G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
aldolase C, fructose-bisphosphate
G00000369 (Mus musculus)

Databases (7)

ENSG00000109107 (Ensembl human gene)
230 (Entrez Gene)
134 (G2Cdb plasticity & disease)
ALDOC (GeneCards)
103870 (OMIM)
Marker Symbol
Protein Sequence
P09972 (UniProt)

Literature (20)

Pubmed - other

  • Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer's disease.

    Sultana R, Perluigi M, Newman SF, Pierce WM, Cini C, Coccia R and Butterfield DA

    Department of Chemistry, University of Kentucky , Lexington, KY, USA.

    Previous studies indicated increased levels of protein oxidation in brain from subjects with Alzheimer's disease (AD), raising the question of whether oxidative damage is a late effect of neurodegeneration or precedes and contributes to the pathogenesis of AD. Hence, in the present study we used a parallel proteomic approach to identify oxidatively modified proteins in inferior parietal lobule (IPL) from subjects with mild cognitive impairment (MCI) and early stage-AD (EAD). By comparing to age-matched controls, we reasoned that such analysis could help in understanding potential mechanisms involved in upstream processes in AD pathogenesis. We have identified four proteins that showed elevated levels of protein carbonyls: carbonic anhydrase II (CA II), heat shock protein 70 (Hsp70), mitogen-activated protein kinase I (MAPKI), and syntaxin binding protein I (SBP1) in MCI IPL. In EAD IPL we identified three proteins: phosphoglycerate mutase 1 (PM1), glial fibrillary acidic protein, and fructose bisphospate aldolase C (FBA-C). Our results imply that some of the common targets of protein carbonylation correlated with AD neuropathology and suggest a possible involvement of protein modifications in the AD progression.

    Funded by: NIA NIH HHS: AG-05119, AG-10836

    Antioxidants & redox signaling 2010;12;3;327-36

  • Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Maccarrone G, Hunyadi-Gulyás E, Eberlin MN, Souza GH, Marangoni S, Novello JC, Turck CW and Dias-Neto E

    Laboratório de Neurociências, Instituto de Psiquiatria, Faculdade de Medicina da USP, Rua Dr. Ovídio Pires de Campos, SP, Brazil. martins@mpipsykl.mpg.de

    Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann's Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients' dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease.

    Journal of psychiatric research 2009;43;11;978-86

  • Proteome analysis of schizophrenia patients Wernicke's area reveals an energy metabolism dysregulation.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW and Dias-Neto E

    Laboratório de Neurociências, Instituto de Psiquiatria, Faculdade de Medicina da USP, Rua Dr, Ovídio Pires de Campos, no 785, São Paulo, SP, CEP 05403-010, Brazil. martins@mpipsykl.mpg.de

    Background: Schizophrenia is likely to be a consequence of DNA alterations that, together with environmental factors, will lead to protein expression differences and the ultimate establishment of the illness. The superior temporal gyrus is implicated in schizophrenia and executes functions such as the processing of speech, language skills and sound processing.

    Methods: We performed an individual comparative proteome analysis using two-dimensional gel electrophoresis of 9 schizophrenia and 6 healthy control patients' left posterior superior temporal gyrus (Wernicke's area - BA22p) identifying by mass spectrometry several protein expression alterations that could be related to the disease.

    Results: Our analysis revealed 11 downregulated and 14 upregulated proteins, most of them related to energy metabolism. Whereas many of the identified proteins have been previously implicated in schizophrenia, such as fructose-bisphosphate aldolase C, creatine kinase and neuron-specific enolase, new putative disease markers were also identified such as dihydrolipoyl dehydrogenase, tropomyosin 3, breast cancer metastasis-suppressor 1, heterogeneous nuclear ribonucleoproteins C1/C2 and phosphate carrier protein, mitochondrial precursor. Besides, the differential expression of peroxiredoxin 6 (PRDX6) and glial fibrillary acidic protein (GFAP) were confirmed by western blot in schizophrenia prefrontal cortex.

    Conclusion: Our data supports a dysregulation of energy metabolism in schizophrenia as well as suggests new markers that may contribute to a better understanding of this complex disease.

