 in MBTPS2, rs17585739 in SC4MOL, rs11066322 in PTPN11, rs4961 in ADD1, and rs6060717 near SCAND1) for plasma HDL-C levels that should be evaluated further.

    Journal of lipid research 2008;49;12;2582-9

  • ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer.

    Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, Matsuura M, Ushijima M, Mashima T, Seimiya H, Satoh Y, Okumura S, Nakagawa K and Ishikawa Y

    Divisions of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan. toshiro.migita@jfcr.or.jp

    Enhanced glucose and lipid metabolism is one of the most common properties of malignant cells. ATP citrate lyase (ACLY) is a key enzyme of de novo fatty acid synthesis responsible for generating cytosolic acetyl-CoA and oxaloacetate. To evaluate its role in lung cancer progression, we here analyzed ACLY expression in a subset of human lung adenocarcinoma cell lines and showed a relationship with the phosphatidyl-inositol-3 kinase-Akt pathway. The introduction of constitutively active Akt into cells enhanced the phosphorylation of ACLY, whereas dominant-negative Akt caused attenuation. In human lung adenocarcinoma samples, ACLY activity was found to be significantly higher than in normal lung tissue. Immunohistochemical analysis further showed phosphorylated ACLY overexpression in 162 tumors, well-correlating with stage, differentiation grade, and a poorer prognosis. Finally, to show the therapeutic potential and mechanism of ACLY inhibition for lung cancer treatment, we assessed the effect of RNA interference targeting ACLY on lipogenesis and cell proliferation in A549 cells. ACLY inhibition resulted in growth arrest in vitro and in vivo. Interestingly, increased intracellular lipids were found in ACLY knockdown cells, whereas de novo lipogenesis was inhibited. Supplementation of insulin could rescue the proliferative arrest elicited by ACLY inhibition; however, in contrast, fatty acid palmitate induced cell death. Taken together, these findings suggest that ACLY is involved in lung cancer pathogenesis associated with metabolic abnormality and might offer a novel therapeutic target.

    Cancer research 2008;68;20;8547-54

  • Genetic correlates of olanzapine-induced weight gain in schizophrenia subjects from north India: role of metabolic pathway genes.

    Srivastava V, Deshpande SN, Nimgaonkar VL, Lerer B and Thelma B

    Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.

    Aim: Olanzapine is an efficacious drug often used as a first-line medication in the treatment for schizophrenia. However, weight gain is a notable adverse drug reaction of this medication in a proportion of patients and a major cause of noncompliance. Several hypotheses, including a contribution from hormonal, physiological and environmental factors, have been postulated. In this study, we aimed to analyze a possible association of genetic polymorphisms at four important candidate genes involved in appetite regulation and antipsychotic-induced metabolic syndrome with olanzapine-induced weight gain.

    A total of 154 schizophrenia subjects were recruited in a systematic, 6-week, open-label trial of olanzapine. We investigated the contribution of 14 polymorphisms from four genes, namely, leptin, lipoprotein lipase, tri-acyl-glycerol lipase and citrate lyase using a binary logistic regression analysis towards olanzapine-induced weight gain.

    Results: rs 4731426 C/G SNP, a variant in the leptin gene, was moderately associated with median weight gain (Delta weight(m); [p = 0.05; OR: 2.2; 95% CI: 0.99-4.90]) and significantly associated with extreme weight gain (Delta weight(e) [p = 0.019; OR: 11.43; 95% CI: 1.49-87.55]) when average drug dose was included in a regression model. Using in silico analysis, we found that this associated intronic SNP in the leptin gene alters the binding of zinc finger 5, a transcription factor.

    Conclusion: The leptin gene may be a promising candidate for olanzapine-induced weight gain. As the associations are modest, replicate studies are warranted. This approach may facilitate rationalized drug regimens.

    Pharmacogenomics 2008;9;8;1055-68

  • Large-scale mapping of human protein-protein interactions by mass spectrometry.

    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T and Figeys D

    Protana, Toronto, Ontario, Canada.

    Mapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24,540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein-protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.

    Molecular systems biology 2007;3;89

  • Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.

    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P and Mann M

    Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.

    Cell signaling mechanisms often transmit information via posttranslational protein modifications, most importantly reversible protein phosphorylation. Here we develop and apply a general mass spectrometric technology for identification and quantitation of phosphorylation sites as a function of stimulus, time, and subcellular location. We have detected 6,600 phosphorylation sites on 2,244 proteins and have determined their temporal dynamics after stimulating HeLa cells with epidermal growth factor (EGF) and recorded them in the Phosida database. Fourteen percent of phosphorylation sites are modulated at least 2-fold by EGF, and these were classified by their temporal profiles. Surprisingly, a majority of proteins contain multiple phosphorylation sites showing different kinetics, suggesting that they serve as platforms for integrating signals. In addition to protein kinase cascades, the targets of reversible phosphorylation include ubiquitin ligases, guanine nucleotide exchange factors, and at least 46 different transcriptional regulators. The dynamic phosphoproteome provides a missing link in a global, integrative view of cellular regulation.

    Cell 2006;127;3;635-48

  • Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.

    Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD and Comb MJ

    Cell Signaling Technology Inc., 166B Cummings Center, Beverly, Massachusetts 01915, USA.

    Tyrosine kinases play a prominent role in human cancer, yet the oncogenic signaling pathways driving cell proliferation and survival have been difficult to identify, in part because of the complexity of the pathways and in part because of low cellular levels of tyrosine phosphorylation. In general, global phosphoproteomic approaches reveal small numbers of peptides containing phosphotyrosine. We have developed a strategy that emphasizes the phosphotyrosine component of the phosphoproteome and identifies large numbers of tyrosine phosphorylation sites. Peptides containing phosphotyrosine are isolated directly from protease-digested cellular protein extracts with a phosphotyrosine-specific antibody and are identified by tandem mass spectrometry. Applying this approach to several cell systems, including cancer cell lines, shows it can be used to identify activated protein kinases and their phosphorylated substrates without prior knowledge of the signaling networks that are activated, a first step in profiling normal and oncogenic signaling networks.

    Funded by: NCI NIH HHS: 1R43CA101106

    Nature biotechnology 2005;23;1;94-101

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Large-scale characterization of HeLa cell nuclear phosphoproteins.

    Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC and Gygi SP

    Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

    Determining the site of a regulatory phosphorylation event is often essential for elucidating specific kinase-substrate relationships, providing a handle for understanding essential signaling pathways and ultimately allowing insights into numerous disease pathologies. Despite intense research efforts to elucidate mechanisms of protein phosphorylation regulation, efficient, large-scale identification and characterization of phosphorylation sites remains an unsolved problem. In this report we describe an application of existing technology for the isolation and identification of phosphorylation sites. By using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate. From 967 proteins, 2,002 phosphorylation sites were determined by tandem MS. This unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.

    Funded by: NHGRI NIH HHS: HG00041, K22 HG000041, T32 HG000041; NIGMS NIH HHS: GM67945, GMS6203, R01 GM056203, R01 GM067945

    Proceedings of the National Academy of Sciences of the United States of America 2004;101;33;12130-5

  • The role of adenosine triphosphate citrate lyase in the metabolism of acetyl coenzyme a and function of blood platelets in diabetes mellitus.

    Michno A, Skibowska A, Raszeja-Specht A, Cwikowska J and Szutowicz A

    Department of Laboratory Medicine, Medical University of Gdańsk, Poland.

