G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase)
G00000307 (Mus musculus)

Databases (7)

ENSG00000023228 (Ensembl human gene)
4719 (Entrez Gene)
644 (G2Cdb plasticity & disease)
NDUFS1 (GeneCards)
157655 (OMIM)
Marker Symbol
HGNC:7707 (HGNC)
Protein Sequence
P28331 (UniProt)

Synonyms (1)

  • CI-75k

Literature (20)

Pubmed - other

  • Patients with Leber hereditary optic neuropathy fail to compensate impaired oxidative phosphorylation.

    Korsten A, de Coo IF, Spruijt L, de Wit LE, Smeets HJ and Sluiter W

    Department of Neurology, Erasmus MC Rotterdam, The Netherlands.

    Ninety-five percent of Leber hereditary optic neuropathy (LHON) patients carry a mutation in one out of three mtDNA-encoded ND subunits of complex I. Penetrance is reduced and more male than female carriers are affected. To assess if a consistent biochemical phenotype is associated with LHON expression, complex I- and complex II-dependent adenosine triphosphate synthesis rates (CI-ATP, CII-ATP) were determined in digitonin-permeabilized peripheral blood mononuclear cells (PBMCs) of thirteen healthy controls and for each primary mutation of a minimum of three unrelated patients and of three unrelated carriers with normal vision and were normalized per mitochondrion (citrate synthase activity) or per cell (protein content). We found that in mitochondria, CI-ATP and CII-ATP were impaired irrespective of the primary LHON mutation and clinical expression. An increase in mitochondrial density per cell compensated for the dysfunctional mitochondria in LHON carriers but was insufficient to result in a normal biochemical phenotype in early-onset LHON patients.

    Biochimica et biophysica acta 2010;1797;2;197-203

  • Defining the human deubiquitinating enzyme interaction landscape.

    Sowa ME, Bennett EJ, Gygi SP and Harper JW

    Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

    Funded by: NIA NIH HHS: AG085011, R01 AG011085, R01 AG011085-16; NIGMS NIH HHS: GM054137, GM67945, R01 GM054137, R01 GM054137-14, R01 GM067945

    Cell 2009;138;2;389-403

  • Association study between single-nucleotide polymorphisms in 199 drug-related genes and commonly measured quantitative traits of 752 healthy Japanese subjects.

    Saito A, Kawamoto M and Kamatani N

    Division of Genomic Medicine, Department of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan. a-saito@horae.dti.ne.jp

    With dense single-nucleotide polymorphism (SNP) maps for 199 drug-related genes, we examined associations between 4190 SNPs and 38 commonly measured quantitative traits using data from 752 healthy Japanese subjects. On analysis, we observed a strong association between five SNPs within the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene and serum total bilirubin levels (minimum P-value in Mann-Whitney test=1.82 x 10(10)). UGT1A1 catalyzes the conjugation of bilirubin with glucuronic acid, thus enhancing bilirubin elimination. This enzyme is known to play an important role in the variation of serum bilirubin levels. The five SNPs, including a nonsynonymous SNP-rs4148323 (211G>A or G71R variant allele known as UGT1A1*6)-showed strong linkage disequilibrium with each other. No other genes were clearly associated with serum total bilirubin levels. Results of linear multiple regression analysis on serum total bilirubin levels followed by analysis of variance showed that at least 13% of the variance in serum total bilirubin levels could be explained by three haplotype-tagging SNPs in the UGT1A1 gene.

    Journal of human genetics 2009;54;6;317-23

  • Proteome analysis of schizophrenia patients Wernicke's area reveals an energy metabolism dysregulation.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW and Dias-Neto E

    Laboratório de Neurociências, Instituto de Psiquiatria, Faculdade de Medicina da USP, Rua Dr, Ovídio Pires de Campos, no 785, São Paulo, SP, CEP 05403-010, Brazil. martins@mpipsykl.mpg.de

    Background: Schizophrenia is likely to be a consequence of DNA alterations that, together with environmental factors, will lead to protein expression differences and the ultimate establishment of the illness. The superior temporal gyrus is implicated in schizophrenia and executes functions such as the processing of speech, language skills and sound processing.

    Methods: We performed an individual comparative proteome analysis using two-dimensional gel electrophoresis of 9 schizophrenia and 6 healthy control patients' left posterior superior temporal gyrus (Wernicke's area - BA22p) identifying by mass spectrometry several protein expression alterations that could be related to the disease.