    BMC psychiatry 2009;9;17

  • Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC, Maccarrone G, Turck CW and Dias-Neto E

    Laboratório de Neurociências, Faculdade de Medicina da USP, Instituto de Psiquiatria, Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, No 785, s/n Consolação, São Paulo, SP, CEP 05403-010, Brazil. danms90@gmail.com

    Global proteomic analysis of post-mortem anterior temporal lobe samples from schizophrenia patients and non-schizophrenia individuals was performed using stable isotope labeling and shotgun proteomics. Our analysis resulted in the identification of 479 proteins, 37 of which showed statistically significant differential expression. Pathways affected by differential protein expression include transport, signal transduction, energy pathways, cell growth and maintenance and protein metabolism. The collection of protein alterations identified here reinforces the importance of myelin/oligodendrocyte and calcium homeostasis in schizophrenia, and reveals a number of new potential markers that may contribute to the understanding of the pathogenesis of this complex disease.

    Journal of neural transmission (Vienna, Austria : 1996) 2009;116;3;275-89

  • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.

    Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ and Zhao Y

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.

    Acetylation of proteins on lysine residues is a dynamic posttranslational modification that is known to play a key role in regulating transcription and other DNA-dependent nuclear processes. However, the extent of this modification in diverse cellular proteins remains largely unknown, presenting a major bottleneck for lysine-acetylation biology. Here we report the first proteomic survey of this modification, identifying 388 acetylation sites in 195 proteins among proteins derived from HeLa cells and mouse liver mitochondria. In addition to regulators of chromatin-based cellular processes, nonnuclear localized proteins with diverse functions were identified. Most strikingly, acetyllysine was found in more than 20% of mitochondrial proteins, including many longevity regulators and metabolism enzymes. Our study reveals previously unappreciated roles for lysine acetylation in the regulation of diverse cellular pathways outside of the nucleus. The combined data sets offer a rich source for further characterization of the contribution of this modification to cellular physiology and human diseases.

    Funded by: NCI NIH HHS: CA107943

    Molecular cell 2006;23;4;607-18

  • Diverse human aldolase C gene promoter regions are required to direct specific LacZ expression in the hippocampus and Purkinje cells of transgenic mice.

    P, Barbieri O, Alfieri A, Rosica A, Astigiano S, Cantatore D, Mancini A, Fattoruso O and Salvatore F

    Facoltà di Scienze Motorie, Università Parthenope, Naples, Italy.

    Aldolase C is selectively expressed in the hippocampus and Purkinje cells in adult mammalian brain. The gene promoter regions governing cell-specific aldolase C expression are obscure. We show that aldolase C messenger expression in the hippocampus is restricted to CA3 neurons. The human distal promoter region (-200/-1200 bp) is essential for beta-galactosidase (beta-gal) expression in CA3 neurons and drives high stripe-like beta-gal expression in Purkinje cells. The 200 bp proximal promoter region is sufficient to drive low brain-specific and stripe-like beta-gal expression in Purkinje cells. Thus, the human aldolase C gene sequences studied drive endogenous-like expression in the brain.

    FEBS letters 2004;578;3;337-44

  • Structure of human brain fructose 1,6-(bis)phosphate aldolase: linking isozyme structure with function.

    Arakaki TL, Pezza JA, Cronin MA, Hopkins CE, Zimmer DB, Tolan DR and Allen KN

    Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA.

    Fructose-1,6-(bis)phosphate aldolase is a ubiquitous enzyme that catalyzes the reversible aldol cleavage of fructose-1,6-(bis)phosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceral-dehyde-3-phosphate or glyceraldehyde, respectively. Vertebrate aldolases exist as three isozymes with different tissue distributions and kinetics: aldolase A (muscle and red blood cell), aldolase B (liver, kidney, and small intestine), and aldolase C (brain and neuronal tissue). The structures of human aldolases A and B are known and herein we report the first structure of the human aldolase C, solved by X-ray crystallography at 3.0 A resolution. Structural differences between the isozymes were expected to account for isozyme-specific activity. However, the structures of isozymes A, B, and C are the same in their overall fold and active site structure. The subtle changes observed in active site residues Arg42, Lys146, and Arg303 are insufficient to completely account for the tissue-specific isozymic differences. Consequently, the structural analysis has been extended to the isozyme-specific residues (ISRs), those residues conserved among paralogs. A complete analysis of the ISRs in the context of this structure demonstrates that in several cases an amino acid residue that is conserved among aldolase C orthologs prevents an interaction that occurs in paralogs. In addition, the structure confirms the clustering of ISRs into discrete patches on the surface and reveals the existence in aldolase C of a patch of electronegative residues localized near the C terminus. Together, these structural changes highlight the differences required for the tissue and kinetic specificity among aldolase isozymes.

