G2Cdb::Gene report

Gene id
G00001593
Gene symbol
PIP4K2B (HGNC)
Species
Homo sapiens
Description
phosphatidylinositol-5-phosphate 4-kinase, type II, beta
Orthologue
G00000344 (Mus musculus)

Databases (7)

Gene
ENSG00000141720 (Ensembl human gene)
8396 (Entrez Gene)
699 (G2Cdb plasticity & disease)
PIP5K2B (GeneCards)
Literature
603261 (OMIM)
Marker Symbol
HGNC:8998 (HGNC)
Protein Sequence
P78356 (UniProt)

Synonyms (2)

  • PIP5KIIB
  • PIP5KIIbeta

Literature (13)

Pubmed - other

  • Genomic tagging of endogenous type IIbeta phosphatidylinositol 5-phosphate 4-kinase in DT40 cells reveals a nuclear localisation.

    Richardson JP, Wang M, Clarke JH, Patel KJ and Irvine RF

    Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.

    Previous studies from acutely transfected HeLa cells have identified an acidic alpha-helix in the Type IIbeta PtdIns5P 4-kinase (PIPkin IIbeta) as a putative novel nuclear localisation sequence (Ciruela et al. Biochem. J. 364, 587-591 2000). However, some heterogeneity in cellular localisation was always observed, and other published aspects of PIPkin IIbeta physiology are more consistent with an extra-nuclear function. As a means of resolving whether the endogenous PIPkin IIbeta is nuclear, we have used the high homologous recombination frequency of DT40 cells to knock an epitope tag (Mosedale et al., Nat Struct Biol. 12, 763-771 2005) into one of the alleles of the DT40 PIPkin IIbeta gene. We show that PIPkin IIbeta is expressed as a tagged protein, is active as revealed by immunoprecipitation and enzyme assay, and that cellular fractionation reveals that it is indeed nuclear. Genomic tagging of endogenous proteins in DT40 cells is a technique that offers unique advantages in studying endogenous signalling proteins.

    Funded by: Medical Research Council: MC_U105178811; Wellcome Trust: 063581, 079194

    Cellular signalling 2007;19;6;1309-14

  • A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration.

    Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M and Zoghbi HY

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

    Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins involved in PC degeneration, we developed an interaction network for 54 proteins involved in 23 inherited ataxias and expanded the network by incorporating literature-curated and evolutionarily conserved interactions. We identified 770 mostly novel protein-protein interactions using a stringent yeast two-hybrid screen; of 75 pairs tested, 83% of the interactions were verified in mammalian cells. Many ataxia-causing proteins share interacting partners, a subset of which have been found to modify neurodegeneration in animal models. This interactome thus provides a tool for understanding pathogenic mechanisms common for this class of neurodegenerative disorders and for identifying candidate genes for inherited ataxias.

    Funded by: NICHD NIH HHS: HD24064; NINDS NIH HHS: NS27699

    Cell 2006;125;4;801-14

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Btk-dependent regulation of phosphoinositide synthesis.

    Carpenter CL

    Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, HIM Building, Room 1026, 330 Brookline Avenue, Boston, MA 02215, U.S.A. ccarpent@bidmc.harvard.edu

    Activation of the BCR (B cell antigen receptor) stimulates the production of both PtdIns(3,4,5) P3 and Ins(1,4,5) P3. PtdIns(3,4,5) P3 and Ins(1,4,5) P3 are generated from a common substrate, PtdIns(4,5) P2. In some systems, continuous PtdIns(4,5) P2 synthesis is necessary for maximal Ins(1,4,5) P3 production, but whether this is true for the BCR, and whether PtdIns(4,5) P2 synthesis is regulated following BCR activation, are not known. We found that Btk (Bruton's tyrosine kinase), a member of the Tec family of cytoplasmic protein tyrosine kinases, is constitutively associated with PIP5Ks (phosphatidylinositol 4-phosphate 5-kinases), the enzymes that synthesize PtdIns(4,5) P2. Btk functions as a shuttle to bring PIP5K to the plasma membrane as a means of stimulating PtdIns(4,5) P2 synthesis. The Btk-PIP5K complex appears to localize to lipid rafts. This complex provides a novel shuttling mechanism that allows Btk to regulate the production of the substrate required by both its upstream activator phosphoinositide 3-kinase and its downstream target phospholipase Cgamma2.

    Funded by: NIGMS NIH HHS: GM 53590

    Biochemical Society transactions 2004;32;Pt 2;326-9

  • Overexpression of the amplified Pip4k2beta gene from 17q11-12 in breast cancer cells confers proliferation advantage.

    Luoh SW, Venkatesan N and Tripathi R

    Department of Medicine, Division of Hematology and Oncology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.