    Results: Our analysis revealed 11 downregulated and 14 upregulated proteins, most of them related to energy metabolism. Whereas many of the identified proteins have been previously implicated in schizophrenia, such as fructose-bisphosphate aldolase C, creatine kinase and neuron-specific enolase, new putative disease markers were also identified such as dihydrolipoyl dehydrogenase, tropomyosin 3, breast cancer metastasis-suppressor 1, heterogeneous nuclear ribonucleoproteins C1/C2 and phosphate carrier protein, mitochondrial precursor. Besides, the differential expression of peroxiredoxin 6 (PRDX6) and glial fibrillary acidic protein (GFAP) were confirmed by western blot in schizophrenia prefrontal cortex.

    Conclusion: Our data supports a dysregulation of energy metabolism in schizophrenia as well as suggests new markers that may contribute to a better understanding of this complex disease.

    BMC psychiatry 2009;9;17

  • Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79 years from the 1932 Scottish Mental Survey.

    Starr JM, Shiels PG, Harris SE, Pattie A, Pearce MS, Relton CL and Deary IJ

    MRC Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Royal Victoria Hospital, Edinburgh EH4 2DN, UK. jstarr@staffmail.ed.ac.uk

    Telomere shortening is a biomarker of cellular senescence and is associated with a wide range of age-related disease. Oxidative stress is also associated with physiological aging and several age-related diseases. Non-human studies suggest that variants in oxidative stress genes may contribute to both telomere shortening and biological aging. We sought to test whether oxidative stress-related gene polymorphisms contribute to variance in both telomere length and physical biomarkers of aging in humans. Telomere lengths were calculated for 190 (82 men, 108 women) participants aged 79 years and associations with 384 SNPs, from 141 oxidative stress genes, identified 9 significant SNPS, of which those from 5 genes (GSTZ1, MSRA, NDUFA3, NDUFA8, VIM) had robust associations with physical aging biomarkers, respiratory function or grip strength. Replication of associations in a sample of 318 (120 males, 198 females) participants aged 50 years confirmed significant associations for two of the five SNPs (MSRA rs4841322, p=0.008; NDUFA8 rs6822, p=0.048) on telomere length. These data indicate that oxidative stress genes may be involved in pathways that lead to both telomere shortening and physiological aging in humans. Oxidative stress may explain, at least in part, associations between telomere shortening and physiological aging.

    Funded by: Biotechnology and Biological Sciences Research Council: S18386; Chief Scientist Office: CZB/4/505, ETM/55; Medical Research Council; Wellcome Trust

    Mechanisms of ageing and development 2008;129;12;745-51

  • Polymorphisms in mitochondrial genes and prostate cancer risk.

    Wang L, McDonnell SK, Hebbring SJ, Cunningham JM, St Sauver J, Cerhan JR, Isaya G, Schaid DJ and Thibodeau SN

    Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, MN 55905, USA.

    The mitochondrion, conventionally thought to be an organelle specific to energy metabolism, is in fact multifunctional and implicated in many diseases, including cancer. To evaluate whether mitochondria-related genes are associated with increased risk for prostate cancer, we genotyped 24 single-nucleotide polymorphisms (SNP) within the mitochondrial genome and 376 tagSNPs localized to 78 nuclear-encoded mitochondrial genes. The tagSNPs were selected to achieve > or = 80% coverage based on linkage disequilibrium. We compared allele and haplotype frequencies in approximately 1,000 prostate cancer cases with approximately 500 population controls. An association with prostate cancer was not detected for any of the SNPs within the mitochondrial genome individually or for 10 mitochondrial common haplotypes when evaluated using a global score statistic. For the nuclear-encoded genes, none of the tagSNPs were significantly associated with prostate cancer after adjusting for multiple testing. Nonetheless, we evaluated unadjusted P values by comparing our results with those from the Cancer Genetic Markers of Susceptibility (CGEMS) phase I data set. Seven tagSNPs had unadjusted P < or = 0.05 in both our data and in CGEMS (two SNPs were identical and five were in strong linkage disequilibrium with CGEMS SNPs). These seven SNPs (rs17184211, rs4147684, rs4233367, rs2070902, rs3829037, rs7830235, and rs1203213) are located in genes MTRR, NDUFA9, NDUFS2, NDUFB9, and COX7A2, respectively. Five of the seven SNPs were further included in the CGEMS phase II study; however, none of the findings for these were replicated. Overall, these results suggest that polymorphisms in the mitochondrial genome and those in the nuclear-encoded mitochondrial genes evaluated are not substantial risk factors for prostate cancer.

    Funded by: NCI NIH HHS: CA91956, P50 CA091956, P50 CA091956-020001

    Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2008;17;12;3558-66

  • A genetic association analysis of cognitive ability and cognitive ageing using 325 markers for 109 genes associated with oxidative stress or cognition.

