G2Cdb::Gene report

Gene id
Gene symbol
Homo sapiens
plexin A2
G00000113 (Mus musculus)

Databases (8)

Curated Gene
OTTHUMG00000036564 (Vega human gene)
ENSG00000076356 (Ensembl human gene)
5362 (Entrez Gene)
450 (G2Cdb plasticity & disease)
PLXNA2 (GeneCards)
601054 (OMIM)
Marker Symbol
HGNC:9100 (HGNC)
Protein Sequence
O75051 (UniProt)

Synonyms (4)

  • FLJ11751
  • FLJ30634
  • KIAA0463
  • OCT

Literature (22)

Pubmed - other

  • Identification of neuroglycan C and interacting partners as potential susceptibility genes for schizophrenia in a Southern Chinese population.

    So HC, Fong PY, Chen RY, Hui TC, Ng MY, Cherny SS, Mak WW, Cheung EF, Chan RC, Chen EY, Li T and Sham PC

    Department of Psychiatry, University of Hong Kong, Hong Kong SAR, China.

    Chromosome 3p was reported by previous studies as one of the regions showing strong evidence of linkage with schizophrenia. We performed a fine-mapping association study of a 6-Mb high-LD and gene-rich region on 3p in a Southern Chinese sample of 489 schizophrenia patients and 519 controls to search for susceptibility genes. In the initial screen, 4 SNPs out of the 144 tag SNPs genotyped were nominally significant (P < 0.05). One of the most significant SNPs (rs3732530, P = 0.0048) was a non-synonymous SNP in the neuroglycan C (NGC, also known as CSPG5) gene, which belongs to the neuregulin family. The gene prioritization program Endeavor ranked NGC 8th out of the 129 genes in the 6-Mb region and the highest among the genes within the same LD block. Further genotyping of NGC revealed 3 more SNPs to be nominally associated with schizophrenia. Three other genes (NRG1, ErbB3, ErbB4) involved in the neuregulin pathways were subsequently genotyped. Interaction analysis by multifactor dimensionality reduction (MDR) revealed a significant two-SNP interaction between NGC and NRG1 (P = 0.015) and three-SNP interactions between NRG1 and ErbB4 (P = 0.009). The gene NGC is exclusively expressed in the brain. It is implicated in neurodevelopment in rats and was previously shown to promote neurite outgrowth. Methamphetamine, a drug that may induce psychotic symptoms, was reported to alter the expression of NGC. Taken together, these results suggest that NGC may be a novel candidate gene, and neuregulin signaling pathways may play an important role in schizophrenia.

    American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2010;153B;1;103-13

  • GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling.

    Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R and Yamagishi H

    Department of Pediatrics, Division of Pediatric Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan.

    Congenital heart diseases (CHD) occur in nearly 1% of all live births and are the major cause of infant mortality and morbidity. Although an improved understanding of the genetic causes of CHD would provide insight into the underlying pathobiology, the genetic etiology of most CHD remains unknown. Here we show that mutations in the gene encoding the transcription factor GATA6 cause CHD characteristic of a severe form of cardiac outflow tract (OFT) defect, namely persistent truncus arteriosus (PTA). Two different GATA6 mutations were identified by systematic genetic analysis using DNA from patients with PTA. Genes encoding the neurovascular guiding molecule semaphorin 3C (SEMA3C) and its receptor plexin A2 (PLXNA2) appear to be regulated directly by GATA6, and both GATA6 mutant proteins failed to transactivate these genes. Transgenic analysis further suggests that, in the developing heart, the expression of SEMA3C in the OFT/subpulmonary myocardium and PLXNA2 in the cardiac neural crest contributing to the OFT is dependent on GATA transcription factors. Together, our data implicate mutations in GATA6 as genetic causes of CHD involving OFT development, as a result of the disruption of the direct regulation of semaphorin-plexin signaling.

    Proceedings of the National Academy of Sciences of the United States of America 2009;106;33;13933-8

  • Expression and function of semaphorin 3A and its receptors in human monocyte-derived macrophages.

    Ji JD, Park-Min KH and Ivashkiv LB

    Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA.

