G2Cdb::Gene report

Gene id
G00001603
Gene symbol
CPNE6 (HGNC)
Species
Homo sapiens
Description
copine VI (neuronal)
Orthologue
G00000354 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000028781 (Vega human gene)
Gene
ENSG00000100884 (Ensembl human gene)
9362 (Entrez Gene)
692 (G2Cdb plasticity & disease)
CPNE6 (GeneCards)
Literature
605688 (OMIM)
Marker Symbol
HGNC:2319 (HGNC)
Protein Sequence
O95741 (UniProt)

Literature (10)

Pubmed - other

  • A human protein-protein interaction network: a resource for annotating the proteome.

    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H and Wanker EE

    Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany.

    Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.

    Cell 2005;122;6;957-68

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • Characterization of human copine III as a phosphoprotein with associated kinase activity.

    Caudell EG, Caudell JJ, Tang CH, Yu TK, Frederick MJ and Grimm EA

    Departments of Molecular and Cellular Oncology, Laboratory Medicine, and Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.

    The copines, first described by Creutz et al. [(1998) J. Biol. Chem. 273, 1393-1402], comprise a two C2 domain-containing protein family and are known to aggregate phosphatidylserine membranes in a calcium-dependent manner. No enzymatic function has been attributed to copines yet. Due to a cross-reacting activity of Mikbeta1, an antibody to the IL-2Rbeta chain, we were able to serendipitously purify, partially microsequence, and clone human copine III. The 5 kb copine III transcript is expressed ubiquitously as determined by a multitissue Northern blot analysis. Phosphoamino acid analysis revealed phosphorylation of copine III on serine and threonine residues. In vitro kinase assays were performed with immunoprecipitated endogenous copine III, chromatography-purified endogenous copine III, and recombinant copine III expressed in Saccharomyces cerevisiae. The exogenous substrate myelin basic protein was phosphorylated in all in vitro kinase assays containing copine III immunoprecipitate or purified copine III. A 60-kDa band was observed in corresponding in gel kinase assays with staurosporine-activated cells. Cell lines expressing high levels of copine III protein had correspondingly high kinase activity in copine III antiserum immunoprecipitate. However, the copine amino acid sequences lack the traditional kinase catalytic domain. Therefore, the data suggest copine III may possess an intrinsic kinase activity and represent a novel unconventional kinase family.

    Funded by: NCI NIH HHS: CA45225, CA64906

    Biochemistry 2000;39;42;13034-43

  • Ca2(+)-dependent interaction of N-copine, a member of the two C2 domain protein family, with OS-9, the product of a gene frequently amplified in osteosarcoma.

    Nakayama T, Yaoi T, Kuwajima G, Yoshie O and Sakata T

    Department of Bacteriology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan. nakayama@med.kindai.ac.jp

    N-copine is a novel two C2 domain protein that shows Ca2(+)-dependent phospholipid binding and membrane association. By using yeast two-hybrid assays, we identified OS-9 as a protein capable of interacting with N-copine. We further revealed that the second C2 domain of N-copine bound with the carboxy-terminal region of OS-9. Their interaction in vivo was also confirmed by co-immunoprecipitation from 293E cells co-expressing transfected N-copine and OS-9. In vitro binding assays showed that this interaction was Ca2(+)-dependent. By Northern blot analysis, N-copine and OS-9 were co-expressed in the same regions of human brain. These results reveal that OS-9 is a potential target of N-copine.

    FEBS letters 1999;453;1-2;77-80

  • Localization and subcellular distribution of N-copine in mouse brain.

    Nakayama T, Yaoi T and Kuwajima G

    Shionogi Institute for Medical Science, Osaka, Japan.