    Diabetes is known to increase blood platelet activity. Activities of pyruvate dehydrogenase (PDH), adenosine triphosphate (ATP)-citrate lyase (ATPCL), acetyl-coenzyme A (acetyl-CoA) content, malonyl dialdehyde (MDA), synthesis, and platelet aggregation in resting conditions and after activation with thrombin were measured in diabetic subjects and in age- and sex-matched healthy subjects. Activities of ATPCL and PDH, acetyl-CoA content, and thrombin-evoked MDA synthesis as well as platelet aggregation in diabetes were 31%, 51%, 62%, 35%, and 21%, respectively, higher than in healthy subjects. In addition, activation of diabetic platelets caused 2 times greater release of acetyl-CoA from their mitochondria than in controls. Both 1.0 mmol/L (-)hydroxycitrate and 0.1 mmol/L SB-204490 decreased acetyl-CoA content in platelet cytoplasm along with suppression of MDA synthesis and platelet aggregation. These inhibitory effects were about 2 times greater in diabetic than in control platelets. The data presented indicate that the ATPCL pathway is operative in human platelets and may be responsible for provision of about 50% of acetyl units from their mitochondrial to cytoplasmic compartment. Increased acetyl-CoA synthesis in diabetic platelets may be the cause of their excessive activity in the course of the disease. ATPCL may be a target for its specific inhibitors as factors decreasing platelet activity.

    Metabolism: clinical and experimental 2004;53;1;66-72

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate and increases the enzyme activity. Allosteric activation of ATP:citrate lyase by phosphorylated sugars.

    Potapova IA, El-Maghrabi MR, Doronin SV and Benjamin WB

    Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794-8661, USA.

    Recombinantly expressed human ATP:citrate lyase was purified from E. coli, and its kinetic behavior was characterized before and after phosphorylation. Cyclic AMP-dependent protein kinase catalyzed the incorporation of only 1 mol of phosphate per mole of enzyme homotetramer, and glycogen synthase kinase-3 incorporated an additional 2 mol of phosphate into the phosphorylated protein. Isoelectric focusing revealed that all of the phosphates were incorporated into only one of the four enzyme subunits. Phosphorylation resulted in a 6-fold increase in V(max) and the conversion of citrate dependence from sigmoidal, displaying negative cooperativity, to hyperbolic. The phosphorylated recombinant enzyme is more similar to the enzyme isolated from mammalian tissues than unphosphorylated enzyme with respect to the K(m) for citrate, CoA, and ATP, and the specific activity. Fructose 6-phosphate was found to be a potent activator (60-fold) of the unphosphorylated recombinant enzyme, with half-maximal activation at 0.16 mM, which results in a decrease in the apparent K(m) for citrate and ATP, as well as an increase in the V(max) of the reaction. Thus, human ATP:citrate lyase activity is regulated in vitro allosterically by phosphorylated sugars as well as covalently by phosphorylation.

    Biochemistry 2000;39;5;1169-79

  • Variant cDNA sequences of human ATP:citrate lyase: cloning, expression, and purification from baculovirus-infected insect cells.

    Lord KA, Wang XM, Simmons SJ, Bruckner RC, Loscig J, O'Connor B, Bentley R, Smallwood A, Chadwick CC, Stevis PE and Ciccarelli RB

    Department of Molecular and Cellular Biology, Sterling Winthrop Pharmaceutical Research Division, Collegeville, Pennsylvania 19426, USA.

    ATP:citrate lyase (ACL) is a major generator of cytosolic acetyl-coenzymeA, which is required for both fatty acid and cholesterol biosynthesis. The human ACL (hACL) cDNA was cloned by RT-PCR, and our results indicate the existence of previously unknown sequence variations in hACL. Expression of the hACL cDNA in Spodoptera frugiperda 9 insect cells resulted in the production of high levels of soluble, active enzyme. The recombinant protein (re-hACL) was purified to homogeneity from the soluble lysate of infected cells and was observed to exist as a tetramer by gel filtration chromatography. Kinetic analyses indicated that the re-hACL and rat ACL have very similar enzymological properties. The facile preparation of milligram quantities of purified, active re-hACL affords the opportunity to characterize the enzyme for structure-based design of hypolipidemic drugs, and to further examine the functional significance of the sequence variations.

    Protein expression and purification 1997;9;1;133-41

  • Localization of the gene for ATP citrate lyase (ACLY) distal to gastrin(GAS) and proximal to D17S856 on chromosome 17q12-q21.