    Funded by: NIGMS NIH HHS: GM60616, R01 GM060616

    Protein science : a publication of the Protein Society 2004;13;12;3077-84

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Phospholipase D2 directly interacts with aldolase via Its PH domain.

    Kim JH, Lee S, Kim JH, Lee TG, Hirata M, Suh PG and Ryu SH

    Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.

    Mammalian phospholipase D (PLD) has been implicated in the cellular signal transduction pathways leading to diverse physiological events and known to be regulated by many cellular factors. To identify the proteins that interact with PLD, we performed a protein overlay assay with fractions obtained from the sequential colum 5a8 n chromatographic separation of rat brain cytosol using purified PLD2 as a probe. A protein of molecular mass 40 kDa, which was detected by anti-PLD antibody with overlaying of the purified PLD2, is shown to be aldolase C by peptide-mass fingerprinting with matrix-assisted laser desorption/ionization-time-of flight mass spectrometry (MALDI-TOF-MS). Aldolase A also showed similar binding properties as aldolase C and was co-immunoprecipitated with PLD2 in COS-7 cells overexpressing PLD2 and aldolase A. The PH domain corresponding to amino acids 201-310 of PLD2 was necessary for the interaction observed in vitro, and aldolase A was found to interact with the PH domain of PLD2 specifically, but not with other PH domains. PLD2 activity was inhibited by the presence of purified aldolase A in a dose-dependent manner, and the inhibition by 50% was observed by the addition of less than micromolar aldolase A. Moreover, the inclusion of the aldolase metabolites fructose 1,6-bisphosphate (F-1,6-P) or glyceraldehyde 3-phosphate (G-3-P) resulted in an enhanced interaction between PLD2 and aldolase A with a concomitant increase in the potential ability of aldolase A to inhibit PLD2, which suggests the existence of a possible regulation of the interaction by the change of intracellular concentrations of glycolytic metabolites.

    Biochemistry 2002;41;10;3414-21

  • Interaction between aldolase and vacuolar H+-ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump.

    Lu M, Holliday LS, Zhang L, Dunn WA and Gluck SL

    Departments of Medicine and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA. luming@medicine.ufl.edu

    Vacuolar H(+)-ATPases (V-ATPases) are essential for acidification of intracellular compartments and for proton secretion from the plasma membrane in kidney epithelial cells and osteoclasts. The cellular proteins that regulate V-ATPases remain largely unknown. A screen for proteins that bind the V-ATPase E subunit using the yeast two-hybrid assay identified the cDNA clone coded for aldolase, an enzyme of the glycolytic pathway. The interaction between E subunit and aldolase was confirmed in vitro by precipitation assays using E subunit-glutathione S-transferase chimeric fusion proteins and metabolically labeled aldolase. Aldolase was isolated associated with intact V-ATPase from bovine kidney microsomes and osteoclast-containing mouse marrow cultures in co-immunoprecipitation studies performed using an anti-E subunit monoclonal antibody. The interaction was not affected by incubation with aldolase substrates or products. In immunocytochemical assays, aldolase was found to colocalize with V-ATPase in the renal proximal tubule. In osteoclasts, the aldolase-V-ATPase complex appeared to undergo a subcellular redistribution from perinuclear compartments to the ruffled membranes following activation of resorption. In yeast cells deficient in aldolase, the peripheral V(1) domain of V-ATPase was found to dissociate from the integral membrane V(0) domain, indicating direct coupling of glycolysis to the proton pump. The direct binding interaction between V-ATPase and aldolase may be a new mechanism for the regulation of the V-ATPase and may underlie the proximal tubule acidification defect in hereditary fructose intolerance.

    Funded by: NIDDK NIH HHS: DK38848, R01 DK54362

    The Journal of biological chemistry 2001;276;32;30407-13

  • Mode of interactions of human aldolase isozymes with cytoskeletons.