    N-Copine is a novel protein with two C2 domains. Its expression is brain specific and up-regulated by neuronal activity such as kainate stimulation and tetanus stimulation evoking hippocampal CA1 long-term potentiation. We examined the localization and subcellular distribution of N-copine in mouse brain. In situ hybridization analysis showed that N-copine mRNA was expressed exclusively in neurons of the hippocampus and in the main and accessory olfactory bulb, where various forms of synaptic plasticity and memory formation are known to occur. In immunohistochemical analyses, N-copine was detected mainly in the cell bodies and dendrites in the neurons, whereas presynaptic proteins such as synaptotagmin I and rab3A were detected in the regions where axons pass through. In fractionation experiments of brain homogenate, N-copine was associated with the membrane fraction in the presence of Ca2+ but not in its absence. As a GST-fusion protein with the second C2 domain of N-copine showed Ca2+-dependent binding to phosphatidylserine, this domain was considered to be responsible for the Ca2+-dependent association of N-copine with the membrane. Thus, N-copine may have a role as a Ca2+ sensor in postsynaptic events, in contrast to the known roles of "double C2 domain-containing proteins," including synaptotagmin I, in presynaptic events.

    Journal of neurochemistry 1999;72;1;373-9

  • N-copine: a novel two C2-domain-containing protein with neuronal activity-regulated expression.

    Nakayama T, Yaoi T, Yasui M and Kuwajima G

    CNS Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan.

    Neuronal activity is often associated with changes in gene expression. By a two-dimensional cDNA-display system, restriction landmark cDNA scanning, we identified a novel gene whose expression in the hippocampus was up-regulated by kainate stimulation. The mRNA expression was detected only in brain and up-regulated by the stimulation evoking CA3-CA1 long-term potentiation. The encoded protein contains two copies of C2-domain, known as the Ca2+-binding domain of PKC-gamma, and shows 49% identity with human copine I. We designated this protein N-copine (neuronal-copine). N-copine may have a role in synaptic plasticity.

    FEBS letters 1998;428;1-2;80-4

  • Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.

    Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A and Sugano S

    International and Interdisciplinary Studies, The University of Tokyo, Japan.

    Using 'oligo-capped' mRNA [Maruyama, K., Sugano, S., 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138, 171-174], whose cap structure was replaced by a synthetic oligonucleotide, we constructed two types of cDNA library. One is a 'full length-enriched cDNA library' which has a high content of full-length cDNA clones and the other is a '5'-end-enriched cDNA library', which has a high content of cDNA clones with their mRNA start sites. The 5'-end-enriched library was constructed especially for isolating the mRNA start sites of long mRNAs. In order to characterize these libraries, we performed one-pass sequencing of randomly selected cDNA clones from both libraries (84 clones for the full length-enriched cDNA library and 159 clones for the 5'-end-enriched cDNA library). The cDNA clones of the polypeptide chain elongation factor 1 alpha were most frequently (nine clones) isolated, and more than 80% of them (eight clones) contained the mRNA start site of the gene. Furthermore, about 80% of the cDNA clones of both libraries whose sequence matched with known genes had the known 5' ends or sequences upstream of the known 5' ends (28 out of 35 for the full length-enriched library and 51 out of 62 for the 5'-end-enriched library). The longest full-length clone of the full length-enriched cDNA library was about 3300 bp (among 28 clones). In contrast, seven clones (out of the 51 clones with the mRNA start sites) from the 5'-end-enriched cDNA library came from mRNAs whose length is more than 3500 bp. These cDNA libraries may be useful for generating 5' ESTs with the information of the mRNA start sites that are now scarce in the EST database.

    Gene 1997;200;1-2;149-56

  • Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.

    Maruyama K and Sugano S

    Institute of Medical Science, University of Tokyo, Japan.

    We have devised a method to replace the cap structure of a mRNA with an oligoribonucleotide (r-oligo) to label the 5' end of eukaryotic mRNAs. The method consists of removing the cap with tobacco acid pyrophosphatase (TAP) and ligating r-oligos to decapped mRNAs with T4 RNA ligase. This reaction was made cap-specific by removing 5'-phosphates of non-capped RNAs with alkaline phosphatase prior to TAP treatment. Unlike the conventional methods that label the 5' end of cDNAs, this method specifically labels the capped end of the mRNAs with a synthetic r-oligo prior to first-strand cDNA synthesis. The 5' end of the mRNA was identified quite simply by reverse transcription-polymerase chain reaction (RT-PCR).

    Gene 1994;138;1-2;171-4

Gene lists (3)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.