    Couch FJ, Abel KJ, Brody LC, Boehnke M, Collins FS and Weber BL

    University of Michigan, Department of Internal Medicine, Ann Arbor.

    The gene encoding ATP-citrate lyase, designated ACLY, was mapped to human chromosome 17q12-q21 by PCR on a panel of human/rodent somatic cell hybrids and localized to 17q21.1 by PCR on a panel of radiation hybrids. The radiation hybrid panel indicates that the most likely position of ACLY on 17q21.1 is between gastrin (GAS) and D17S856 at a distance of 170-290 kb from the GAS locus.

    Funded by: NCI NIH HHS: CA57601

    Genomics 1994;21;2;444-6

  • Cloning and expression of a human ATP-citrate lyase cDNA.

    Elshourbagy NA, Near JC, Kmetz PJ, Wells TN, Groot PH, Saxty BA, Hughes SA, Franklin M and Gloger IS

    Department of Molecular Genetics, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406.

    A full-length cDNA clone of 4.3 kb encoding the human ATP-citrate lyase enzyme has been isolated by screening a human cDNA library with the recently isolated rat ATP-citrate lyase cDNA clone [Elshourbagy et al. (1990) J. Biol. Chem. 265, 1430]. Nucleic-acid sequence data indicate that the cDNA contains the complete coding region for the enzyme, which is 1105 amino acids in length with a calculated molecular mass of 121,419 Da. Comparison of the human and rat ATP-citrate lyase cDNA sequences reveals 96.3% amino acid identity throughout the entire sequence. Further sequence analysis identified the His765 catalytic phosphorylation site, the ATP-binding site, as well as the CoA binding site. The human ATP-citrate lyase cDNA clone was subcloned into a mammalian expression vector for expression in African green monkey kidney cells (COS) and Chinese hamster ovary cells (CHO) cells. Transfected COS cells expressed detectable levels of an enzymatically active recombinant ATP-citrate lyase enzyme. Stable, amplified expression of ATP-citrate lyase in CHO cells as achieved by using coamplification with dihydrofolate reductase. Resistant cells expressed high levels of enzymatically active ATP-citrate lyase (3 pg/cell/d). Site-specific mutagenesis of His765----Ala diminishes the catalytic activity of the expressed ATP-citrate lyase protein. Since catalysis of ATP-citrate lyase is postulated to involve the formation of phosphohistidine, these results are consistent with the pattern of earlier observations of the significance of the histidine residue in catalysis of the human ATP-citrate lyase.

    European journal of biochemistry 1992;204;2;491-9

  • Sequence of sites on ATP-citrate lyase and phosphatase inhibitor 2 phosphorylated by multifunctional protein kinase (a glycogen synthase kinase 3 like kinase).

    Ramakrishna S, D'Angelo G and Benjamin WB

    Department of Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook 11794.

    Multifunctional protein kinase (MFPK) phosphorylates ATP-citrate lyase on peptide B on two sites, BT and BS, on threonine and serine, respectively, inhibitor 2 on a threonyl residue, and glycogen synthase at sites 2 and 3. The phosphorylation sites BT and BS of ATP-citrate lyase are dependent on prior phosphorylation at site A whereas site A phosphorylation is decreased by prior phosphorylation at sites BT and BS. To study the MFPK recognition sites and the site-site interactions, the amino acid sequences of ATP-citrate lyase peptide B and inhibitor 2 were determined and compared to each other and to glycogen synthase sites 3-5. The sequence of the tryptic peptide containing the two phosphorylation sites of peptide B is -Phe-Leu-Leu-Asn-Ala-Ser-Gly-Ser-Thr-Ser-Thr(P)-Pro-Ala-Pro-Ser(P)-Arg-, and the sequence of the MFPK phosphorylation site of inhibitor 2 is -Ile-Asp-Glu-Pro-Ser-Thr(P)-Pro-Tyr-. This inhibitor 2 site is identical with the site phosphorylated by glycogen synthase kinase 3/FA. These results suggest that at least some of the sites phosphorylated by MFPK (BT of ATP-citrate lyase, Thr 72 of inhibitor 2, and sites 3b and 4 of glycogen synthase) contain a Ser/Thr flanked by a carboxyl-terminal proline. However, as MFPK did not phosphorylate a series of peptides containing the -X-Thr/Ser-Pro-X- sequence, this minimum consensus sequence is not sufficient for phosphorylation by MFPK.(ABSTRACT TRUNCATED AT 250 WORDS)