    Harris SE, Fox H, Wright AF, Hayward C, Starr JM, Whalley LJ and Deary IJ

    Department of Psychology, University of Edinburgh, Edinburgh, UK. Sarah.Harris@hgu.mrc.ac.uk <Sarah.Harris@hgu.mrc.ac.uk&gt;

    Background: Non-pathological cognitive ageing is a distressing condition affecting an increasing number of people in our 'ageing society'. Oxidative stress is hypothesised to have a major role in cellular ageing, including brain ageing.

    Results: Associations between cognitive ageing and 325 single nucleotide polymorphisms (SNPs), located in 109 genes implicated in oxidative stress and/or cognition, were examined in a unique cohort of relatively healthy older people, on whom we have cognitive ability scores at ages 11 and 79 years (LBC1921). SNPs showing a significant positive association were then genotyped in a second cohort for whom we have cognitive ability scores at the ages of 11 and 64 years (ABC1936). An intronic SNP in the APP gene (rs2830102) was significantly associated with cognitive ageing in both LBC1921 and a combined LBC1921/ABC1936 analysis (p < 0.01), but not in ABC1936 alone.

    Conclusion: This study suggests a possible role for APP in normal cognitive ageing, in addition to its role in Alzheimer's disease.

    Funded by: Medical Research Council: MRC_MC_U127561128

    BMC genetics 2007;8;43

  • cAMP controls oxygen metabolism in mammalian cells.

    Piccoli C, Scacco S, Bellomo F, Signorile A, Iuso A, Boffoli D, Scrima R, Capitanio N and Papa S

    Department of Biomedical Science, University of Foggia, Foggia, Italy.

    The impact of cAMP on ROS-balance in human and mammalian cell cultures was studied. cAMP reduced accumulation of ROS induced by serum-limitation, under conditions in which there was no significant change in the activity of scavenger systems. This effect was associated with cAMP-dependent activation of the NADH-ubiquinone oxidoreductase activity of complex I. In fibroblasts from a patient a genetic defect in the 75 kDa FeS-protein subunit of complex I resulted in inhibition of the activity of the complex and enhanced ROS production, which were reversed by cAMP. A missense genetic defect in the NDUFS4 subunit, putative substrate of PKA, suppressed, on the other hand, the activity of the complex and prevented ROS production.

    FEBS letters 2006;580;18;4539-43

  • Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I.

    Iuso A, Scacco S, Piccoli C, Bellomo F, Petruzzella V, Trentadue R, Minuto M, Ripoli M, Capitanio N, Zeviani M and Papa S

    Department of Medical Biochemistry, Biology, and Physics, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy.

    The pathogenic mechanism of a G44A nonsense mutation in the NDUFS4 gene and a C1564A mutation in the NDUFS1 gene of respiratory chain complex I was investigated in fibroblasts from human patients. As previously observed the NDUFS4 mutation prevented complete assembly of the complex and caused full suppression of the activity. The mutation (Q522K replacement) in NDUFS1 gene, coding for the 75-kDa Fe-S subunit of the complex, was associated with (a) reduced level of the mature complex, (b) marked, albeit not complete, inhibition of the activity, (c) accumulation of H(2)O(2) and O(2)(.-) in mitochondria, (d) decreased cellular content of glutathione, (e) enhanced expression and activity of glutathione peroxidase, and (f) decrease of the mitochondrial potential and enhanced mitochondrial susceptibility to reactive oxygen species (ROS) damage. No ROS increase was observed in the NDUFS4 mutation. Exposure of the NDUFS1 mutant fibroblasts to dibutyryl-cAMP stimulated the residual NADH-ubiquinone oxidoreductase activity, induced disappearance of ROS, and restored the mitochondrial potential. These are relevant observations for a possible therapeutical strategy in NDUFS1 mutant patients.

    The Journal of biological chemistry 2006;281;15;10374-80

  • Towards a proteome-scale map of the human protein-protein interaction network.

    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP and Vidal M

    Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.

    Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions. Using a stringent, high-throughput yeast two-hybrid system, we tested pairwise interactions among the products of approximately 8,100 currently available Gateway-cloned open reading frames and detected approximately 2,800 interactions. This data set, called CCSB-HI1, has a verification rate of approximately 78% as revealed by an independent co-affinity purification assay, and correlates significantly with other biological attributes. The CCSB-HI1 data set increases by approximately 70% the set of available binary interactions within the tested space and reveals more than 300 new connections to over 100 disease-associated proteins. This work represents an important step towards a systematic and comprehensive human interactome project.