    Semaphorins are a large family of secreted and membrane-bound proteins. Recently, several roles of semaphorins in the immune system have emerged. Several semaphorins and their receptors are expressed in a variety of lymphoid and myeloid cells and affect immune cell functions, including cell proliferation, differentiation, chemotaxis, and cytokine production. However, the roles of class 3 semaphorins in human myeloid cells are not well known. Here we examined the regulation of expression of class 3 semaphorins and their receptors by inflammatory stimuli and their function in human macrophages. We show that the expression of Sema3A receptors (neuropilin-1 (NRP-1), NRP-2, plexin A1, plexin A2, and plexin A3) significantly increased during M-CSF-mediated differentiation of monocytes into macrophages under conditions that promote an M2 alternatively activated macrophage phenotype. Consistent with increased NRP-1 expression, cell surface binding of Sema3A increased during M2 differentiation. Interferon (IFN)-gamma and lipopolysaccharide, which promote classical M1 macrophage activation affected expression of NRP-1, NRP-2 and plexin A1. IFN-gamma decreased NRP-1 expression and LPS suppressed NRP-2 and plexin A1 expression. Furthermore we show that Sema3A induced apoptosis in monocyte-derived macrophages and cooperated with anti-Fas CH11 antibody to augment apoptosis. Our results suggest that Sema3A plays a role in induction of apoptosis in monocyte-derived macrophages that are resistant to Fas-induced apoptosis, and that its function can be modulated in inflammatory conditions.

    Funded by: NIAID NIH HHS: R01 AI046712

    Human immunology 2009;70;4;211-7

  • Neither replication nor simulation supports a role for the axon guidance pathway in the genetics of Parkinson's disease.

    Li Y, Rowland C, Xiromerisiou G, Lagier RJ, Schrodi SJ, Dradiotis E, Ross D, Bui N, Catanese J, Aggelakis K, Grupe A and Hadjigeorgiou G

    Celera, Alameda, California, United States of America. yonghong.li@celera.com

    Susceptibility to sporadic Parkinson's disease (PD) is thought to be influenced by both genetic and environmental factors and their interaction with each other. Statistical models including multiple variants in axon guidance pathway genes have recently been purported to be capable of predicting PD risk, survival free of the disease and age at disease onset; however the specific models have not undergone independent validation. Here we tested the best proposed risk panel of 23 single nucleotide polymorphisms (SNPs) in two PD sample sets, with a total of 525 cases and 518 controls. By single marker analysis, only one marker was significantly associated with PD risk in one of our sample sets (rs6692804: P = 0.03). Multi-marker analysis using the reported model found a mild association in one sample set (two sided P = 0.049, odds ratio for each score change = 1.07) but no significance in the other (two sided P = 0.98, odds ratio = 1), a stark contrast to the reported strong association with PD risk (P = 4.64x10(-38), odds ratio as high as 90.8). Following a procedure similar to that used to build the reported model, simulated multi-marker models containing SNPs from randomly chosen genes in a genome wide PD dataset produced P-values that were highly significant and indistinguishable from similar models where disease status was permuted (3.13x10(-23) to 4.90x10(-64)), demonstrating the potential for overfitting in the model building process. Together, these results challenge the robustness of the reported panel of genetic markers to predict PD risk in particular and a role of the axon guidance pathway in PD genetics in general.

    PloS one 2008;3;7;e2707

  • Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database.

    Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, Tanzi RE and Bertram L

    Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.

    In an effort to pinpoint potential genetic risk factors for schizophrenia, research groups worldwide have published over 1,000 genetic association studies with largely inconsistent results. To facilitate the interpretation of these findings, we have created a regularly updated online database of all published genetic association studies for schizophrenia ('SzGene'). For all polymorphisms having genotype data available in at least four independent case-control samples, we systematically carried out random-effects meta-analyses using allelic contrasts. Across 118 meta-analyses, a total of 24 genetic variants in 16 different genes (APOE, COMT, DAO, DRD1, DRD2, DRD4, DTNBP1, GABRB2, GRIN2B, HP, IL1B, MTHFR, PLXNA2, SLC6A4, TP53 and TPH1) showed nominally significant effects with average summary odds ratios of approximately 1.23. Seven of these variants had not been previously meta-analyzed. According to recently proposed criteria for the assessment of cumulative evidence in genetic association studies, four of the significant results can be characterized as showing 'strong' epidemiological credibility. Our project represents the first comprehensive online resource for systematically synthesized and graded evidence of genetic association studies in schizophrenia. As such, it could serve as a model for field synopses of genetic associations in other common and genetically complex disorders.