    Kusakabe T, Motoki K and Hori K

    Department of Biochemistry, Saga Medical School, Nabeshima, Saga, Japan. kusakabe@bcmp.med.harvard.edu

    Three isoforms of fructose-1,6-bisphosphate aldolase were found to bind specifically to the actin-containing filament of the cytoskeleton and to show tissue-specific binding patterns. Aldolase A (muscle type) bound more tightly to the skeletal muscle cytoskeleton among the three isozymes, while aldolase B (liver type) preferred the liver cytoskeleton to those of other tissues. The specific binding of aldolase A to the skeletal muscle cytoskeleton was inhibited strongly by the substrates fructose 1,6-bisphosphate and fructose 1-phosphate. Several mutant aldolases A were examined to identify the amino acid residues or regions that play a role in specific binding. Among the mutant aldolases tested, A-E34D, A-K41N, and A-Y363S exhibited remarkably reduced binding activities. Experiments using FITC-labeled enzymes and Rh-labeled phalloidin disclosed that aldolase A associated with the cytoskeleton. Specifically, when aldolase A was incubated with human fibroblast MRC-5 permeabilized with Triton X-100, aldolase A bound to the actin filaments in the stress fibers within the cell. Aldolase A reversibly inhibited the contraction of MRC-5 cells which usually occurred in the presence of Mg2(+)-ATP and Ca2+. These results provide direct evidence that aldolase binds specifically to the actin-containing stress fibers and suggest that aldolase may regulate cell contraction through its reversible binding to the filaments in the permeabilized MRC-5 fibroblast.

    Archives of biochemistry and biophysics 1997;344;1;184-93

  • Large-scale concatenation cDNA sequencing.

    Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G and Gibbs RA

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7-2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (> 20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (> or = 98% identity), and 16 clones generated nonexact matches (57%-97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching.

    Funded by: NHGRI NIH HHS: 1F32 HG00169-01, F32 HG000169, F33 HG000210, P30 HG00210-05, R01 HG00823, U54 HG003273

    Genome research 1997;7;4;353-8

  • A "double adaptor" method for improved shotgun library construction.

    Andersson B, Wentland MA, Ricafrente JY, Liu W and Gibbs RA

    Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA.

    The efficiency of shotgun DNA sequencing depends to a great extent on the quality of the random-subclone libraries used. We here describe a novel "double adaptor" strategy for efficient construction of high-quality shotgun libraries. In this method, randomly sheared and end-repaired fragments are ligated to oligonucleotide adaptors creating 12-base overhangs. Nonphosphorylated oligonucleotides are used, which prevents formation of adaptor dimers and ensures efficient ligation of insert to adaptor. The vector is prepared from a modified M13 vector, by KpnI/PstI digestion followed by ligation to oligonucleotides with ends complementary to the overhangs created in the digest. These adaptors create 5'-overhangs complementary to those on the inserts. Following annealing of insert to vector, the DNA is directly used for transformation without a ligation step. This protocol is robust and shows three- to fivefold higher yield of clones compared to previous protocols. No chimeric clones can be detected and the background of clones without an insert is <1%. The procedure is rapid and shows potential for automation.

    Funded by: NHGRI NIH HHS: R01 HG00823

    Analytical biochemistry 1996;236;1;107-13

  • Characterization of the transcription-initiation site and of the promoter region within the 5' flanking region of the human aldolase C gene.

    Buono P, Mancini FP, Izzo P and Salvatore F

    Dipartimento di Biochimica e Biotecnologie Mediche, II Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli, Italy.

    Several aldolase C clones from a human genomic library have been identified using a mouse aldolase C cDNA as a hybridization probe. The most complete fragment of the clones identified is 14 kb long and contains the complete aldolase C gene. The nucleotide sequence analysis of more than 5 kb includes the intron/exon organization structure of the gene and the 3' and 5' flanking regions. Although no human cDNA is yet available, a canonical polyadenylation signal at the 3' end of the gene indicates the proximity of the poly(A) addition site. We have analyzed the 5' noncoding region by S1 mapping and primer-extension experiments. The transcription-initiation sites for the human aldolase C gene in brain tissue was located about 1300 bp upstream from the methionine initiation codon. Preliminary functional assays of the promoter by transfection into rat glioma cells have indicated that promoter elements lie between positions -161 and -416 from the start point of transcription.

    European journal of biochemistry 1990;192;3;805-11

  • Assignment of human aldolase C gene to chromosome 17, region cen----q21.1.

    Rocchi M, Vitale E, Covone A, Romeo G, Santamaria R, Buono P, Paolella G and Salvatore F

    Laboratorio di Genetica Molecolare, Istituto G. Gaslini, Genoa, Italy.