    Gene amplification is common in solid tumors and is associated with adverse prognosis, disease progression, and development of drug resistance. A small segment from chromosome 17q11-12 containing the HER-2/Neu gene is amplified in about 25% of breast cancer. HER-2/Neu amplification is associated with adverse prognosis and may predict response to chemotherapy and hormonal manipulation. Moreover, HER-2/Neu amplification may select patients for anti-HER-2/Neu-based therapy with Herceptin. We and others recently described a common sequence element from the HER-2/Neu region that was amplified in breast cancer cells. In addition, most, if not all, of the amplified genes from this region display overexpression. This raises the intriguing possibility that genes immediately adjacent to HER-2/Neu may influence the biological behavior of breast cancer carrying HER-2/Neu amplification and serve as rational targets for therapy. By extracting sequence information from public databases, we have constructed a contig in bacterial artificial chromosomes (BACs) that extends from HER-2/Neu to a phosphotidylinositol phosphate kinase (PIPK), Pip4k2beta from 17q11-12. Although a role of PI-3-kinase and AKT in cancer biology has been previously described, PIPK has not been previously implicated. We show that Pip4k2beta, initially known as Pip5k2beta, is amplified in a subset of breast cancer cell lines and primary breast cancer samples that carry HER-2/Neu amplification. Out of eight breast cancer cell lines with HER-2/Neu amplification, three have concomitant amplification of the Pip4k2beta gene--UACC-812, BT-474 and ZR-75-30. Similarly, two out of four primary breast tumors with HER-2/Neu amplification carry Pip4k2beta gene amplification. Intriguingly, one tumor displays an increase in the gene copy number of Pip4k2beta that is significantly more than that of HER-2/Neu. Moreover, dual color FISH reveals that amplified Pip4k2beta gene may exist in a distinct structure from that of HER-2/Neu in ZR-75-30 cell line. These studies suggest that Pip4k2beta may reside on an amplification maximum distinct from that of HER-2/Neu and serve as an independent target for amplification and selective retention. Pip4k2beta amplification is associated with overexpression at the RNA and protein level in breast cancer cell lines. Stable expression of Pip4k2beta in breast cancer cell lines with and without HER-2/Neu amplification increases cell proliferation and anchorage-independent growth. The above observations implicate Pip4k2beta in the development and/or progression of breast cancer. Our study suggests that Pip4k2beta may be a distinct target for gene amplification and selective retention from 17q11-12.

    Oncogene 2004;23;7;1354-63

  • Branches of the B cell antigen receptor pathway are directed by protein conduits Bam32 and Carma1.

    Niiro H and Clark EA

    Department of Microbiology, University of Washington, Seattle, WA 98195, USA.

    Adaptor proteins act as conduits to channel upstream signals into downstream effector branches. Two B cell-associated adaptors, Bam32 and Carma1, regulate the ERK, JNK, and NF-kappaB branches of the BCR signaling pathway. Recent studies of Bam32-/- and Carma1-/- mice suggest that each adaptor controls a distinct conduit regulating either only proliferation (Bam32) or both the proliferation and survival of B cells (Carma1).

    Funded by: NIAID NIH HHS: AI44250, AI45088

    Immunity 2003;19;5;637-40

  • NotI flanking sequences: a tool for gene discovery and verification of the human genome.

    Kutsenko AS, Gizatullin RZ, Al-Amin AN, Wang F, Kvasha SM, Podowski RM, Matushkin YG, Gyanchandani A, Muravenko OV, Levitsky VG, Kolchanov NA, Protopopov AI, Kashuba VI, Kisselev LL, Wasserman W, Wahlestedt C and Zabarovsky ER

    Center for Genomics and Bioinformatics, Karolinska Institute, 171 77 Stockholm, Sweden.

    A set of 22 551 unique human NotI flanking sequences (16.2 Mb) was generated. More than 40% of the set had regions with significant similarity to known proteins and expressed sequences. The data demonstrate that regions flanking NotI sites are less likely to form nucleosomes efficiently and resemble promoter regions. The draft human genome sequence contained 55.7% of the NotI flanking sequences, Celera's database contained matches to 57.2% of the clones and all public databases (including non-human and previously sequenced NotI flanks) matched 89.2% of the NotI flanking sequences (identity > or =90% over at least 50 bp, data from December 2001). The data suggest that the shotgun sequencing approach used to generate the draft human genome sequence resulted in a bias against cloning and sequencing of NotI flanks. A rough estimation (based primarily on chromosomes 21 and 22) is that the human genome contains 15 000-20 000 NotI sites, of which 6000-9000 are unmethylated in any particular cell. The results of the study suggest that the existing tools for computational determination of CpG islands fail to identify a significant fraction of functional CpG islands, and unmethylated DNA stretches with a high frequency of CpG dinucleotides can be found even in regions with low CG content.

    Nucleic acids research 2002;30;14;3163-70

  • Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors.

    Boronenkov IV, Loijens JC, Umeda M and Anderson RA

    Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.