    Funded by: NICHD NIH HHS: R01 HD060726

    Nature genetics 2008;40;7;827-34

  • Genetic examination of the PLXNA2 gene in Japanese and Chinese people with schizophrenia.

    Takeshita M, Yamada K, Hattori E, Iwayama Y, Toyota T, Iwata Y, Tsuchiya KJ, Sugihara G, Hashimoto K, Watanabe H, Iyo M, Kikuchi M, Okazaki Y and Yoshikawa T

    Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.

    Aberrant neuronal development is one of the integrative theories for the etiology of schizophrenia. The plexin A2 (PLXNA2) gene is one of the receptor genes for axonal guidance factors. Recently, four single nucleotide polymorphisms (SNPs), rs841865, rs752016, rs1327175 and rs2498028, from the PLXNA2 genomic interval have been reported to be associated with schizophrenia in samples from European Americans, Latin Americans and Asian Americans. We tested these four SNPs for association with disease in two Asian populations: 1140 case-control Japanese samples and 293 Chinese pedigrees (1163 samples). In the Japanese samples, significant differences in the allelic frequency and genotypic distribution of rs841865 (p=0.019 and 0.020, respectively) were observed between cases and controls. Haplotype analysis also revealed a significant association of the gene with the disease (global p=0.028). In contrast, there was no genetic contribution of PLXNA2 to Chinese schizophrenia, either by linkage analysis or association tests (allelic and haplotypic transmission disequilibrium tests). These findings suggest that PLXNA2 confers a varying genetic risk for schizophrenia among different populations.

    Schizophrenia research 2008;99;1-3;359-64

  • No association between schizophrenia and polymorphisms of the PlexinA2 gene in Chinese Han Trios.

    Budel S, Shim SO, Feng Z, Zhao H, Hisama F and Strittmatter SM

    Funded by: NIMH NIH HHS: R01 MH059565, R01 MH059566, R01 MH059571, R01 MH059586, R01 MH059587, R01 MH059588, R01 MH060870, R01 MH060879, R01 MH061675, U01 MH046276, U01 MH046289, U01 MH046318; NINDS NIH HHS: R01 NS039962, R01 NS039962-09, R01 NS042304, R01 NS042304-07, R37 NS033020, R37 NS033020-16

    Schizophrenia research 2008;99;1-3;365-6

  • Failure to confirm an association between the PLXNA2 gene and schizophrenia in a Japanese population.

    Fujii T, Iijima Y, Kondo H, Shizuno T, Hori H, Nakabayashi T, Arima K, Saitoh O and Kunugi H

    Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.

    Plexins are receptors for multiple classes of semaphorins, either alone or in combination with neuropilins. Plexins participate in many cellular events that include axonal repulsion, axonal attraction, cell migration, axon pruning, and synaptic plasticity. PLXNA2 maps to chromosome 1q32. Several linkage studies reported schizophrenia susceptibility loci in the 1q22-42 region. A recent study reported that intronic single nucleotide polymorphisms (SNPs) of PLXNA2 were associated with schizophrenia in a European American population. We attempted to replicate this finding in a Japanese sample of 336 patients with schizophrenia and 304 controls. In addition, we examined 3 non-synonymous SNPs (Arg5Gln, GLn57Arg, and Ala267Thr) in PLXNA2. Genotyping was performed by the TaqMan allelic discrimination assay. There was no significant difference in genotype or allele distribution of either the 4 intronic SNPs or the 3 non-synonymous SNPs between patients and controls. Furthermore, haplotype-based analyses did not provide evidence for an association. These results suggest that PLXNA2 may not play a major role in the development of schizophrenia in our Japanese sample.