    Funded by: NCI NIH HHS: R33 CA132073; NHGRI NIH HHS: P50 HG004233, R01 HG001715, RC4 HG006066, U01 HG001715; NHLBI NIH HHS: U01 HL098166

    Nature 2005;437;7062;1173-8

  • Generation and annotation of the DNA sequences of human chromosomes 2 and 4.

    Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH and Wilson RK

    Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St. Louis, Missouri 63108, USA.

    Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.

    Nature 2005;434;7034;724-31

  • Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene.

    Martín MA, Blázquez A, Gutierrez-Solana LG, Fernández-Moreira D, Briones P, Andreu AL, Garesse R, Campos Y and Arenas J

    Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain.

    Background: Mutations in the nuclear-encoded subunits of complex I of the mitochondrial respiratory chain are a recognized cause of Leigh syndrome (LS). Recently, 6 mutations in the NDUFS1 gene were identified in 3 families.

    Objective: To describe a Spanish family with LS, complex I deficiency in muscle, and a novel mutation in the NDUFS1 gene.

    Design: Using molecular genetic approaches, we identified the underlying molecular defect in a patient with LS with a complex I defect.

    Patient: The proband was a child who displayed the clinical features of LS.

    Results: Muscle biochemistry results showed a complex I defect of the mitochondrial respiratory chain. Sequencing analysis of the mitochondrial DNA-encoded ND genes, the nuclear DNA-encoded NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7, NDUFS8, and NDUFAB1 genes, and the complex I assembly factor CIA30 gene revealed a novel homozygous L231V mutation (c.691C-->G) in the NDUFS1 gene. The parents were heterozygous carriers of the L231V mutation.

    Conclusions: Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us understand how molecular defects can lead to complex I deficiency.

    Archives of neurology 2005;62;4;659-61

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain.

    Ricci JE, Muñoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N, Scheffler IE, Ellisman MH and Green DR

    Division of Cellular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.

    Mitochondrial outer membrane permeabilization and cytochrome c release promote caspase activation and execution of apoptosis through cleavage of specific caspase substrates in the cell. Among the first targets of activated caspases are the permeabilized mitochondria themselves, leading to disruption of electron transport, loss of mitochondrial transmembrane potential (DeltaPsim), decline in ATP levels, production of reactive oxygen species (ROS), and loss of mitochondrial structural integrity. Here, we identify NDUFS1, the 75 kDa subunit of respiratory complex I, as a critical caspase substrate in the mitochondria. Cells expressing a noncleavable mutant of p75 sustain DeltaPsim and ATP levels during apoptosis, and ROS production in response to apoptotic stimuli is dampened. While cytochrome c release and DNA fragmentation are unaffected by the noncleavable p75 mutant, mitochondrial morphology of dying cells is maintained, and loss of plasma membrane integrity is delayed. Therefore, caspase cleavage of NDUFS1 is required for several mitochondrial changes associated with apoptosis.

    Funded by: NCI NIH HHS: CA69381; NCRR NIH HHS: P41 RR04050; NIAID NIH HHS: AI40646, AI47891; NIGMS NIH HHS: GM52735; NINDS NIH HHS: R01 NS14718

    Cell 2004;117;6;773-86

  • Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency.

    Bénit P, Chretien D, Kadhom N, de Lonlay-Debeney P, Cormier-Daire V, Cabral A, Peudenier S, Rustin P, Munnich A and Rötig A

    INSERM U393, Service de Génétique, Hôpital Necker-Enfants Malades, 75015 Paris, France.

    Reduced nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase (complex I) is the largest complex of the mitochondrial respiratory chain and complex I deficiency accounts for approximately 30% cases of respiratory-chain deficiency in humans. Only seven mitochondrial DNA genes, but >35 nuclear genes encode complex I subunits. In an attempt to elucidate the molecular bases of complex I deficiency, we studied the six most-conserved complex I nuclear genes (NDUFV1, NDUFS8, NDUFS7, NDUFS1, NDUFA8, and NDUFB6) in a series of 36 patients with isolated complex I deficiency by denaturing high-performance liquid chromatography and by direct sequencing of the corresponding cDNA from cultured skin fibroblasts. In 3/36 patients, we identified, for the first time, five point mutations (del222, D252G, M707V, R241W, and R557X) and one large-scale deletion in the NDUFS1 gene. In addition, we found six novel NDUFV1 mutations (Y204C, C206G, E214K, IVS 8+41, A432P, and del nt 989-990) in three other patients. The six unrelated patients presented with hypotonia, ataxia, psychomotor retardation, or Leigh syndrome. These results suggest that screening for complex I nuclear gene mutations is of particular interest in patients with complex I deficiency, even when normal respiratory-chain-enzyme activities in cultured fibroblasts are observed.