    Funded by: NIADDK NIH HHS: AM 18905

    Biochemistry 1990;29;33;7617-24

  • Isoproterenol and insulin control the cellular localization of ATP citrate-lyase through its phosphorylation in adipocytes.

    Strålfors P

    The enzyme ATP citrate-lyase of the fatty acid synthesis pathway is phosphorylated in vitro and in isolated cells. However, no effect of phosphorylation on the enzyme activity has been detected. It is demonstrated that the beta-adrenergic agonist isoproterenol or insulin both promote an immobilization of ATP citrate-lyase, detected in digitonin-permeabilized adipocytes. This effect was reproduced by the cyclic AMP analog cyclic 8-bromo-AMP. The beta-adrenergic antagonist propranolol blocked, but failed to reverse, the isoproterenol-directed effect. Propranolol also failed to reverse the isoproterenol-induced increased phosphorylation of ATP citrate-lyase specifically. In response to increasing concentrations of isoproterenol, an increased extent of phosphorylation of ATP citrate-lyase was paralleled by an increased immobilization of the enzyme. It is suggested that the state of phosphorylation of ATP citrate-lyase in adipocytes controls the localization in the cell.

    The Journal of biological chemistry 1987;262;24;11486-9

  • ATP citrate lyase in human adipose tissue.

    Suzuki M and Okuda H

    ATP citrate lyase [EC. 4.1.3.8] activity in human adipose tissue was assayed. The activity was considerably higher in tissue from patients who had been supplied with nutrients only by intravenous injection than that from patients who had orally taken a meal and then fasted overnight. These results suggest that ATP citrate lyase activity in human adipose tissue is greatly influenced by the nutritional status.

    Journal of nutritional science and vitaminology 1981;27;6;595-8

  • Regional and subcellular distribution of ATP-citrate lyase and other enzymes of acetyl-CoA metabolism in rat brain.

    Szutowicz A and Lysiak W

    The activities of ATP-citrate lyase in frog, guinea pig, mouse, rat, and human brain vary from 18 to 30 mu mol/h/g of tissue, being several times higher than choline acetyltransferase activity. Activities of pyruvate dehydrogenase and acetyl coenzyme A synthetase in rat brain are 206 and 18.4 mu mol/h/g of tissue, respectively. Over 70% of the activities of both choline acetyltransferase and ATP-citrate lyase in secondary fractions are found in synaptosomes. Their preferential localization in synaptosomes and synaptoplasm is supported by RSA values above 2. Acetyl CoA synthetase activity is located mainly in whole brain mitochondria (RSA, 2.33) and its activity in synaptoplasm is low (RSA, 0.25). The activities of pyruvate dehydrogenase, citrate synthase, and carnitine acetyltransferase are present mainly in fractions C and Bp. No pyruvate dehydrogenase activity is found in synaptoplasm. Striatum, cerebral cortex, and cerebellum contain similar activities of pyruvate dehydrogenase, citrate synthase, carnitine acetyltransferase, fatty acid synthetase, and acetyl-CoA hydrolase. Activities of acetyl CoA synthetase, choline acetyltransferase and ATP-citrate lyase in cerebellum are about 10 and 4 times lower, respectively, than in other parts of the brain. These data indicate preferential localization of ATP-citrate lyase in cholinergic nerve endings, and indicate that this enzyme is not a rate limiting step in the synthesis of the acetyl moiety of ACh in brain.

    Journal of neurochemistry 1980;35;4;775-85

Gene lists (7)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.