    Progress in neuro-psychopharmacology & biological psychiatry 2007;31;4;873-7

  • Anxiety and comorbid measures associated with PLXNA2.

    Wray NR, James MR, Mah SP, Nelson M, Andrews G, Sullivan PF, Montgomery GW, Birley AJ, Braun A and Martin NG

    Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, QLD 4029, Australia. naomi.wray@qimr.edu.au

    Context: Reduction in adult neurogenesis has been proposed as a mechanism for onset of depression. Semaphorins and their coreceptors, plexins, have been implicated in nervous system development and in adult neurogenesis. A recent genomewide association study of schizophrenia identified a variant of the gene encoding plexin A2 (PLXNA2) to be most consistently associated across study samples. Common genetic liabilities have been reported between psychiatric and psychological measures, but few examples exist of common genetic variants.

    Objective: To perform a genetic association study between 6 single nucleotide polymorphisms from the PLXNA2 gene (rs3736963, rs2767565, rs752016, rs1327175, rs2478813, and rs716461) and anxiety, depression, neuroticism, and psychological distress.

    Design: Extreme discordant and concordant siblings.

    Setting: Australia.

    Participants: Study participants were selected with respect to extreme neuroticism scores from a population cohort of 18 742 twin individuals and their siblings. The participants and their parents (if blood or buccal samples were available) were genotyped, for a total of 2854 genotyped individuals from 990 families. Of these, 624 individuals with a diagnosis of anxiety or depression from 443 families were used in the association analysis.

    All the participants completed the Composite International Diagnostic Interview, the 23-item Neuroticism scale of the revised Eysenck Personality Questionnaire, and the 10-item Kessler Psychological Distress Scale. Diagnoses of DSM-IV depression and anxiety were determined from the Composite International Diagnostic Interview.

    Results: There was evidence of an allelic association between rs2478813 (and other single nucleotide polymorphisms correlated with it) and anxiety, depression, neuroticism, and psychological distress; the association with anxiety is significant after Bonferroni correction for multiple testing (empirical P<.001). The mouse ortholog of PLXNA2 is located in a highly significant linkage region previously reported for anxiety in mice.

    Conclusion: PLXNA2 is a candidate for causal variation in anxiety and in other psychiatric disorders through its comorbidity with anxiety.

    Archives of general psychiatry 2007;64;3;318-26

  • Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia.

    Mah S, Nelson MR, Delisi LE, Reneland RH, Markward N, James MR, Nyholt DR, Hayward N, Handoko H, Mowry B, Kammerer S and Braun A

    Sequenom Inc., San Diego, CA 92121, USA.

    The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25,000 single-nucleotide polymorphisms (SNPs) located within approximately 14,000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case-control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.

    Funded by: NIMH NIH HHS: R01 MH59565, R01 MH59566, R01 MH59571, R01 MH59586, R01 MH59587, R01 MH59588, R01 MH60870, R01 MH60879, R01 MH61675

    Molecular psychiatry 2006;11;5;471-8

  • Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes.

    Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, Yamamoto J, Sekine M, Tsuritani K, Wakaguri H, Ishii S, Sugiyama T, Saito K, Isono Y, Irie R, Kushida N, Yoneyama T, Otsuka R, Kanda K, Yokoi T, Kondo H, Wagatsuma M, Murakawa K, Ishida S, Ishibashi T, Takahashi-Fujii A, Tanase T, Nagai K, Kikuchi H, Nakai K, Isogai T and Sugano S

    Life Science Research Laboratory, Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, 185-8601, Japan.