    American journal of human genetics 2001;68;6;1344-52

  • cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed.

    Loeffen JL, Triepels RH, van den Heuvel LP, Schuelke M, Buskens CA, Smeets RJ, Trijbels JM and Smeitink JA

    University Hospital Nijmegen, Nijmegen Center for Mitochondrial Disorders, The Netherlands.

    NADH:ubiquinone oxidoreductase (complex I) is an extremely complicated multiprotein complex located in the inner mitochondrial membrane. Its main function is the transport of electrons from NADH to ubiquinone, which is accompanied by translocation of protons from the mitochondrial matrix to the intermembrane space. Human complex I appears to consist of 41 subunits of which 34 are encoded by nDNA. Here we report the cDNA sequences of the hitherto uncharacterized 8 nuclear encoded subunits, all located within the hydrophobic protein (HP) fraction of complex I. Now all currently known 41 proteins of human NADH:ubiquinone oxidoreductase have been characterized and reported in literature, which enables more complete mutational analysis studies of isolated complex I-deficient patients.

    Biochemical and biophysical research communications 1998;253;2;415-22

  • Localization of the human 75-kDal Fe-S protein of NADH-coenzyme Q reductase gene (NDUFS1) to 2q33----q34.

    Duncan AM, Chow W and Robinson BH

    Department of Pathology, Queen's University, Ontario, Toronto, Canada.

    Cytogenetics and cell genetics 1992;60;3-4;212-3

  • Determination of the cDNA sequence for the human mitochondrial 75-kDa Fe-S protein of NADH-coenzyme Q reductase.

    Chow W, Ragan I and Robinson BH

    Department of Biochemistry and Paediatrics, University of Toronto, Canada.

    A human-hepatoma cDNA lambda gt11 expression library was probed with an antibody to holoenzyme complex I (NADH-CoQ reductase) of the respiratory chain. One of the 30 antibody positive clones was purified to homogeneity, amplified by the polymerase chain reaction (PCR), subcloned and sequenced. It proved to be highly similar to the cDNA sequence for the bovine 75-kDa Fe--S protein. Using the sequence obtained from this library, both sense and antisense oligonucleotides were constructed and used to probe a human kidney cDNA library using PCR amplification with oligonucleotides that flank the polylinker region of the lambda phage. Two further cDNA clones were obtained which overlapped and covered the entire cDNA sequence of 2526 bp. The encoded protein of 727 amino acids has 21 amino acids that differ from the bovine-protein sequence. Northern blot analysis of mRNA from fibroblasts of complex-I deficient patients revealed no abnormalities. We show that this Fe--S protein has significant similarity with (a) the gamma chain of the hydrogen hydrogenase of Alcaligenes eutrophus and (b) the A chain of the formate dehydrogenase of Methanobacterium formicum.

    European journal of biochemistry 1991;201;3;547-50

  • Complex I binds several mitochondrial NAD-coupled dehydrogenases.

    Sumegi B and Srere PA

    NADH:ubiquinone reductase (complex I) of the mitochondrial inner membrane respiratory chain binds a number of mitochondrial matrix NAD-linked dehydrogenases. These include pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, mitochondrial malate dehydrogenase, and beta-hydroxyacyl-CoA dehydrogenase. No binding was detected between complex I and cytosolic malate dehydrogenase, glutamate dehydrogenase, NAD-isocitrate dehydrogenase, lipoamide dehydrogenase, citrate synthase, or fumarase. The dehydrogenases that bound to complex I did not bind to a preparation of complex II and III, nor did they bind to liposomes. The binding of pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and mitochondrial malate dehydrogenase to complex I is a saturable process. Based upon the amount of binding observed in these in vitro studies, there is enough inner membrane present in the mitochondria to bind the dehydrogenases in the matrix space. The possible metabolic significance of these interactions is discussed.

    Funded by: NIADDK NIH HHS: 5-R01-AM11313-17

    The Journal of biological chemistry 1984;259;24;15040-5

Gene lists (7)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000010 G2C Homo sapiens Human mitochondria Human orthologues of mouse mitochondria adapted from Collins et al (2006) 91
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000059 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-CONSENSUS Human cortex PSD consensus 748
L00000061 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-CONSENSUS Mouse cortex PSD consensus (ortho) 984
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
L00000071 G2C Homo sapiens BAYES-COLLINS-MOUSE-PSD-FULL Mouse cortex PSD full list (ortho) 1556
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.