    Phosphoinositide signal transduction pathways in nuclei use enzymes that are indistinguishable from their cytosolic analogues. We demonstrate that distinct phosphatidylinositol phosphate kinases (PIPKs), the type I and type II isoforms, are concentrated in nuclei of mammalian cells. The cytosolic and nuclear PIPKs display comparable activities toward the substrates phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate. Indirect immunofluorescence revealed that these kinases were associated with distinct subnuclear domains, identified as "nuclear speckles," which also contained pre-mRNA processing factors. A pool of nuclear phosphatidylinositol bisphosphate (PIP2), the product of these kinases, was also detected at these same sites by monoclonal antibody staining. The localization of PIPKs and PIP2 to speckles is dynamic in that both PIPKs and PIP2 reorganize along with other speckle components upon inhibition of mRNA transcription. Because PIPKs have roles in the production of most phosphatidylinositol second messengers, these findings demonstrate that phosphatidylinositol signaling pathways are localized at nuclear speckles. Surprisingly, the PIPKs and PIP2 are not associated with invaginations of the nuclear envelope or any nuclear membrane structure. The putative absence of membranes at these sites suggests novel mechanisms for the generation of phosphoinositides within these structures.

    Funded by: NIGMS NIH HHS: GM51968, R01 GM051968

    Molecular biology of the cell 1998;9;12;3547-60

  • Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation.

    Rao VD, Misra S, Boronenkov IV, Anderson RA and Hurley JH

    Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0580, USA.

    Phosphoinositide kinases play central roles in signal transduction by phosphorylating the inositol ring at specific positions. The structure of one such enzyme, type IIbeta phosphatidylinositol phosphate kinase, reveals a protein kinase ATP-binding core and demonstrates that all phosphoinositide kinases belong to one superfamily. The enzyme is a disc-shaped homodimer with a 33 x 48 A basic flat face that suggests an electrostatic mechanism for plasma membrane targeting. Conserved basic residues form a putative phosphatidylinositol phosphate specificity site. The substrate-binding site is open on one side, consistent with dual specificity for phosphatidylinositol 3- and 5-phosphates. A modeled complex with membrane-bound substrate and ATP shows how a phosphoinositide kinase can phosphorylate its substrate in situ at the membrane interface.

    Funded by: NIGMS NIH HHS: GM51968, GM57549

    Cell 1998;94;6;829-39

  • A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate.

    Rameh LE, Tolias KF, Duckworth BC and Cantley LC

    Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. lrameh@bidmc.harvard.edu

    Phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2), a key molecule in the phosphoinositide signalling pathway, was thought to be synthesized exclusively by phosphorylation of PtdIns-4-P at the D-5 position of the inositol ring. The enzymes that produce PtdIns-4,5-P2 in vitro fall into two related subfamilies (type I and type II PtdInsP-5-OH kinases, or PIP(5)Ks) based on their enzymatic properties and sequence similarities'. Here we have reinvestigated the substrate specificities of these enzymes. As expected, the type I enzyme phosphorylates PtdIns-4-P at the D-5 position of the inositol ring. Surprisingly, the type II enzyme, which is abundant in some tissues, phosphorylates PtdIns-5-P at the D-4 position, and thus should be considered as a 4-OH kinase, or PIP(4)K. The earlier error in characterizing the activity of the type II enzyme is due to the presence of contaminating PtdIns-5-P in commercial preparations of PtdIns-4-P. Although PtdIns-5-P was previously thought not to exist in vivo, we find evidence for the presence of this lipid in mammalian fibroblasts, establishing a new pathway for PtdIns-4,5-P2 synthesis.

    Nature 1997;390;6656;192-6

  • A novel interaction between the juxtamembrane region of the p55 tumor necrosis factor receptor and phosphatidylinositol-4-phosphate 5-kinase.

    Castellino AM, Parker GJ, Boronenkov IV, Anderson RA and Chao MV

    Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021, USA.

    Tumor necrosis factor-alpha (TNF-alpha) binding to its receptors leads to a diversity of biological responses. The actions of TNF are the result of the interaction of cytoplasmic proteins that bind directly to the intracellular domains of the two TNF receptors, p55 and p75. Here we report a novel interaction between the juxtamembrane region of the p55 TNF receptor and a newly discovered 47-kDa isoform of phosphatidylinositol-4-phosphate 5-kinase (PIP5K), a member of the enzyme family that generates the key signaling messenger, phosphatidylinositol 4,5-bisphosphate. The interaction was found to be specific for the p55 TNF receptor and was not observed with the p75 TNF receptor, the Fas antigen, or the p75 neurotrophin receptor, which are other members of the TNF receptor superfamily. In vitro experiments using recombinant fusion proteins verify the authenticity of the interaction between the p55 receptor and PIP5KIIbeta, a new isoform of PIP5K, but not the previously identified 53-kDa PIP5KIIalpha. Treatment of HeLa cells with TNF-alpha resulted in an increased PIP5K activity. These results indicate that phosphatidylinositol turnover may be linked to stimulation of the p55 TNF receptor and suggest that a subset of TNF responses may result from the direct association of PIP5KIIbeta with the p55 TNF receptor.

    Funded by: NCI NIH HHS: CA56490; NIGMS NIH HHS: GM38906, GM51968

    The Journal of biological chemistry 1997;272;9;5861-70

Gene lists (5)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.