    By analyzing 1,780,295 5'-end sequences of human full-length cDNAs derived from 164 kinds of oligo-cap cDNA libraries, we identified 269,774 independent positions of transcriptional start sites (TSSs) for 14,628 human RefSeq genes. These TSSs were clustered into 30,964 clusters that were separated from each other by more than 500 bp and thus are very likely to constitute mutually distinct alternative promoters. To our surprise, at least 7674 (52%) human RefSeq genes were subject to regulation by putative alternative promoters (PAPs). On average, there were 3.1 PAPs per gene, with the composition of one CpG-island-containing promoter per 2.6 CpG-less promoters. In 17% of the PAP-containing loci, tissue-specific use of the PAPs was observed. The richest tissue sources of the tissue-specific PAPs were testis and brain. It was also intriguing that the PAP-containing promoters were enriched in the genes encoding signal transduction-related proteins and were rarer in the genes encoding extracellular proteins, possibly reflecting the varied functional requirement for and the restricted expression of those categories of genes, respectively. The patterns of the first exons were highly diverse as well. On average, there were 7.7 different splicing types of first exons per locus partly produced by the PAPs, suggesting that a wide variety of transcripts can be achieved by this mechanism. Our findings suggest that use of alternate promoters and consequent alternative use of first exons should play a pivotal role in generating the complexity required for the highly elaborated molecular systems in humans.

    Genome research 2006;16;1;55-65

  • Association of PLXNA2 polymorphisms with vertebral fracture risk and bone mineral density in postmenopausal Korean population.

    Hwang JY, Lee JY, Park MH, Kim KS, Kim KK, Ryu HJ, Lee JK, Han BG, Kim JW, Oh B, Kimm K, Park BL, Shin HD, Kim TH, Hong JM, Park EK, Kim DJ, Koh JM, Kim GS and Kim SY

    National Genome Research Institute, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul, 122-701, South Korea.

    Introduction: Plexin A2 (PLXNA2) is a receptor that recognizes secreted or membrane-bound semaphorin 3A, which is implicated in neural regulation of bone metabolism.

    In the present study, we identified 48 genetic polymorphisms in PLXNA2 by resequencing, and 10 single nucleotide polymorphisms (SNPs) were selected for further investigation into their potential involvement in osteoporosis in a postmenopausal population (n=560).

    Results: Two SNPs, +14G>A (Gln5Arg) and +183429C>T (Tyr1621Tyr), and Block1-ht2 were associated with risk of vertebral fracture (p=0.01-0.05), and three SNPs, +799G>A (Ala267Thr), +135391G>A, and +190531G>C, were associated with bone mineral density at various femur sites (p=0.003-0.03). Particularly, the minor allele of +14G>A was associated with a protective effect on vertebral fracture and higher lumbar bone mineral density, suggesting that +14G>A may be a useful marker for osteoporosis and its related fracture.

    Conclusion: These results provide, for the first time, evidence supporting the association of PLXNA2 with osteoporosis in postmenopausal women.

    Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2006;17;11;1592-601

  • Plexins: axon guidance and signal transduction.

    Negishi M, Oinuma I and Katoh H

    Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. mnegishi@pharm.kyoto-u.ac.jp

    Axon guidance represents a key stage in the formation of neuronal network. Axons are guided by a variety of guidance factors, such as semaphorins, ephrins and netrin. Plexins function as receptors for the repulsive axonal guidance molecules semaphorins. Intracellular domains of plexins are responsible for initiating cellular signal transduction inducing axon repulsion. Recent advances have revealed molecular mechanisms for plexin-mediated cytoskeletal reorganization, leading to repulsive responses, and small GTPases play important roles in this signaling. Plexin-B1 activates Rho through Rho-specific guanine nucleotide exchange factors, leading to neurite retraction. Plexin-B1 possesses an intrinsic GTPase-activating protein activity for R-Ras and induces growth cone collapse through R-Ras inactivation. In this review we survey current understanding of the signaling mechanisms of plexins.

    Cellular and molecular life sciences : CMLS 2005;62;12;1363-71

  • The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).

    Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Morrin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J and MGC Project Team

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.

    Funded by: PHS HHS: N01-C0-12400

    Genome research 2004;14;10B;2121-7

  • Complete sequencing and characterization of 21,243 full-length human cDNAs.

    Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T and Sugano S

    Helix Research Institute, 1532-3 Yana, Kisarazu, Chiba 292-0812, Japan.

    As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.

    Nature genetics 2004;36;1;40-5

  • The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment.

    Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P and Gray A

    Departments of Bioinformatics, Molecular Biology and Protein Chemistry, Genentech, Inc, South San Francisco, California 94080, USA. hclark@gene.com

    A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel sec 169a reted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally, both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence. The isolation of full-length cDNA clones for each of these candidate genes resulted in the identification of >1000 novel proteins. A total of 256 of these cDNAs are still novel, including variants and novel genes, per the most recent GenBank release version. The success of this large-scale effort was assessed by a bioinformatics analysis of the proteins through predictions of protein domains, subcellular localizations, and possible functional roles. The SPDI collection should facilitate efforts to better understand intercellular communication, may lead to new understandings of human diseases, and provides potential opportunities for the development of therapeutics.

    Genome research 2003;13;10;2265-70

  • Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs.

    Nakayama M, Kikuno R and Ohara O

    Department of Human Gene Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan. nmanabu@kazusa.or.jp

    Large proteins have multiple domains that are potentially capable of binding many kinds of partners. It is conceivable, therefore, that such proteins could function as an intricate framework of assembly protein complexes. To comprehensively study protein-protein interactions between large KIAA proteins, we have constructed a library composed of 1087 KIAA cDNA clones based on prior functional classifications done in silico. We were guided by two principles that raise the success rate for detecting interactions per tested combination: we avoided testing low-probability combinations, and reduced the number of potential false negatives that arise from the fact that large proteins cannot reliably be expressed in yeast. The latter was addressed by constructing a cDNA library comprised of random fragments encoding large proteins. Cytoplasmic domains of KIAA transmembrane proteins (>1000 amino acids) were used as bait for yeast two-hybrid screening. Our analyses reveal that several KIAA proteins bearing a transmembrane region have the capability of binding to other KIAA proteins containing domains (e.g., PDZ, SH3, rhoGEF, and spectrin) known to be localized to highly specialized submembranous sites, indicating that they participate in cellular junction formation, receptor or channel clustering, and intracellular signaling events. Our representative library should be a very useful resource for detecting previously unidentified interactions because it complements conventional expression libraries, which seldom contain large cDNAs.

    Genome research 2002;12;11;1773-84

  • Plexin signaling via off-track and rho family GTPases.

    Whitford KL and Ghosh A

    Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

    Two papers in this issue of Neuron examine new aspects of Semaphorin signaling via Plexin receptors. Winberg et al. present evidence that the transmembrane protein Off-track (OTK) interacts biochemically and genetically with Plexin A and is important for Sema 1a repulsive signaling. Hu et al. examine the coupling of Plexin B to Rac and RhoA and propose that Plexin B signaling involves inhibition of Rac function by direct sequestration and simultaneous activation of RhoA.

    Neuron 2001;32;1;1-3

  • Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates.

    Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M, Tessier-Lavigne M and Comoglio PM

    Institute for Cancer Research and Treatment, University of Torino, Candiolo, Italy. Itamagnone@ircc.unito.it

    In Drosophila, plexin A is a functional receptor for semaphorin-1a. Here we show that the human plexin gene family comprises at least nine members in four subfamilies. Plexin-B1 is a receptor for the transmembrane semaphorin Sema4D (CD100), and plexin-C1 is a receptor for the GPI-anchored semaphorin Sema7A (Sema-K1). Secreted (class 3) semaphorins do not bind directly to plexins, but rather plexins associate with neuropilins, coreceptors for these semaphorins. Plexins are widely expressed: in neurons, the expression of a truncated plexin-A1 protein blocks axon repulsion by Sema3A. The cytoplasmic domain of plexins associates with a tyrosine kinase activity. Plexins may also act as ligands mediating repulsion in epithelial cells in vitro. We conclude that plexins are receptors for multiple (and perhaps all) classes of semaphorins, either alone or in combination with neuropilins, and trigger a novel signal transduction pathway controlling cell repulsion.

    Funded by: NINDS NIH HHS: NS 22764

    Cell 1999;99;1;71-80

  • Characterization of cDNA clones in size-fractionated cDNA libraries from human brain.