    The mapping of the gene coding for human aldolase C has been studied using a specific cDNA probe and genomic blots from a panel of human-hamster somatic cell hybrids. The results show that the aldolase C gene is on chromosome 17. In situ experiments have restricted the mapping to the region 17cen----q21.1. Using the same panel of human-hamster somatic cell hybrids, we have confirmed the localization of aldolase A and B on chromosomes 16 and 9, respectively.

    Human genetics 1989;82;3;279-82

  • The complete nucleotide sequence of the gene coding for the human aldolase C.

    Buono P, Paolella G, Mancini FP, Izzo P and Salvatore F

    Istituto di Scienze Biochimiche, II Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli, Italy.

    Nucleic acids research 1988;16;10;4733

  • Evolutionary implications of the human aldolase-A, -B, -C, and -pseudogene chromosome locations.

    Tolan DR, Niclas J, Bruce BD and Lebo RV

    Biological Sciences Center, Boston University, MA 02215.

    The aldolase genes represent an ancient gene family with tissue-specific isozymic forms expressed only in vertebrates. The chromosomal locations of the aldolase genes provide insight into their tissue-specific and developmentally regulated expression and evolution. DNA probes for the human aldolase-A and -C genes and for an aldolase pseudogene were used to quantify and map the aldolase loci in the haploid human genome. Genomic hybridization of restriction fragments determined that all the aldolase genes exist in single copy in the haploid human genome. Spot-blot analysis of sorted chromosomes mapped human aldolase A to chromosome 16, aldolase C to chromosome 17, the pseudogene to chromosome 10; it previously had mapped the aldolase-B gene to chromosome 9. All loci are unlinked and located on to two pairs of morphologically similar chromosomes, a situation consistent with tetraploidization during isozymic and vertebrate evolution. Sequence comparisons of expressed and flanking regions support this conclusion. These locations on similar chromosome pairs correctly predicted that the aldolase pseudogene arose when sequences from the aldolase-A gene were inserted into the homologous aldolase location on chromosome 10.

    Funded by: NIGMS NIH HHS: GM32344

    American journal of human genetics 1987;41;5;907-24

  • The complete amino acid sequence of the human aldolase C isozyme derived from genomic clones.

    Rottmann WH, Deselms KR, Niclas J, Camerato T, Holman PS, Green CJ and Tolan DR

    The complete protein sequence of the human aldolase C isozyme has been determined from recombinant genomic clones. A genomic fragment of 6673 base pairs was isolated and the DNA sequence determined. Aldolase protein sequences, being highly conserved, allowed the derivation of the sequence of this isozyme by comparison of open reading frames in the genomic DNA to the protein sequence of other human aldolase enzymes. The protein sequence of the third aldolase isozyme found in vertebrates, aldolase C, completes the primary structural determination for this family of isozymes. Overall, the aldolase C isozyme shared 81% amino acid homology with aldolase A and 70% homology with aldolase B. The comparisons with other aldolase isozymes revealed several aldolase C-specific residues which could be involved in its function in the brain. The data indicated that the gene structure of aldolase C is the same as other aldolase genes in birds and mammals, having nine exons separated by eight introns, all in precisely the same positions, only the intron sizes being different. Eight of these exons contain the protein coding region comprised of 363 amino acids. The entire gene is approximately 4 kilobases.

    Funded by: NIGMS NIH HHS: GM32344

    Biochimie 1987;69;2;137-45

  • Multiple forms of fructose diphosphate aldolase in mammalian tissues.

    Penhoet E, Rajkumar T and Rutter WJ

    Proceedings of the National Academy of Sciences of the United States of America 1966;56;4;1275-82

Gene lists (11)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000011 G2C Homo sapiens Human clathrin Human orthologues of mouse clathrin coated vesicle genes adapted from Collins et al (2006) 150
L00000012 G2C Homo sapiens Human Synaptosome Human orthologues of mouse synaptosome adapted from Collins et al (2006) 152
L00000013 G2C Homo sapiens Human mGluR5 Human orthologues of mouse mGluR5 complex adapted from Collins et al (2006) 52
L00000015 G2C Homo sapiens Human NRC Human orthologues of mouse NRC adapted from Collins et al (2006) 186
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000034 G2C Homo sapiens Pocklington H3 Human orthologues of cluster 3 (mouse) from Pocklington et al (2006) 30
L00000049 G2C Homo sapiens TAP-PSD-95-CORE TAP-PSD-95 pull-down core list (ortho) 120
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.