    Seki N, Ohira M, Nagase T, Ishikawa K, Miyajima N, Nakajima D, Nomura N and Ohara O

    Kazusa DNA Research Institute, Chiba, Japan. nseki@kazusa.or.jp

    To evaluate the size-fractionated cDNA libraries of human brain previously constructed (O. O'hara et al. DNA Research, 4, 53-59, 1997), the occurrence of chimeric clones and the content of clones with coding potentiality were analyzed using the randomly sampled clones with insert sizes of 5 to 7 kb. When the chromosomal location of 30 clones was determined by the radiation-hybrid mapping method, the map positions assigned from the 3'- and 5'-end sequences separately were coincident for 29 clones, suggesting that the occurrence of chimeric clones is at most 1/30. Using 91 clones mapped to chromosome 1, the content of clones that have the potentiality coding for proteins larger than 100 amino acid residues was estimated to be approximately 50% (46 out of 91 clones) on the basis of nucleotide sequence analysis and coding potentiality assay in vitro. No significant open reading frames were detected in the remaining clones. Although the clones coding for short peptides may not have been included in the above estimation, the libraries constructed from the whole brain mRNA fraction appear to contain a considerable amount of clones corresponding to the 5'-truncated transcripts in an unprocessed form and/or those with long 3'-untranslated regions.

    DNA research : an international journal for rapid publication of reports on genes and genomes 1997;4;5;345-9

  • A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor.

    Maestrini E, Tamagnone L, Longati P, Cremona O, Gulisano M, Bione S, Tamanini F, Neel BG, Toniolo D and Comoglio PM

    Institute of Genetics Biochemistry and Evolution, Consiglio Nazionale delle Ricerche, Pavia, Italy.

    In hunting for unknown genes on the human X chromosome, we identified a cDNA in Xq28 encoding a transmembrane protein (SEX) of 1871 amino acids. SEX shares significant homology with the extracellular domain of the receptors encoded by the oncogenes MET, RON, and SEA [hepatocyte growth factor (HGF) receptor family]. Further screenings of cDNA libraries identified three additional sequences closely related to SEX: these were named SEP, OCT, and NOV and were located on human chromosomes 3p, 1, and 3q, respectively. The proteins encoded by these genes contain large cytoplasmic domains characterized by a distinctive highly conserved sequence (SEX domain). Northern blot analysis revealed different expression of the SEX family of genes in fetal tissues, with SEX, OCT, and NOV predominantly expressed in brain, and SEP expressed at highest levels in kidney. In situ hybridization analysis revealed that SEX has a distinctive pattern of expression in the developing nervous system of the mouse, where it is found in postmitotic neurons from the first stages of neuronal differentiation (9.5 day postcoitus). The SEX protein (220 kDa) is glycosylated and exposed at the cell surface. Unlike the receptors of the HGF family, p220SEX, a MET-SEX chimera or a constitutively dimerized TPR-SEX does not show tyrosine kinase activity. These data define a gene family (SEX family) involved in the development of neural and epithelial tissues, which encodes putative receptors with unexpected enzymatic or binding properties.

    Funded by: NCI NIH HHS: CA49152; Telethon: 271

    Proceedings of the National Academy of Sciences of the United States of America 1996;93;2;674-8

Gene lists (3)

Gene List Source Species Name Description Gene count
L00000009 G2C Homo sapiens Human PSD Human orthologues of mouse PSD adapted from Collins et al (2006) 1080
L00000016 G2C Homo sapiens Human PSP Human orthologues of mouse PSP adapted from Collins et al (2006) 1121
L00000069 G2C Homo sapiens BAYES-COLLINS-HUMAN-PSD-FULL Human cortex biopsy PSD full list 1461
© G2C 2014. The Genes to Cognition Programme received funding from The Wellcome Trust and the EU FP7 Framework Programmes:
EUROSPIN (FP7-HEALTH-241498), SynSys (FP7-HEALTH-242167) and GENCODYS (FP7-HEALTH-241995).

Cookies Policy | Terms and Conditions. This site is hosted by Edinburgh University and the Genes to Cognition Programme.